A bicycle cable disc brake is provided with a cam assembly that has improved efficiency during movement under high pressure. Basically, the cable disc brake has a cable housing, a pair of friction members and an actuated mechanism. The first friction member is movably coupled to the caliper housing between a release position and a braking position. The second caliper is also coupled to the caliper housing and arranged substantially parallel to the first friction member to form a rotor receiving slot therebetween. The actuated mechanism is movably coupled to the caliper housing to move the first friction member from the release position towards the second friction member to the braking position. The actuated mechanism has a pair of cam members movably arranged between an axially retracted position and an axially extended position with a guide member interconnecting the cam members during movement between the axial retracted position and the axially extended position. In the preferred embodiment, the guide member is a guide pin that extends from one of the cam members and is received in a bore of the other cam member.
|
11. A cable disc brake for a bicycle comprising:
a caliper housing with a mounting bracket structured and dimensioned to be attached to a bicycle;
a first friction member movably coupled to said caliper housing between a release position and a braking position;
a second friction member coupled to said caliper housing and arranged substantially parallel to said first friction member to form a rotor receiving slot therebetween; and
an actuated mechanism movably coupled to said caliper housing to move said first friction member from said release position towards said second friction member to said braking position, said actuated mechanism having first and second cam members movably arranged between an axially retracted position and an axially extended position with a guide member interconnecting said first and second cam members during movement between said axially retracted position and said axially extended position, said guide member being non-movable in the axial direction relative to said caliper housing,
said first cam member being rotatably mounted within said caliper housing, but non-movably mounted in the axial direction, and said second cam member being movably mounted in the axial direction but non-rotatably mounted;
wherein said input cam and said output cam move axially relative to each other without such movement being caused by one of said input cam member or said output cam member screwing through the other one of said input cam member or said output cam member.
0. 68. A cable disc brake for a bicycle comprising:
a caliper housing with a mounting bracket structured and dimensioned to be attached to a bicycle;
a first friction member movably coupled to said caliper housing between a release position and a braking position;
a second friction member coupled to said caliper housing and arranged substantially parallel to said first friction member to form a rotor receiving slot therebetween; and
an actuated mechanism movably coupled to said caliper housing to move said first friction member in an axial direction from said release position towards said second friction member to said braking position, said actuated mechanism including:
an input cam movably mounted within said caliper housing to move in a rotational direction about a longitudinal axis, but not in an axial direction, said input cam having a first camming surface with an axially extending guide member non-movably fixed thereto at said longitudinal axis, and
an output cam movably mounted within said caliper housing to move in the axial direction in response to rotation of said input cam, but not in the rotational direction, said output cam having a second camming surface with an axially extending bore, said guide member being at least partially disposed within said bore to ensure smooth relative movement between said input and output cams;
wherein a space between said first camming surface and said second camming surface increases or decreases during operation of said actuated mechanism.
0. 70. A cable disc brake for a bicycle comprising:
a caliper housing with a mounting bracket structured and dimensioned to be attached to a bicycle;
a first friction member movably coupled to said caliper housing between a release position and a braking position;
a second friction member coupled to said caliper housing and arranged substantially parallel to said first friction member to form a rotor receiving slot therebetween; and
an actuated mechanism movably coupled to said caliper housing to move said first friction member from said release position towards said second friction member to said braking position, said actuated mechanism having first and second cam members movably arranged between an axially retracted position and an axially extended position with a guide member interconnecting said first and second cam members during movement between said axially retracted position and said axially extended position, said guide member being non-movable in the axial direction relative to said caliper housing,
said first cam member being rotatably mounted within said caliper housing, but non-movably mounted in the axial direction, and said second cam member being movably mounted in the axial direction but non-rotatably mounted;
wherein said first cam member has a first camming surface, wherein said second cam member has a second camming surface, and wherein a space between said first camming surface and said second camming surface increases or decreases during operation of said actuated mechanism.
