An aspheric reduction objective has a catadioptric partial objective (L1), an intermediate image (IMI) and a refractive partial objective (L2). The catadioptric partial objective has an assembly centered to the optical axis and this assembly includes two mutually facing concave mirrors (M1, M2). The cutouts in the mirrors (B1, B2) lead to an aperture obscuration which can be held to be very small by utilizing lenses close to the mirrors and having a high negative refractive power and aspheric lens surfaces (27, 33). The position of the entry and exit pupils can be corrected with aspherical lens surfaces (12, 48, 53) in the field lens groups. The number of spherical lenses in the refractive partial objective can be reduced with aspherical lens surfaces (66, 78) arranged symmetrically to the diaphragm plane. Neighboring aspheric lens surfaces (172, 173) form additional correction possibilities.

Patent
   RE42570
Priority
Sep 26 1996
Filed
Oct 07 2005
Issued
Jul 26 2011
Expiry
Sep 24 2017
Assg.orig
Entity
Large
0
21
all paid
0. 61. A catadioptric objective wherein a light beam is transmitted along a light path and said catadioptric objective comprising:
a first partial objective defining an intermediate image plane;
a second partial objective mounted downstream or upstream of said first partial objective;
said first and second partial objectives conjointly defining a common optical axis and being centered thereon;
said first partial objective being a catadioptric objective according to claim 52 and said second partial objective being a purely refractive objective.
0. 73. A catadioptric objective wherein a light beam is transmitted along a light path from an object plane to an image plane and said catadioptric objective defining an optical axis, said catadioptric objective comprising:
a first concave mirror being arranged concavely to the object plane;
a second concave mirror being arranged concavely to the image plane;
and a plurality of lenses, having two mutually adjacent aspheric surfaces,
wherein said two mutually adjacent aspheric lens surfaces conjointly define a space therebetween filled with a medium having a refractive index <1.1.
0. 82. A catadioptric objective wherein a light beam is transmitted along a light path from an object plane to an image plane and said catadioptric objective defining an optical axis, said catadioptric objective comprising in sequence of travel of said light beam:
a first lens group being arranged centered on said optical axis;
a first concave mirror being arranged centered on said optical axis downstream of said first lens group and being arranged concavely to the object plane;
a second concave mirror being arranged centered on said optical axis downstream of said first concave mirror and being arranged concavely to the image plane;
a second lens group being arranged centered on said optical axis downstream of said second concave mirror;
wherein said optical axis is a straight optical axis;
wherein the catadioptric objective is arranged to define an intermediate image plane downstream from said second concave mirror.
0. 52. A catadioptric objective wherein a light beam is transmitted along a light path and said catadioptric objective defining an optical axis, said catadioptric objective comprising in sequence of travel of said light beam:
a first lens group arranged centered on said optical axis;
a first concave mirror being arranged downstream of said first lens group;
a second concave mirror being arranged downstream of said first concave mirror;
said first and second concave mirrors being disposed so as to face each other;
a second lens group being arranged centered on said optical axis downstream of said second concave mirror;
said first lens group having a first plurality of lenses;
said second lens group having a second plurality of lenses; and,
one of said first and second plurality of lenses having at least one aspheric lens surface,
wherein said catadioptric objective has an object end region and an image end region and said catadioptric objective comprising a field lens group disposed in one of said object end region and said image end region, said field lens group having said aspheric lens surface.
0. 74. A catadioptric objective wherein a light beam is transmitted along a light path from an object plane to an image plane and said catadioptric objective defining an optical axis, said catadioptric objective comprising in sequence of travel of said light beam:
a first lens group being arranged centered on said optical axis;
a first concave mirror being arranged downstream of said first lens group and being arranged concavely to the object plane;
a second concave mirror being arranged downstream of said first concave mirror and being arranged concavely to the image plane;
a second lens group being arranged centered on said optical axis downstream of said second concave mirror;
said first lens group having a first plurality of lenses;
said second lens group having a second plurality of lenses; and,
one of said first and second plurality of lenses having at least one aspheric lens surface,
wherein said catadioptric objective has an object end region and an image end region and said catadioptric objective comprising a field lens group disposed in one of said object end region and said image end region, said field lens group having said aspheric lens surface.
1. A catadioptric objective wherein a light beam is transmitted along a light path and said catadioptric objective defining an optical axis, said catadioptric objective comprising in sequence of travel of said light beam:
a first lens group having a negative refractive power and arranged centered on said optical axis;
a first concave mirror having a central cutout and being arranged centered on said optical axis downstream of said first lens group;
a second concave mirror having a central cutout and being arranged centered on said optical axis downstream of said first concave mirror;
said first and second concave mirrors being disposed so as to face each other;
a second lens group having a negative refractive power and being arranged centered on said optical axis downstream of said second concave mirror;
said first lens group having a first plurality of lenses arranged upstream of said first concave mirror;
said second lens group having a second plurality of lenses arranged downstream of said second concave mirror; and,
one of said first and second plurality of lenses having at least one aspheric lens surface,
wherein said catadioptric objective has an object end region and an image end region and said catadioptric objective further comprising a field lens group disposed in one of said object end region and said image end region, said field lens group having said aspheric lens surface.
34. A catadioptric reduction objective wherein a light beam is transmitted along a light path and said catadioptric reduction objective comprising:
a first partial objective defining an intermediate image plane;
a second partial objective mounted downstream or upstream of said first partial objective;
said first and second partial objectives conjointly defining a common optical axis and being centered thereon;
said first partial objective being a catadioptric objective and said second partial objective being a purely refractive objective; and,
said catadioptric objective including also in sequence of the travel of said light beam:
a first lens group having a negative refractive power and arranged on said optical axis;
a first concave mirror having a central cutout and being arranged on said optical axis downstream of said first lens group;
a second concave mirror having a central cutout and being arranged on said optical axis downstream of said first concave mirror;
said first and second concave mirrors being disposed so as to face each other;
a second lens group having a negative refractive power and being arranged on said optical axis downstream of said second concave mirror;
said first lens group having a first plurality of lenses arranged upstream of said first concave mirror;
said second lens group having a second plurality of lenses arranged downstream of said second concave mirror; and,
one of said first and second plurality of lenses having at least one aspheric lens surface.
49. A microscope for imaging an object into an image plane and wherein a light beam is transmitted along a light path, said microscope defining an optical axis and comprising in sequence of travel of said light beam:
a dioptric objective arranged centered on said optical axis and defining an intermediate image plane;
a catadioptric objective centered on said axis;
said dioptric objective being disposed downstream of said object to image said object into said intermediate image plane;
said catadioptric objective imaging the image of said object in said intermediate image plane into said image plane; and,
said catadioptric objective including also in sequence of travel of said light beam:
a first lens group having a negative refractive power and arranged centered on said optical axis;
a first concave mirror having a central cutout and being arranged centered on said optical axis downstream of said first lens group;
a second concave mirror having a central cutout and being arranged centered on said optical axis downstream of said first concave mirror;
said first and second concave mirrors being disposed so as to face each other;
a second lens group having a negative refractive power and being arranged centered on said optical axis downstream of said second concave mirror;
said first lens group having a first plurality of lenses arranged upstream of said first concave mirror;
said second lens group having a second plurality of lenses arranged downstream of said second concave mirror; and,
one of said first and second plurality of lenses having at least one aspheric lens surface.
50. A microlithographic projection exposure apparatus for exposing an object including a photosensitive layer on a substrate and wherein a light beam is transmitted along a light path, comprising in sequence of travel of said light beam:
a light source;
an illuminating system downstream of said light source;
a mask holder for holding a structure mask in said light path downstream of said illuminating system;
a catadioptric objective mounted downstream of said first dioptric component objective;
a holder downstream of said catadioptric objective for holding said object in said light path;
wherein said catadioptric objective defines an optical axis, said catadioptric objective comprising in sequence of travel of said light beam:
a first lens group having a negative refractive power and arranged centered on said optical axis;
a first concave mirror having a central cutout and being arranged centered on said optical axis downstream of said first lens group;
a second concave mirror having a central cutout and being arranged centered on said optical axis downstream of said first concave mirror;
said first and second concave mirrors being disposed so as to face each other;
a second lens group having a negative refractive power and being arranged centered on said optical axis downstream of said second concave mirror;
said first lens group having a first plurality of lenses arranged upstream of said first concave mirror;
said second lens group having a second plurality of lenses arranged downstream of said second concave mirror; and,
one of said first and second plurality of lenses having at least one aspheric lens surface,
wherein said catadioptric objective has an object end region and an image end region and said catadioptric objective comprising a field lens group disposed in one of said object end region and said image end region, said field lens group having said aspheric lens surface.
2. The catadioptric objective of claim 1, p1 said first plurality of lenses including at least a first negative lens and said first lens group being devoid of any additional negative lenses between said first negative lens and said first concave mirror;
said first negative lens and any lenses between said first negative lens and said first concave mirror having an overall negative refractive power;
said second plurality of lenses including at least a second negative lens and said second lens group being devoid of any additional negative lenses between said second concave mirror and said second negative lens;
said second negative lens and any lenses between said second concave mirror and said second negative lens having an overall negative refractive power; and,
said first plurality of lenses including a lens adjacent said first negative lens and said second plurality of lenses including a lens adjacent said second negative lens; and,
at least one of the following lenses having at least one aspheric lens surface: said first negative lens, said lens adjacent said first negative lens, said second negative lens and said lens adjacent said second negative lens.
0. 3. The catadioptric objective of claim 1, wherein said catadioptric objective has an object end region and an image end region; and, said catadioptric objective further comprising a field lens group disposed in one of said object end region and said image end region; and, said field lens group having said aspheric lens surface.
4. The catadioptric objective of claim 1, wherein said first lens group includes a first subgroup, a second subgroup and a third subgroup; said first and third subgroups having a negative refractive power and said second subgroup having a positive refractive power; and, said second subgroup having at least said one aspheric lens surface.
5. The catadioptric objective of claim 1, wherein light rays pass through said first and second lens groups in only one direction.
6. The catadioptric objective of claim 1, wherein the absolute value of the magnification ratio of said catadioptric objective lies in a range from 0.7 to 1.3.
7. The catadioptric objective of claim 1, wherein a lens or at least part of a lens of at least one of said first and second plurality of lenses lie in a geometric space between said first and second concave mirrors.
8. The catadioptric objective of claim 1, wherein at least one of said first and second lens groups includes a concave surface for which the ratio of lens height (hmax) to surface radius (R) lies in a range from 0.7<hmax/R<1.0.
9. The catadioptric objective of claim 8, wherein the plurality of lenses of said one of said first and second lens groups includes a lens defining said concave surface; and, said lens defining said concave surface having an aspheric lens surface or a lens adjacent to said lens having said concave surface having an aspheric lens surface.
10. The catadioptric objective of claim 1, wherein a light beam is transmitted by said catadioptric objective and said light beam includes a marginal ray; at least one of said first and second lens groups includes at least one surface having a largest magnitude of the sine of the angle of incidence relative to the surface normal of said marginal ray in air (|sin(iperi)|) greater by a factor of three of the numerical aperture (NA) of the object end region.
11. The catadioptric objective of claim 10, wherein said magnitude of said sine is greater by a factor of 3.5.
12. The catadioptric objective of claim 10, wherein said magnitude of said sine is greater by a factor of 3.75.
13. The catadioptric objective of claim 10, wherein said at least one surface is defined by a lens of said at least one of said first and second lens groups and said lens or a lens adjacent thereto having an aspheric lens surface.
14. The catadioptric objective of claim 1, wherein each of said central cutouts defines an aperture obscuration which is less than 35%.
15. The catadioptric objective of claim 14, wherein said aperture obscuration is less than 25%.
16. The catadioptric objective of claim 14, wherein said aperture obscuration is less than 20%.
17. The catadioptric objective of claim 1, wherein a first pupil plane is disposed in said light path between said first and second concave mirrors.
18. The catadioptric objective of claim 1, wherein a light beam is transmitted by said catadioptric objective and said light beam includes a marginal ray; one of said lenses of said first plurality of lenses being next to said first concave mirror; one of said lenses of said second plurality of lenses being next to said second concave mirror; and, for the height (hG11) of said marginal ray on said one lens of said first plurality of lenses and for the height (hG12) of said marginal ray on said one lens of said second plurality of lenses, the following relationship applies:

0.8<hG11/hG12<1.2.
19. The catadioptric objective of claim 1, wherein a light beam is transmitted by said catadioptric objective and said light beam includes an aperture ray; and, said aperture ray defining an angle i1 with said optical axis upstream of said first lens group and an angle i2 with said optical axis downstream of said first lens group; and,
wherein the aperture expansion
sin ( i 1 ) sin ( i 2 )
is at least 2.0.
20. The catadioptric objective of claim 19, wherein said aperture expansion is at least 3.0.
21. The catadioptric objective of claim 19, wherein said aperture expansion is dependent upon said angle i1.
22. The catadioptric objective of claim 21, wherein the aperture expansion for a paraxial aperture ray is mP and the aperture expansion for a marginal ray is mR; and, mR/mP<1.1.
23. The catadioptric objective of claim 22, wherein mR/mP<1.05.
24. The catadioptric objective of claim 22, wherein mR/mP<1.02.
25. The catadioptric objective of claim 1, wherein hL1 is the maximum height of all of said lenses of said first and second plurality of lenses; hM1 is the smaller height of said first and second concave mirrors; and, hL1/hM1 is less than ¼.
26. The catadioptric objective of claim 25, wherein hL1/hM1 is less than ⅕.
27. The catadioptric objective of claim 1, wherein said catadioptric objective has an object end region; and, the maximum deviation of the real pupil function of said object end region from a line fit through said real pupil function is less than ±10 mrad.
28. The catadioptric objective of claim 27, wherein said maximum deviation is less than ±5 mrad.
29. The catadioptric objective of claim 1, wherein all of said lenses are made of the same material.
30. The catadioptric objective of claim 29, wherein all of said lenses are made of fluoride crystal.
31. The catadioptric objective of claim 30, wherein said fluoride crystal is selected from the group consisting of CaF2, BaF2, SrF2, LiF, NaF and KF.
32. The catadioptric objective of claim 1, wherein said first and second concave mirrors conjointly define a space therebetween containing a gas having a pressure and temperature dependency on its refractive index less than nitrogen.
33. The catadioptric objective of claim 32, wherein said gas is helium.
35. The catadioptric reduction objective of claim 34, wherein the absolute value of the magnification ratio lies in the range from 0.1 to 0.5.
36. The catadioptric reduction objective of claim 34, said refractive objective having at least one lens defining an aspheric surface.
37. The catadioptric reduction objective of claim 36, wherein a first pupil plane is disposed in said light path between said first and second concave mirrors; said refractive objective containing a second pupil plane; said refractive objective includes a third plurality of lenses defining a first aspheric surface upstream of said second pupil plane and a second aspheric surface downstream of said second pupil plane; and, wherein ha1 is the height of a chief ray at said first aspheric surface and ha2 is the height of a chief ray at said second aspheric surface; and, the following relationship applies:
0.7 < h a 1 h a 2 < 1.3 .
38. The catadioptric reduction objective of claim 37, wherein said relationship is:
0.8 < h a 1 h a 2 < 1.2 .
39. The catadioptric reduction objective of claim 34, said catadioptric reduction objective having two mutually adjacent aspheric lens surfaces.
40. The catadioptric reduction objective of claim 39, said two mutually adjacent aspheric lens surfaces conjointly defining a space therebetween filled with a medium having a refractive index<1.1.
41. The catadioptric reduction objective of claim 39, wherein said refractive objective includes an aperture stop (AS2′); ha3 is the maximum ray height of chief rays at said mutually adjacent lens surfaces; and, hAS is the height of said aperture stop (AS2′); and, wherein the following relationship applies:
h a 3 h AS < 0.15 .
42. The catadioptric reduction objective of claim 41, wherein:
h a 3 h AS < 0.10 .
43. The catadioptric reduction objective of claim 34, wherein said refractive objective includes an object end region and an image end region; and, said refractive objective includes a field lens group in said object end region and said field lens group including an aspheric lens surface.
44. The catadioptric reduction objective of claim 34, wherein said refractive objective includes a third plurality of lenses; hL2 is the maximum height of all of said lens elements of said catadioptric objective and said refractive objective; hM2 is the lesser height of said first and second concave mirrors; and, wherein hL2/hM2 is less than ¼.
45. The catadioptric reduction objective of claim 44, wherein hL2/hM2 is less than ⅕.
46. The catadioptric reduction objective of claim 34, wherein all of said lenses are made of the same material.
47. The catadioptric reduction objective of claim 46, wherein all of said lenses are made of fluoride crystal.
48. The catadioptric reduction objective of claim 47, wherein said fluoride crystal is selected from the group consisting of CaF2, BaF2, SrF2, LiF, NaF and KF.
51. The microlithographic projection exposure apparatus of claim 50, said catadioptric objective being a catadioptric reduction objective comprising:
a first partial objective defining an intermediate image plane;
a second partial objective mounted downstream or upstream of said first partial objective;
said first and second partial objectives conjointly defining a common optical axis and being centered thereon;
said first partial objective being a catadioptric objective and said second partial objective being a purely refractive objective; and,
said catadioptric objective including in sequence of travel of said light beam:
a first lens group having a negative refractive power and arranged on said optical axis;
a first concave mirror having a central cutout and being arranged on said optical axis downstream of said first lens group;
a second concave mirror having a central cutout and being arranged on said optical axis downstream of said first concave mirror;
said first and second concave mirrors being disposed so as to face each other;
a second lens group having a negative refractive power and being arranged on said optical axis downstream of said second concave mirror;
said first lens group having a first plurality of lenses arranged upstream of said first concave mirror;
said second lens group having a second plurality of lenses arranged downstream of said second concave mirror; and,
one of said first and second plurality of lenses having at least one aspheric lens surface.
0. 53. The catadioptric objective of claim 52, wherein said catadioptric objective has an object end region and an image end region; and,
said catadioptric objective further comprising a field lens group disposed in one of said object end region and said image end region; and,
said field lens group having said aspheric lens surface.
0. 54. The catadioptric objective of claim 52, wherein light rays pass through said first and second lens groups in only one direction.
0. 55. The catadioptric objective of claim 52, wherein a first pupil plane is disposed in said light path between said first concave mirror and said second concave mirror.
0. 56. The catadioptric objective of claim 52, wherein said catadioptric objective has an object end region; and,
the maximum deviation of the real pupil function of said object end region from a line fit through said real pupil function is less than ±10 mrad.
0. 57. The catadioptric objective of claim 56, wherein said maximum deviation is less than ±5 mrad.
0. 58. The catadioptric objective of claim 52, wherein all of said lenses are made of the same material.
0. 59. The catadioptric objective of claim 52, wherein said first and second concave mirrors conjointly define a space therebetween containing a gas having a pressure and temperature dependency on its refractive index less than nitrogen.
0. 60. The catadioptric objective of claim 59, wherein said gas is helium.
0. 62. The catadioptric objective of claim 61, wherein the absolute value of the magnification ratio of said catadioptric reduction objective lies in the range from 0.1 to 0.5.
0. 63. The catadioptric objective of claim 62, wherein the absolute value of the magnification ratio of said first partial objective lies in a range from 0.7 to 1.3.
0. 64. The catadioptric objective of claim 61, wherein said refractive objective having at least one lens having an aspheric surface.
0. 65. The catadioptric objective of claim 63, wherein a first pupil plane is disposed in said light path between said first concave mirror and said second mirror; said refractive objective containing a second pupil plane;
said refractive objective includes a third plurality of lenses defining a first aspheric surface upstream of said second pupil plane and a second aspheric surface downstream of said second pupil plane; and,
wherein ha1 is the height of a chief ray at said first aspheric surface and ha2 is the height of a chief ray at said second aspheric surface; and, the following relationship applies:
0.7 < h a 1 h a 2 < 1.3 .
0. 66. The catadioptric reduction objective of claim 65, wherein said relationship is:
0.8 < h a 1 h a 2 < 1.2 .
0. 67. The catadioptric objective of claim 61, said catadioptric reduction objective having two mutually adjacent aspheric lens surfaces.
0. 68. The catadioptric objective of claim 67, said two mutually adjacent aspheric lens surfaces conjointly defining a space therebetween filled with a medium having a refractive index<1.1.
0. 69. The catadioptric objective of claim 67, wherein said refractive objective includes an aperture stop (AS2′);
ha3 is the maximum ray height of chief rays at said mutually adjacent lens surfaces; and,
hAS is the height of said aperture stop (AS2′); and, wherein the following relationship applies:
h a 3 h AS < 0.15 .
0. 70. The catadioptric objective of claim 69, wherein:
h a 3 h AS < 0.10 .
0. 71. The catadioptric objective of claim 61, wherein said refractive objective includes an object end region and an image end region; and,
said refractive objective includes a field lens group in said object end region and said field lens group including an aspheric lens surface.
0. 72. The catadioptric objective of claim 61, wherein all of said lenses are made of the same material.
0. 75. The catadioptric objective of claim 74, wherein light rays pass through said first and second lens groups in only one direction.
0. 76. The catadioptric objective of claim 74, wherein the light path between said first concave mirror and said second concave mirror is free of lenses.
0. 77. The catadioptric objective of claim 74, wherein a first pupil plane is disposed in said light path between said first concave mirror and said second concave mirror.
0. 78. The catadioptric objective of claim 74, wherein said optical axis is a straight optical axis.
0. 79. The catadioptric objective of claim 74, wherein said first concave mirror and said second concave mirror are arranged outside of said optical axis.
0. 80. The catadioptric objective of claim 74, wherein said first concave mirror and said second concave mirror have a cutout.
0. 81. The catadioptric objective of claim 74, wherein all of said lenses are made of the same material.
0. 83. The catadioptric objective of claim 82, wherein light rays pass through said first and second lens groups in only one direction.
0. 84. The catadioptric objective of claim 82, wherein the light path between said first concave mirror and said second concave mirror is free of lenses.
0. 85. The catadioptric objective of claim 82, wherein a first pupil plane is disposed in said light path between said first concave mirror and said second concave mirror.
0. 86. The catadioptric objective of claim 82, wherein said first concave mirror and said second concave mirror are arranged outside of said optical axis.
0. 87. The catadioptric objective of claim 82, wherein said first concave mirror and said second concave mirror have a cutout.
0. 88. The catadioptric objective of claim 82, wherein all of said lenses are made of the same material.