0. 69. A cable disc brake for a bicycle comprising:
a caliper housing with a mounting bracket structured and dimensioned to be attached to a bicycle;
a first friction member movably coupled to said caliper housing between a release position and a braking position;
a second friction member coupled to said caliper housing and arranged substantially parallel to said first friction member to form a rotor receiving slot therebetween; and
an actuated mechanism movably coupled to said caliper housing to move said first friction member in an axial direction from said release position towards said second friction member to said braking position, said actuated mechanism including:
an input cam movably mounted within said caliper housing to move in a rotational direction about a longitudinal axis, but not in an axial direction, said input cam having a first camming surface with an axially extending guide member non-movably fixed thereto at said longitudinal axis,
an output cam movably mounted within said caliper housing to move in the axial direction in response to rotation of said input cam, but not in the rotational direction, said output cam having a second camming surface with an axially extending bore, said guide member being at least partially disposed within said bore to ensure smooth relative movement between said input and output cams; and
a cable adjusting bolt coupled to said caliper housing and structured to terminate an outer casing of a brake cable and including an opening through which an inner wire of said brake cable passes.
0. 67. A cable disc brake for a bicycle comprising:
a caliper housing with a mounting bracket structured and dimensioned to be attached to a bicycle;
a first friction member movably coupled to said caliper housing between a release position and a braking position;
a second friction member coupled to said caliper housing and arranged substantially parallel to said first friction member to form a rotor receiving slot therebetween;
an actuated mechanism movably coupled to said caliper housing to move said first friction member in an axial direction from said release position towards said second friction member to said braking position, said actuated mechanism including:
an input cam movably mounted within said caliper housing to move in a rotational direction about a longitudinal axis, but not in an axial direction, said input cam having a first camming surface with an axially extending guide member non-movably fixed thereto at said longitudinal axis, and
an output cam movably mounted within said caliper housing to move in the axial direction in response to rotation of said input cam, but not in the rotational direction, said output cam having a second camming surface with an axially extending bore, said guide member being at least partially disposed within said bore to ensure smooth relative movement between said input and output cams; and
a cable adjusting bolt coupled to said caliper housing and structured to terminate an outer casing of a brake cable and including an opening through which an inner wire of said brake cable passes.
1. A cable disc brake for a bicycle comprising:
a caliper housing with a mounting bracket structured and dimensioned to be attached to a bicycle;
a first friction member movably coupled to said caliper housing between a release position and a braking position;
a second friction member coupled to said caliper housing and arranged substantially parallel to said first friction member to form a rotor receiving slot therebetween; and
an actuated mechanism movably coupled to said caliper housing to move said first friction member in an axial direction from said release position towards said second friction member to said braking position, said actuated mechanism including
an input cam movably mounted within said caliper housing to move in a rotational direction about a longitudinal axis, but not in an axial direction, said input cam having a first camming surface with an axially extending guide member non-movably fixed thereto at said longitudinal axis, and
an output cam movably mounted within said caliper housing to move in the axial direction in response to rotation of said input cam, but not in the rotational direction, said output cam having a second camming surface with an axially extending bore, said guide member being at least partially disposed within said bore to ensure smooth relative movement between said input and output cams;
wherein said input cam and said output cam move axially relative to each other without such movement being caused by one of said input cam member or said output cam member screwing through the other one of said input cam member or said output cam member.