This application is
wherein: P is the sagitta as a function of the radius h (elevation to the optical axis) with the aspheric constants c1 to cn presented in Table 1. R is the vertex radius from Table 1. The deviations of the mirror surfaces from the spherical are moderate and can be controlled during manufacture. The type of glass listed in Table 1 is SUPRA1 or quartz.

The manufacture of such aspherical mirrors in the diameter range of 0.5 to 1 meter is known from the area of astronomic instruments. For assembly-line manufacture, shaping techniques such as galvano forming can be applied. The manufacturing accuracy does not have to be too great because conjugated corrective surfaces are available on the above-mentioned planar plate (50′/51′) or on one of the adjacent meniscus lens surfaces 48′, 49′, 53′ or 54′.

An optical element (50′, 51′) is arranged in the region of the pupil (P) following the intermediate image (Z). This optical element (50′, 51′) has non-spherical corrective surfaces.

It is also possible to provide elastic mirrors. As a departure from the known alignment cementing, these mirrors can be adjusted in an assembly phase utilizing actuators and can then be fixed on a rigid carrier. On the other hand, these mirrors can be controlled in optimal form during operation on line with, for example, piezoelectric actuators in order to compensate, for example, for thermal lens effects.

A projection exposure system is shown in FIG. 2 and includes a light source 201, for example, an excimer laser emitting light at a wavelength below 250 nm. An illumination system 202 is arranged downstream of the light source 201. Reference numeral 230 identifies the mask holder and operating system. The mask holder holds a mask 203 on the optical axis downstream of the illumination system 202 as shown. A catadioptric reduction objective 204 follows the mask holder and operating system 230 and can, for example, correspond to the catadioptric microlithographic reduction objective shown in FIG. 1. The reduction objective 204 has a reduction ratio in the range of 1:2 to 1:10.

The object is identified by reference numeral 205 and can be, for example, a semiconductor wafer or LCD panel. The object 205 is held by an object holder and operating system 250.

The catadioptric reduction objective shown in FIGS. 1 and 2 includes a catadioptric first partial objective having two mutually facing concave mirrors, an intermediate image plane and a refractive second partial objective. With the aspherical concave mirrors and the spherical lenses, the central shading is reduced to only about 35% of the mirror diameter for an aperture of NA=0.70 and an image diameter of 27.00 mm so that the contrast transmitting function is already significantly affected.

To correct residual errors, non-spherical corrective surfaces are provided in the vicinity of the diaphragm plane following the intermediate image plane. The form of the corrective surfaces is dependent upon the residual errors of the individual sample so that the aspherical corrective surfaces are not part of the objective design.

At wavelengths less than 200 nm, normal quartz glass is not suitable; however, fluoride crystals (for example, CaF2) can be used but these materials are available only to a limited extent in the required quality and size. For this reason, it is desirable to provide a design wherein the lens diameters are still further reduced so that a lesser amount of expensive fluoride material need be used.

Finally, it is better for the size of the aperture obscuration to omit the lenses of the first lens group located between the two concave mirrors.

FIG. 3 shows an embodiment for the catadioptric reduction objective of the invention having aspheric lenses and wherein the lens diameters are reduced compared to the embodiments of FIGS. 1 and 2 and operation is at wavelengths less than 200 nm. The optical data for the objective of FIG. 3 are presented in Table 2.

The catadioptric reduction objective includes a catadioptric first partial objective L1 having surfaces 2 to 48 and a refractive second partial objective L2 having the surfaces 50 to 84. The catadioptric first partial objective L1 images the object plane OB slightly demagnified on the intermediate image plane IMI with a magnification ratio βL1=−0.76. The intermediate image plane IMI is imaged by the refractive second partial objective L2 on the image plane IM significantly demagnified with a magnification ratio of βL2=−0.33. In this way, the total magnification ratio β of the object plane OB in the image plane IM is β=−0.25. The circularly-shaped object field OB has a diameter of 91.2 mm and the corresponding image field IM has a diameter of 22.8 mm. If the catadioptric reduction objective is used in lithography, then object field and image field are rectangularly shaped. For example, a rectangularly-shaped field having the X-Y dimensions 22 mm×6 mm can be placed in the circular-shaped image field as would be suitable for a wafer scanner. The image end numerical aperture is NA=0.8 in the first embodiment. A numerical aperture this high in combination with a large image field has only recently been presented for projection objectives.

All lenses of this catadioptric reduction objective are made of the same material, in this case, CaF2. CaF2 has a refractive index of 1.55841 at the working wavelength of λ=157.3 nm. If one has the possibility in the wavelength region less than 250 nm to use a second material having higher dispersion in lenses having negative refractive power, then the color correction can be further improved. For example, sodium fluoride NaF as a counterpart to CaF2 is, for example, conceivable.

At wavelengths λ<200 nm, oxygen O2 is absorbent so that a gas charge with N2 or a suitable rare gas is provided. In the first embodiment, the lens intermediate spaces are filled with N2.

The catadioptric partial objective L1 comprises a first lens group G11 having surfaces 2 to 27, a first concave mirror M1 having a central cutout B1, a first pupil plane AS1, a second concave mirror M2 having a central cutout B2 and a second lens group G12 having surfaces 33 to 48. These optical components are passed through by the light rays in the sequence indicated. In FIG. 3, the chief and marginal rays are shown for an object point on the optical axis (Y=0.0) and two additional object points on the field edge at Ymin=−45.6 mm and Ymax=45.6 mm. The chief rays are shown as broken lines because they are masked by the aperture obscuration in the real system and are only of a theoretical nature.

The two concave mirrors M1 and M2 facing each other fulfill two significant tasks in the catadioptric partial objective L1: the concave mirrors together with the neighboring lenses of negative refractive power generate the overcorrection of the axial chromatic aberration and the field curvature. As concave mirrors, they have a large positive refractive power but do not introduce any chromatic image errors. For chromatic overcorrection in the intermediate image plane IMI, the first lens group G11 and the second lens group G12 have a high negative refractive power whose diverging action is again compensated by the concave mirrors so that the first partial objective L1 generates a real image. Simultaneously, the lenses having negative refractive power with low marginal ray heights in combination with mirrors of positive refractive power with high marginal ray heights are the ideal correction means for field flattening. With the catadioptric partial objective L1, the field curvature in the intermediate image plane IMI can be overcorrected so that a planar image field results in the image plane IM after the imaging with the refractive partial objective L2 without additional corrective means for field flattening being needed in the refractive partial objective 12.

The mirror hole B1 of the concave mirror M1 and the mirror hole B2 of the concave mirror M2 lead to an obscuration in the pupil illumination. Specific aperture regions cannot be transmitted with this class of objectives. In the first embodiment, for an object point on the optical axis, the sine of the marginal ray angle is sine(iMax)=0.2 and the sine of the minimum possible aperture angle is sine (iMin)=0.0369. The aperture obscuration is computed at 18.5%.

A corresponding masking device is provided in the pupil plane AS1 in order to shade the rays which would impinge on the cutout B1 of the first concave mirror M1 and have an aperture angle of less than iMin. This masking device is so selected that the aperture obscuration is of the same size for all object points and lies centered to the chief ray. The minimally possible aperture obscuration of 18.5% for a point on the optical axis is increased to 20% when considering all object points. This masking device can, for example, be a circular absorbing disc which is arranged centered to the optical axis. A rod can serve as a holder which extends along the optical axis and is attached to the lens surfaces 27 and 33. In both lens surfaces, a recess can be machined (for example, with a diamond) in which the holding rod can be seated. The region about the optical axis in the vicinity of the pupil plane AS1 is not in the imaging beam path. For this reason, the holding device can be so designed that there is no effect on the imaging. A holder of the masking device having spokes or the like extending from the lens holder or mirror holder would lead to diffraction and thereby lead to a reduction of the resolution capacity.

The aperture obscuration affects the contrast transmission function of this class of objectives. For this reason, it is advantageous when the aperture obscuration is held as small as possible. All optical components of the catadioptric partial objective L1 are therefore so designed that the aperture obscuration remains limited to a minimum possible value.

It is necessary that the lenses next to the concave mirror have a large negative refractive power in order to hold the aperture obscuration small. In the embodiment, these are the lenses having the surface number 24/25, 26/27 and 33/34, 35/36. In the first lens group G11, the lenses contain concave surfaces 24 and 26, which are concave to the object plane OB and, in the second lens group G12, the lenses have concave surfaces 34 and 36 concave to the intermediate image plane IMI with very high values for the aperture ratio of lens height hmax to lens radius R. Thus, for surface 24, h24max/R24=0.72 and for surface 36, h36 max/R36=0.75. The aperture ratio of the concave surfaces for these negative lenses close to the mirrors is therefore significantly greater than 0.7.

The last lens 26/27 of the first lens group G11 is designed as a biconcave lens in order to obtain the maximum expansion of the aperture rays after the lens group G11. The angles of incidence of the aperture rays in the optically thinner medium (that is, with a refractive index less than 1.1) on the lens side 27, which faces toward the concave mirror M1, assume the largest possible values. In the present example, the sine of the incident angle with respect to the surface normal in the optically thinner medium for the marginal ray on the surface 27 for an object point on the optical axis is sine(i27RD)=0.779. Correspondingly, the first lens 33/34 of the second lens group G12 is a biconcave lens and the lens surface 33 is a surface where high angles of incidence are present. Accordingly, the sine of the angle of incidence in the optically thinner medium with respect to the surface normal for the same marginal ray is sine(i33RD)=0.722.

It is possible to greatly expand the aperture rays with the negative refractive power of the first lens group G11. Thus, the sine of the angle of the marginal ray of an object point on the optical axis is 0.200 forward of the first lens group G11 and 0.706 after the first lens group G11 with respect to the optical axis. The aperture expansion for this marginal ray therefore is 3.532. Because of the negative refractive power of the second lens group G12, the sine of the angle of the same marginal ray with respect to the optical axis reduces from 0.676 forward of the second lens group G12 to 0.304 after the second lens group G12, that is, by the factor 1/2.254.