0. 39. A cable disc brake for a bicycle comprising:
a caliper housing with a mounting bracket structured and dimensioned to be attached to a bicycle and with a cable support having an opening for guiding a cable therethrough;
a first friction member coupled to the caliper housing for movement between a release position and a braking position;
a second friction member coupled to the caliper housing and arranged substantially parallel to the first friction member to form a rotor receiving slot therebetween; and
an actuated mechanism movably coupled to the caliper housing to move the first friction member in an axial direction from the release position towards the second friction member to the braking position;
wherein the actuated mechanism comprises an elongated actuating arm coupled to the caliper housing for rotation around a rotational axis to cause the actuated mechanism to move the first friction member from the release position towards the braking position;
wherein the actuating arm has a curved guide surface with a first portion coincident with a cable clamp and a second portion that extends from the first portion towards the cable support so that the cable, when coupled to the cable clamp, approaches the guide surface from the opening in the cable support essentially tangent to the guide surface and is supported by the guide surface when the first friction member is in the release position;
wherein the second portion of the guide surface is formed by a circumferentially elongated projection that points in a rotational direction of the actuating arm towards the cable support where the cable passes through the cable support such that the cable is supported on and by the projection;
wherein the projection includes:
a radially outer portion having a first surface that forms the second portion of the guide surface, wherein the first surface extends towards the cable support; and
a radially inner portion having a second surface that extends away from the cable support back towards a side surface of the actuating arm;
wherein a straight phantom line perpendicular to the first surface where the cable is supported on the first surface intersects the second surface.
2. A cable disc brake according to
said guide member is formed by a pin extending from said input cam into said bore of said output cam.
3. A cable disc brake according to
said pin is integrally formed with said input cam.
4. A cable disc brake according to
said first camming surface of said input cam has a set of first camming slots, said second camming surface of said output cam has a set of second camming slots with rolling members located between said first and second camming slots.
5. A cable disc brake according to
said rolling members are balls and said first and second camming slots are circumferentially extending ramp-shaped slots.
6. A cable disc brake according to
said actuated mechanism further includes an actuating arm operatively coupled to said input cam.
7. A cable disc brake according to
8. A cable disc brake according to
said biasing member is a torsion spring with a first end coupled to said caliper housing a second end coupled to said actuating arm.
9. A cable disc brake according to
said actuated mechanism includes a return spring arranged to bias said first and second cam members together.
10. A cable disc brake according to
said actuating arm has a cable attachment member thereon.
12. A cable disc brake according to
said guide member is formed by a pin extending from one of said first and second cam members into a bore of the other of said first and second cam members.
13. A cable disc brake according to
said pin is located along an axis of rotation of said first and second cam members.
14. A cable disc brake according to
said actuated mechanism further includes an actuating arm coupled to said first cam member.
15. A cable disc brake according to
said actuating arm is biased to a release position by a biasing member.
16. A cable disc brake according to
said biasing member is a torsion spring with a first end coupled to said caliper housing a second end coupled to said actuating arm.
17. A cable disc brake according to
said actuated mechanism includes a return spring arranged to bias said first and second cam members together.
18. A cable disc brake according to
said actuating arm has a cable attachment member thereon.
19. A cable disc brake according to
said first cam member has a set of first camming surfaces, said second cam member has a set of second camming surfaces with rolling members located between said first and second camming surfaces.
20. A cable disc brake according to
said rolling members are balls and said first and second camming surfaces include ramp-shaped slots.
21. A cable disc brake according to
said input cam includes a first cam member disposed within an internal bore of said caliper housing.
22. A cable disc brake according to
said input cam further includes an operating shaft that extends axially from said first cam member, and said operating shaft is operatively coupled to an actuating arm.
23. A cable disc brake according to
said operating shaft at least partially extends outwardly from said caliper housing, and said actuating arm is disposed on an opposite side of said caliper housing from said internal bore of said caliper housing.
24. A cable disc brake according to
said input cam further includes a bushing mounted on said operating shaft of said input cam.
25. A cable disc brake according to
said bushing includes a cylindrical portion at least partially surrounding said operating shaft and a flange portion extending from said cylindrical portion, and said flange portion is located axially between a portion of said input cam and said caliper housing within said internal bore of said caliper housing.
26. A cable disc brake according to
said output cam includes a second cam member with a non-circular thrust shaft extending axially therefrom, and said thrust shaft is received in a non-circular hole of a rotation stopper.