The aperture expansion is dependent upon the magnitude of the aperture angle i1 forward of the first lens group G11. With a very great ray deflection with only a few spherical lens elements, an increase of the aperture expansion with an increasing aperture angle i1 would occur which, in the following, is identified as a positive distortion of the aperture expansion. This distortion is unwanted because it leads to an increase in the mirror diameters without being able to thereby reduce the aperture obscuration. In order to reduce the positive distortion of the aperture expansion with purely spherical lens surfaces, the negative refractive power of the lenses 24/26 and 26/27 would have to be distributed to additional lenses in order to reduce the angle of incidence of the diverging surfaces. Additional lenses would, however, lead to an increase of the structural length and to further transmission losses.

The distortion of the aperture expansion can be corrected without additional lens elements when an aspherical lens surface 27 is provided in the lens group having negative refractive power (surfaces 24 to 27). It is advantageous when the last lens surface 27 of the first lens group G11 is aspheric because, in this way, the dispersion of the ray angles directly forward of the first concave mirror M1 can be influenced. The object is to reduce the positive distortion of the aperture expansion and, in the ideal case, reverse into a negative distortion. With a reduction of the aperture expansion for increasing aperture angles i1, the mirror diameters can be reduced with the aperture obscuration remaining the same. In the present example, the aperture expansion mR=3.532 for a marginal ray having i1R=0.2. The aperture expansion mP=3.465 for a paraxial ray having i1P=0.002. The paraxial ray would not exhibit a throughgoing ray trace because of the aperture obscuration in the real system; however, it is viewed here as a fictitious system without mirror cutouts. The ratio of the aperture expansion mR for the marginal ray and mP for the paraxial ray is mR/mP=1.019. The positive distortion of the aperture expansion lies only at 2% with the aspherical lens surface 27. The first surface 33 of the second lens group G12 is likewise aspherical in order to compensate the distortion of the aperture expansion introduced by the aspherical surface 27. The surfaces 27 and 33 are next to the concave mirrors and are aspheric as are the concave mirrors M1 and M2. For this reason, the aperture rays between the first and second lens groups G11 and G12 are guided in such a manner that the mirror diameters can be reduced with aperture obscuration being constant.

To minimize the aperture obscuration further, the two concave mirrors M1 and M2 and the lenses 26/27 and 33/34, which are close to the mirrors, are arranged almost symmetrically to the pupil plane AS1. The distances of the concave mirrors M1 and M2 as also of the lens surfaces 27 and 33 to the pupil plane AS1 each are 189.73 mm. The two mirrors are arranged concave to the diaphragm plane and have similar curvatures. The negative lenses 26/27 and 33/34 are biconcave lenses. The weaker curved surfaces each face the pupil plane AS1. With this assembly, a beam trace, which is substantially symmetrical to the pupil plane AS1 results between the surfaces 27 and 33. Accordingly, a marginal ray from an object point on the optical axis has approximately the same ray elevation at the last surface 27 of the first lens group G11 and at the first surface 33 of the second lens group G12. At surface 27, the beam height hG11=40.66 mm and at surface 33, the ray height hG12=40.56 mm. With this assembly, which is symmetric to the pupil plane AS1, the contribution of the mirror holes B1 and B2 to the aperture obscuration is almost the same.

In the first embodiment, at least the peripheral regions of the lens 26/27 and the lens 33/34 are disposed in the space between the concave mirrors M1 and M2. In this way, one achieves that, on the one hand, the spacing of the lens 26/27 to the concave mirror M1 and the spacing of the lens 33/34 to the concave mirror M2 is as small as possible. On the other hand, the beam path between the concave mirrors M1 and M2 may only be minimally vignetted because of the last lens 26/27 of the first lens group G11 and the first lens 33/34 of the second lens group.

It is advantageous when the catadioptric reduction objective has an approximately homocentric entrance pupil. That means that the chief rays, which extend up to the optical axis, should intersect at one point on the optical axis.

In FIG. 4, the real pupil function for 37 chief ray heights is given for the embodiment of Table 2. The function runs between ±10.1 mrad and, in addition to a linear component, also has higher orders. The chief rays run convergent to the optical axis so that the entrance pupil is virtual. A fit line is shown as a solid line and is determined in that the positive and negative deviation of the object end pupil function from the fit line is minimal over the entire object field from −45.6 mm to 45.6 mm. All values of the object end pupil function lie in FIG. 4 in a region of ±4.5 mrad about the fit line. Via the linear component of the object end pupil function, a scale change can be provided by defocusing the object with simultaneous manipulation of an additional air space.

The object end field lens group FL1 having the surfaces 2 to 17 has an aspheric surface 12 in order to be able to influence the object end pupil function. To provide a pupil function having a dominant linear component with an object diameter of 91.2 mm and an object end numerical aperture of NAO=0.2 would, without the aspherical surface 12, require additional lenses.

To control the pupil function, the field lens group FL11 is assembled from a first subgroup G111 having the surfaces 2 to 5 and a second subgroup G112 having the surfaces 6 to 19. Here, the first subgroup G111 has a negative refractive power and the second subgroup G112 has a positive refractive power. To mount the aspheric surface 12 in the second subgroup G112 having positive refractive power has the advantage that the amounts of higher order of the aspheric surface do not operate directly on the pupil function because of the distance to the object plane. In addition, the splitting of the beams was increased by the negative refractive power of the first subgroup G111. The lenses having the surfaces 20 to 27 form a third subgroup G113 having negative refractive power which already serves to expand the beam.

The field lens groups FL12 (having the surfaces 41 to 48) and FL21 (having the surfaces 50 to 55) are next to the intermediate image plane IMI and likewise have aspheric surfaces 48 and 53 which, in this case, influence the image end pupil function and the distortion in the image plane IM. In the image plane IM, the distribution of the chief ray angle should be as telecentric as possible. Thus, the image end pupil function for the embodiment of Table 2 runs between ±3.6 mrad. For use in microlithography, it is adequate when the image end pupil function has values between ±10 mrad.

With the overcorrection of the image field curvature with the catadioptric partial objective L1, it is not necessary to provide a narrowed beam path for Petzval correction within the dioptric partial objective L2. In this way, the lens diameters remain limited. The maximum lens diameters in the partial objective L2 is 116.5 mm at surface 62. In the first partial objective L1 too, the lens diameters are low in order to reduce the aperture obscuration. The largest lens in the catadioptric partial objective L1 is in the lens group G112 with a diameter of 130.4 mm. The mirror diameters can be held to less than 700 mm via the aspheric surfaces 27 and 33, which are close to the mirror, with an aperture obscuration of 20%. In this way, the concave mirror M1 has a diameter of 691.5 mm and the concave mirror M2 has a diameter of 663.0 mm.

The lateral aberrations of the aperture rays are only inadequately corrected with the intermediate imaging of the catadioptric partial objective L1. The large inner coma is clearly visible in FIG. 3. The drawn-in marginal rays for the object point at Ymin=−45.6 mm run in the intermediate image plane IMI between optical axis and chief ray. The distance of the marginal rays to the chief ray is 7 mm in the intermediate image plane IMI. The correction of the image errors, which are introduced by the catadioptric partial objective L1, takes place in the refractive partial objective L2. The aspherical lens surfaces 66 and 78 are especially effective for the correction of spherical aberration, oblique spherical aberration and coma. Their position is so selected that the chief ray heights have almost the same absolute value. Thus, a principal ray, which emanates from Ymin=−45.6 mm, has a beam height of 8.65 mm at the surface 66 and has a ray height of −9.59 mm at surface 78. The two meniscus lenses 70/71 and 73/74 are advantageous for correction and are arranged convex to the pupil plane AS2.

For a small aperture obscuration, the image field can be very well corrected with the combination of the catadioptric partial objective L1 and the refractive partial objective L2 and with the targeted use of aspherical surfaces. As an index for the quality of the objective, the wavefront can be considered within the image field of 22.8 mm diameter and with the image end numerical aperture of NA=0.8 with the aid of a polychromatic simulation. The root mean square (RMS) values of the wavefront deviations for a light source at 157.63 nm with a bandwidth of 1.2 pm are less than 8 mλ within the entire image field. These slight wavefront deviations can, inter alia, be explained with the excellent correction of image focal surface and spherical aberration.

In FIG. 5, the traces of the sagittal and tangential focal surfaces within the image field are shown. The sagittal image focal surface S is shown with the solid line and the tangential image focal surface T is shown with a dot-dash line. The offset of the image surfaces with respect to the Gaussian image plane is less than 1 μm and is a maximum of 200 nm for the tangential image surface. FIG. 6 shows the trace of the spherical aberration ΔS for the wavelengths λ1=157.63 nm (ΔS1 solid line) and λ2=157.64 nm (ΔS2 broken line). The spherical aberration ΔS of the aperture rays is plotted as a function of the square of the ray height hAS in the system diaphragm AS2. Over the entire opening of the objective, the values for the spherical aberration ΔS are less than 1 μm and, in the first embodiment, they are less than 260 nm. The chromatic longitudinal aberration for the two wavelengths at a distance of 10 pm is less than 0.1 nm. The Gaussian aberration for the two wavelengths is a maximum of 110 nm.

To achieve a field-independent aperture obscuration, it is advantageous to provide a masking device also in the refractive partial objective L2. The pupil plane AS2 in the refractive partial objective L2 has a positive curvature and the chief rays intersect the optical axis between surfaces 69 and 70. For this reason, the masking device should be placed between surfaces 69 and 70. The size of the masking device is to be so selected that the aperture obscuration, which is caused by the mirror holes, is increased only so far that, for each field point, an aperture obscuration results which is the same size and centered to the chief ray. A rod can serve as a holder for the masking device. The rod runs along the optical axis and is attached to the lens surfaces 69 and 70. It is also possible to apply the masking directly to a lens surface which is close to the intersect point of the chief rays with the optical axis such as surface 70.

FIG. 7 shows a further embodiment for a catadioptric reduction objective according to the invention. The optical data of the objective are shown in Table 3. The magnification ratio, image diameter and numerical aperture all have the same values as in the first embodiment. The aperture obscuration and the outer dimensions are also comparable. The differences to the first embodiment are in the gas charge, the lenses close to the mirror having negative refractive power and the use of a double asphere in the refractive partial objective.

The lens and mirror intermediate spaces are flushed with helium in the second embodiment. The gas charge with helium affords the advantage that the pressure and temperature dependency of the refractive index with helium in comparison to nitrogen is less by a factor of 10. Thus, the temperature coefficient of the refractive index dn/dT at λ=157.6 nm, T=0° C. and p=1013 mbar for nitrogen is −1.2·10−6/K and for helium is −0.14·10−6/K, the pressure coefficient of the refractive index dn/dp for nitrogen is −0.34·10−6/mbar and, for helium, is −0.036·10−6/mbar. In the large volumes between the concave mirrors M1′ and M2′, temperature gradients, which occur during the irradiation, lead to convection. For materials with temperature-dependent refractive indices, convection causes a time-dependent deformation of the wavefronts which cannot be corrected. It is therefore advantageous to fill the space between the mirrors with a gas having minimal temperature dependency of the refractive index.

The number of lenses is to be held as low as possible in order to prevent transmission losses because of reflections at the lens surfaces. Thus, in the second embodiment, the two lenses of negative refractive power (24/25, 26/27, 33/34 and 35/36) before and after the concave mirrors of the first embodiment can be combined to one negative lens (126/127 and 133/134) each before and after the mirrors. The negative refractive power of these lenses (126/127 and 133/134) must be increased in order to obtain a ray expansion of 3.567 for the marginal ray and an aperture obscuration for an object point on the optical axis of 18%. This is, on the one hand, possible with a larger aperture ratio of lens height hmax to lens radius R. Thus, for surface 126, the quotient h126max/R126=0.814 and, for surface 134, the quotient is h134max/R134=0.800. On the other hand, the angle of incidence at the lens surfaces 127 and 133, which face toward the mirrors, was increased. In the second embodiment, the sine of the angle of incidence with respect to the surface normal in the optically thinner medium for the marginal ray for an object point on the optical axis on the surface 127 is sine(i127RD)=0.802 and, on the surface 133, sine(i133RD)=0.748.

It is advantageous in the refractive partial objective L2′ to provide a double asphere on the surfaces 172 and 173 in order to obtain a similarly good wavefront correction within the image field for the second embodiment as in the first embodiment. With the adjacent aspheric surfaces in proximity to the system pupil plane AS2′, the spherical aberration and the sine condition can be well corrected simultaneously. The double aspheres as a correction means can be used also in purely refractive and catadioptric objectives having a non-centered arrangement. The two aspheric surfaces can even form the forward side and the rear side of an individual lens. For manufacturing reasons, it is however advantageous to arrange two lenses each having an aspheric surface so that the aspheric surfaces are adjacent.

With the double asphere (172, 173) and the aspheric surfaces 164 and 176 arranged forward and rearward of the aperture stop AS2′, adequate correction means are available in order, with a modest use of material, to correct the wavefront deviation within an image field of 22.8 mm diameter and for an image end numerical aperture of NA=0.8 to less than 8 mλ. The polychromatic simulation was carried out with a light source at 157.6 nm and a bandwidth of 1.2 pm.

The examples show the combination of a coaxial catadioptric objective with a dioptric partial objective. Other combinations such as with two dioptric partial objectives forward and rearward of the catadioptric partial objective are also possible in the context of the invention.

The schematic representation of FIG. 8 shows a microscope having a microscope objective MO in accordance with the invention. A dioptric partial objective L61 follows the object OB. The object OB is imaged magnified in the intermediate image plane IMI with the aid of the dioptric partial objective L61. A catadioptric objective L62 leads to a nearly 1:1 imaging of the intermediate image plane IMI on an image detector CCD. The design of the microscope objective MO corresponds, in principle, to the embodiments of FIGS. 3 or 7, only that the optical components are arranged in the reverse sequence. In order to increase magnification and the object end numerical aperture, the size of the object field can be reduced. An ocular for visual observation can be utilized in the lieu of an image detector CCD. The object OB is illuminated in transmission with the illuminating system 111.

A microlithographic projection exposure apparatus for producing microstructured components is shown schematically in FIG. 9. The apparatus includes a light source 701, an illuminating system 702, a structure mask 703, a catadioptric reduction objective 704 and an object 705 to be exposed. As a light source 701, an excimer laser for wavelengths of less than 250 nm can, for example, be used. In the illuminating system 702, the following are provided: optical components for beam shaping (such as cylinder lenses) and optical components for beam homogenization (for example, a honeycomb condenser) and optical components for the correct illumination of the structure mask and the entrance pupil of the projection objective 704 (such as a field lens group). The mask holder 720 functions for positioning and for changing the structure mask 703. The catadioptric reduction objective includes, in this case, two intermediate images IMI1 and IMI2. The partial objectives 710 and 712 are designed dioptric and the partial objective 711 is configured as catadioptric. The catadioptric partial objective 711 leads to a nearly 1:1 imaging and corresponds, as to design, to a catadioptric component objective from the first embodiment shown in FIG. 3 or the second embodiment shown in FIG. 7. It is advantageous when the magnification ratio of the reduction objective 704 is provided in equal parts by the dioptric partial objectives 710 and 712. It is understood that, as a reduction objective, also an objective corresponding to the first and second embodiment can be used. The object 705 to be illuminated can, for example, be a silicon wafer coated with photoresist. A holding device 730 is specified for positioning and exchanging the silicon wafer.

It is understood that the foregoing description is that of the preferred embodiments of the invention and that various changes and modifications may be made thereto without departing from the spirit and scope of the invention as defined in the appended claims.

TABLE 1
SF RADII THICKESSES GLASSES
0 Object
1 −152.31391 9.3670 SUPRA1
2 −934.28326 17.0479
3 −258.50662 17.9979 SUPRA1
4 −144.13579 1.5242
5 154.21865 34.9172 SUPRA1
6 −1044.16454 50.7402
7 −368.80081 10.1606 SUPRA1 Asphere on
Surface 21
8 238.39923 2.8591
9 138.64466 18.7404 SUPRA1
10 312.00878 44.3518 C 1 =
−.1984860500E−10
11 −122.26492 12.8011 SUPRA1 C 2 =
−.8471592100E−16
12 −126.81758 23.6934 C 3 =
−.1338734300E−21
13 177.47680 19.3377 SUPRA1 C 4 =
.1383973100E−27
14 11788.39412 15.9136 C 5 =
.1716228700E−32
15 −172.90112 7.5815 SUPRA1 C 6 =
.4845464500E−38
16 295.02570 40.3349 C 7 =
−.3305365300E−44
17 149.52872 16.3659 SUPRA1
18 134.69462 72.7792
19 −79.93868 10.3887 SUPRA1
20 −1129.04446 361.0000
21 −981.42317 AS −295.0000
22 Infinity −215.0000 Asphere on
Diaphragm .0000 Surface 23
23 1113.03904 AS 500.6296
24 226.60310 8.2622 SUPRA1 C 1 =
.1686460500E−10
25 68.17289 114.8808 C 2 =
−.4430448700E−16
26 −91.66030 20.9850 SUPRA1 C 3 =
−.1503908600E−21
27 −111.26948 4.2440 C 4 =
.2530123600E−27
28 −1008.42184 16.6387 SUPRA1 C 5 =
−.7105016500E−35
29 −119.24333 127.0374 C 6 =
−.2345880200E−38
30 −105.29899 8.7290 SUPRA1 C 7 =
.3712453500E−43
31 −151.29067 .0532
32 6408.14692 13.0429 SUPRA1
33 −304.40400 26.5391
34 115.05002 19.9112 SUPRA1
35 113.02003 18.2856
36 480.50139 16.6611 SUPRA1
37 −425.21265 25.4688
38 −154.46333 14.1991 SUPRA1
39 −240.64362 8.7927
40 289.04838 24.5556 SUPRA1
41 −469.53160 22.0894
42 −127.91442 14.2424 SUPRA1
43 −179.26273 67.4834
44 4904.05552 29.6764 SUPRA1
45 −179.72857 8.1164
46 −152.96898 13.7764 SUPRA1
47 −203.54702 12.9619
48 −127.62811 14.1864 SUPRA1
49 −139.16594 .4118
50 Infinity 8.0000 SUPRA1
51 Infinity 4.0000
52 Infinity .0001
53 121.70233 15.3662 SUPRA1
54 109.92284 36.1371
55 219.24113 30.1687 SUPRA1
56 −303.41760 31.5237
57 73.58279 65.3446 SUPRA1 SUPRA1 = Quartz
Glass
58 43.81552 3.1551
59 41.37557 28.5961 SUPRA1
60 604.77330 .6625
61 Image Plane

TABLE 2
Surface Radius Asphere Mirror Thickness Material Diameter
OB INFINITE 26.122 N2 100.0
 2 −226.258 4.000 CAF2 99.7
 3 1694.910 7.361 N2 104.1
 4 −210.020 4.023 CAF2 104.1
 5 −4263.571 0.750 N2 110.8
 6 353.550 30.488 CAF2 117.3
 7 −137.865 0.750 N2 122.7
 8 116.889 15.735 CAF2 130.4
 9 177.655 5.923 N2 127.8
10 118.343 32.491 CAF2 126.6
11 −373.347 2.660 N2 122.1
12 −231.515 A 7.862 CAF2 122.1
13 88.994 0.864 N2 107.7
14 77.637 8.155 CAF2 108.4
15 81.208 20.608 N2 105.4
16 221.890 9.012 CAF2 105.5
17 163.578 2.429 N2 103.7
18 110.213 27.605 CAF2 104.6
19 −1324.253 9.444 N2 100.5
20 97.719 4.000 CAF2 89.4
21 64.603 14.158 N2 83.4
22 684.267 A 5.079 CAF2 83.4
23 216.155 24.074 N2 82.3
24 −57.188 2.000 CAF2 82.3
25 −92.747 5.064 N2 87.8
26 −72.557 2.000 CAF2 88.3
27 344.860 A 189.734 N2 105.0
M1 −813.737 A S −189.734 N2 691.5
AS1 INFINITE −189.734 N2 677.8
M2 910.975 A S 189.734 N2 663.0
33 −416.373 A 2.000 CAF2 106.4
34 65.887 4.948 N2 87.8
35 80.253 2.000 CAF2 87.3
36 54.610 31.217 N2 81.7
37 −84.333 7.747 CAF2 81.6
38 −75.708 0.750 N2 83.7
39 −1017.773 27.565 CAF2 81.7
40 −155.591 5.282 N2 79.9
41 −81.310 8.228 CAF2 79.9
42 −68.211 1.949 N2 80.7
43 −78.791 6.095 CAF2 77.1
44 −108.111 2.600 N2 77.2
45 −81.487 21.352 CAF2 77.2
46 −143.068 0.938 N2 80.4
47 199.620 40.095 CAF2 79.0
48 −145.642 A 20.000 N2 71.9
IM1 INFINITE 44.528 N2 67.0
50 −75.128 4.117 CAF2 69.0
51 −90.888 0.971 N2 72.4
52 −632.737 22.418 CAF2 76.6
53 408.536 A 0.900 N2 87.2
54 147.577 23.337 CAF2 91.9
55 −284.699 1.148 N2 94.9
56 544.076 28.648 CAF2 96.3
57 −917.060 10.169 N2 97.7
58 1123.355 15.459 CAF2 98.1
59 2847.866 22.266 N2 98.0
60 −84.178 4.000 CAF2 98.0
61 −351.550 0.750 N2 105.7
62 131.866 26.379 CAF2 116.5
63 −235.338 2.325 N2 116.4
64 222.992 31.521 CAF2 111.2
65 38305.126 9.715 N2 101.7
66 −2322.734 A 22.353 CAF2 96.4
67 1104.047 13.909 N2 88.6
68 −81.868 7.918 CAF2 88.6
69 −177.471 8.961 N2 91.5
70 −86.806 6.077 CAF2 91.5
71 −96.333 1.537 N2 94.4
AS2 INFINITE 0.750 N2 95.3
73 130.184 4.810 CAF2 103.5
74 97.753 2.761 N2 104.4
75 116.560 23.022 CAF2 104.4
76 −270.739 0.750 N2 105.5
77 194.680 18.881 CAF2 107.1
78 −210.640 A 0.750 142 106.4
79 55.466 43.620 CAF2 92.6
80 50.189 2.182 N2 59.6
81 37.769 13.715 CAF2 55.3
82 77.000 1.188 N2 47.9
83 60.105 8.895 CAF2 44.7
84 185.707 5.644 N2 36.9
IM INFINITE N2 22.8

Asphere Equation:

z = 1 R h 2 1 + 1 - ( 1 - EX ) ( 1 R ) 2 h 2 + k = 1 c k h 2 k + 2
wherein:

ASPHERE AT SURFACE 12
RADIUS = 231.51455 MAXIMUM HEIGHT = 61.10
ASPHERIC PARAMETERS
EX = −2.3650089000
C 1 = .4794899400E−07
C 2 = .6604175100E−11
C 3 = −.7562978300E−15
C 4 = .6805192600E−19
C 5 = −.2666129900E−23
ASPHERE AT SURFACE 22
RADIUS = 684.26729 MAXIMUM HEIGHT = 41.80
ASPHERIC PARAMETERS
EX = .0000000000
C 1 = .1509596800E−06
C 2 = −.5120549400E−10
C 3 = −.5610431800E−14
C 4 = −.1117020200E−16
C 5 = .2518000300E−20
C 6 = −.1694764600E−23
ASPHERE AT SURFACE 27
RADIUS = 344.85984 MAXIMUM HEIGHT = 52.50
ASPHERIC PARAMETERS
EX = 7.0085930000
C 1 = −.5923208000E−07
C 2 = .1890459800E−10
C 3 = −.4378968800E−15
C 4 = −.5239005100E−18
C 5 = .1912278200E−21
ASPHERE AT SURFACE 29
RADIUS = −813.73677 MAXIMUM HEIGHT = 345.80
ASPHERIC PARAMETERS
EX = 1.0459455000
C 1 = −.4485550100E−10
C 2 = −.1176505800E−15
C 3 = −.1049527100E−20
C 4 = −.8619328500E−26
C 5 = −.2274167800E−31
C 6 = −.3345014000E−37
C 7 = −.3286498200E−43
ASPHERE AT SURFACE 31
RADIUS = 910.97468 MAXIMUM HEIGHT = 331.50
ASPHERIC PARAMETERS
EX = .9036275200
C 1 = .6193779100E−10
C 2 = −.1344616200E−15
C 3 = −.1509012800E−20
C 4 = −.7421992700E−26
C 5 = −.4535969900E−31
C 6 = .1986463200E−36
C 7 = −.1449901900E−41
ASPHERE AT SURFACE 33
RADIUS = −416.37282 MAXIMUM HEIGHT = 53.30
ASPHERIC PARAMETERS
EX = 13.3142580000
C 1 = .6027181300E−07
C 2 = .2450300200E−10
C 3 = −.4142498400E−14
C 4 = .3917454300E−18
C 5 = −.1088457000E−25
ASPHERE AT SURFACE 48
RADIUS = −145.64247 MAXIMUM HEIGHT = 36.00
ASPHERIC PARAMETERS
EX = −.4376678300
C 1 = −.2590488300E−07
C 2 = .4696937200E−12
C 3 = .7666469100E−16
C 4 = .8507764300E−21
C 5 = −.1186245400E−25
ASPHERE AT SURFACE 53
RADIUS = 408.53641 MAXIMUM HEIGHT = 43.60
ASPHERIC PARAMETERS
EX = −14.2359470000
C 1 = .9773912300E−07
C 2 = −.6627558800E−11
C 3 = −.2537861300E−15
C 4 = −.1281961700E−18
C 5 = −.1182417800E−25
ASPHERE AT SURFACE 66
RADIUS = −2322.73355 MAXIMUM HEIGHT = 48.20
ASPHERIC PARAMETERS
EX = −504.9485600000
C 1 = −.2616677600E−07
C 2 = −.3063442300E−10
C 3 = .3964984700E−14
C 4 = −.1714421100E−17
C 5 = −.1187390103E−25
ASPHERE AT SURFACE 78
RADIUS = −210.64008 MAXIMUM HEIGHTS = 53.20
ASPHERIC PARAMETERS
EX = 6.3257878000
C 1 = .4095943500E−07
C 2 = .1712273600E−12
C 3 = .9639448600E−15
C 4 = −.2847604400E−18
C 5 = .7274168800E−23

TABLE 3
Surface Radius Asphere Minor Thickness Material Diameter
OB′ INFINITY 26.122 He 50.0
102 −204.364 4.000 CaF2 49.7
103 −13179.432 7.350 He 51.9
104 −184.672 4.011 CaF2 51.9
105 −1226.241 0.753 He 55.3
106 259.607 26.956 CaF2 60.1
107 −147.776 0.750 He 61.4
108 125.704 11.380 CaF2 63.6
109 178.234 0.750 He 62.7
110 111.880 29.403 CaF2 62.4
111 −380.095 3.030 He 60.9
112 −235.417 A 17.184 CaF2 60.9
113 82.808 0.750 He 51.7
114 67.123 8.979 CaF2 52.5
115 69.627 17.234 He 50.6
116 281.120 6.567 CaF2 50.6
117 272.393 0.758 He 50.2
118 115.088 36.934 CaF2 50.2
119 389.484 0.750 He 45.5
120 88.823 4.097 CaF2 43.6
121 73.172 15.989 He 41.7
122 −1528.771 10.066 CaF2 41.4
123 217.517 13.370 He 40.3
124 −89.601 7.977 CaF2 40.3
125 −76.531 9.154 He 41.2
126 −50.697 4.001 CaF2 41.2
127 259.195 A 189.734 He 52.7
M1′ −814.100 A S −189.734 He 349.3
AS1′ INFINITY −189.734 He 342.6
M2′ 911.247 A S 189.734 He 335.0
133 −276.266 A 4.000 CaF2 54.0
134 52.152 32.685 He 41.7
135 −80.264 6.728 CaF2 41.7
136 −77.215 0.850 He 42.8
137 −1419.828 32.679 CaF2 41.9
138 −147.648 5.801 He 41.0
139 −78.453 7.489 CaF2 41.0
140 −70.298 0.750 He 41.5
141 −84.334 6.166 CaF2 40.2
142 −98.563 2.147 He 40.3
143 −80.891 21.397 CaF2 40.3
144 −151.520 0.750 He 42.0
145 242.014 45.863 CaF2 41.3
146 −145.419 A 22.791 He 37.5
IMI′ INFINITY 43.060 He 33.2
148 −77.276 4.000 CaF2 34.7
149 −95.689 0.751 He 36.4
150 −894.688 22.703 CaF2 38.6
151 427.406 A 0.750 He 43.9
152 143.694 24.676 CaF2 46.4
153 −346.670 2.353 He 47.9
154 347.126 29.393 CaF2 48.8
155 −10246.191 11340 He 49.1
156 479.165 15.800 CaF2 49.3
157 634.264 23.350 He 48.8
158 −81.257 4.000 CaF2 48.8
159 −299.826 0.750 He 52.8
160 128.827 26.561 CaF2 58.6
161 −250.110 0.783 He 58.5
162 213.461 33.162 CaF2 56.1
163 −4384.454 9.042 He 51.0
164 −1171.671 A 24.405 CaF2 48.4
165 1409.721 14.203 He 44.3
166 −79.418 7.954 CaF2 44.3
167 −174.125 8.406 He 45.9
168 −85.986 6.344 CaF2 45.9
169 −94.556 0.750 He 47.5
AS2′ INFINITY 0.750 He 48.0
171 128.150 4.001 CaF2 52.4
172 99.397 A 2.565 He 52.8
173 116.720 A 23.743 CaF2 52.8
174 −265.459 0.750 He 53.3
175 220.793 18.648 CaF2 53.8
176 −192.915 A 0.751 He 53.4
177 55.415 43.719 CaF2 46.3
178 48.232 2.666 He 29.6
179 37.843 13.583 CaF2 27.5
180 77.482 0.896 He 23.8
181 61.588 9.014 CaF2 22.5
182 233.027 5.544 He 18.7
IM′ INFINITY He 11.6

Asphere Equation:

z = 1 R h 2 1 + 1 - ( 1 - EX ) ( 1 R ) 2 h 2 + k = 1 c k h 2 k + 2
wherein:

Schuster, Karl Heinz

Patent Priority Assignee Title
Patent Priority Assignee Title
3200253,
3244073,
3897133,
4240702, Sep 08 1978 The Perkin-Elmer Corporation Field corrector for two mirror objective systems
4669810, Feb 03 1984 Flight Dynamics Head up display system
4714307, Jul 13 1985 Pilkington P.E. Limited Catadioptric infrared lenses
5004331, May 03 1989 HE HOLDINGS, INC , A DELAWARE CORP ; Raytheon Company Catadioptric projector, catadioptric projection system and process
5031976, Sep 24 1990 KLA Instruments, Corporation Catadioptric imaging system
5114238, Jun 28 1990 Lockheed Corporation; Lockheed Martin Corporation Infrared catadioptric zoom relay telescope
5323263, Feb 01 1993 Nikon Corporation Off-axis catadioptric projection system
5359388, Apr 02 1993 ULTRATECH STEPPER, INC ; ULTRATECH STEPPER EAST, INC Microlithographic projection system
5488229, Oct 04 1994 EXCIMER LASER SYSTEMS, INC Deep ultraviolet microlithography system
5636066, Mar 12 1993 Nikon Corporation Optical apparatus
6259508, Jan 22 1998 Nikon Corporation Projection optical system and exposure apparatus and method
DE29516768,
EP267766,
EP396128,
EP581585,
EP1059550,
GB890451,
RU124665,
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Oct 07 2005Carl Zeiss SMT GmbH(assignment on the face of the patent)
Oct 14 2010Carl Zeiss SMT AGCarl Zeiss SMT GmbHA MODIFYING CONVERSION0257630367 pdf
Date Maintenance Fee Events
Aug 17 2011ASPN: Payor Number Assigned.
Apr 02 2015M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Jul 26 20144 years fee payment window open
Jan 26 20156 months grace period start (w surcharge)
Jul 26 2015patent expiry (for year 4)
Jul 26 20172 years to revive unintentionally abandoned end. (for year 4)
Jul 26 20188 years fee payment window open
Jan 26 20196 months grace period start (w surcharge)
Jul 26 2019patent expiry (for year 8)
Jul 26 20212 years to revive unintentionally abandoned end. (for year 8)
Jul 26 202212 years fee payment window open
Jan 26 20236 months grace period start (w surcharge)
Jul 26 2023patent expiry (for year 12)
Jul 26 20252 years to revive unintentionally abandoned end. (for year 12)