27. A cable disc brake according to
said rotation stopper includes a radially extending tab that is received in an axial slot of said caliper housing to prevent rotation of said rotation stopper.
28. A cable disc brake according to
said rotation stopper is secured on said thrust shaft of said output cam by a retainer.
29. A cable disc brake according to
said retainer is a c-shaped snap ring that is received in an annular groove of said internal bore of said caliper housing.
30. A cable disc brake according to
said actuated mechanism includes a return spring disposed between said rotation stopper and a portion of said output cam.
31. A cable disc brake according to
said torsion spring is adjustably coupled to said caliper housing and said actuating arm to adjust the biasing force of said torsion spring.
32. A cable disc brake according to
said actuated mechanism includes a cover disposed between said actuating arm and said caliper housing to seal said internal bore of said caliper housing.
33. A cable disc brake according to
said actuating arm is biased to a release position by a biasing member arranged between said cover and said caliper housing.
34. A cable disc brake according to
said return spring is a separate member from said biasing member.
35. A cable disc brake according to
said return spring is located axially on an opposite side of said input and output cams from said biasing member.
36. A cable disc brake according to
said axially extending bore of said output cam is a blind bore.
0. 37. A cable disc brake according to claim 1 wherein a force between said input cam and said output cam that causes said output cam to move axially from operation of said first camming surface and said second camming surface is disposed radially outwardly from said bore.
0. 38. A cable disc brake according to claim 11 wherein a force between said input cam and said output cam that causes said output cam to move axially from operation of said first camming surface and said second camming surface is disposed radially outwardly from said bore.
0. 40. A cable disc brake according to claim 39 wherein the projection is disposed in close proximity to a radially outermost portion of the actuating arm.
0. 41. A cable disc brake according to claim 39 further comprising a cable adjusting bolt fitted within the opening in the cable support through which the cable passes.
0. 42. A cable disc brake according to claim 39 wherein the caliper housing includes a mounting flange for mounting the caliper housing to the bicycle, and wherein the mounting flange includes a slot that allows adjustment of the caliper housing to and from the rotor such that the caliper housing is axially fixed relative to the rotor during operation of the actuating arm.
0. 43. A cable disc brake according to claim 39 wherein the caliper housing includes a mounting flange for mounting the caliper housing to the bicycle, and wherein the mounting flange includes an opening for receiving a mounting bolt therethrough substantially perpendicular to the rotational axis.
0. 44. A cable disc brake according to claim 39 wherein the caliper housing includes:
a first mounting flange with a first opening for mounting the caliper housing to the bicycle;
a second mounting flange with a second opening for mounting the caliper housing to the bicycle;
wherein the first opening is disposed above the rotational axis; and
wherein the second opening is disposed below the rotational axis.
0. 45. A cable disc brake according to claim 44 wherein the caliper housing is structured such that, when the caliper housing is mounted to a front fork of the bicycle, the cable support is disposed above the rotational axis.
0. 46. A cable disc brake according to claim 45 wherein the caliper housing is structured such that, when the caliper housing is mounted to the front fork of the bicycle, the guide surface is disposed rearwardly of the rotational axis.
0. 47. A cable disc brake according to claim 46 wherein the caliper housing is structured such that, when the caliper housing is mounted to the front fork of the bicycle, the cable support extends rearwardly of the rotational axis.
0. 48. A cable disc brake according to claim 39 wherein the cable, when coupled to the cable clamp, approaches the guide surface from the opening in the cable support essentially in a straight line.
0. 49. A cable disk brake according to claim 39 further comprising a torsion spring that applies a torsion force to the actuating arm relative to the caliper housing to bias the actuating arm to a brake releasing position.
0. 50. A cable disc brake according to claim 49 wherein the torsion spring has an end coupled to the actuating arm.
0. 51. A cable disc brake according to claim 49 wherein the torsion spring is adjustably coupled to the caliper housing.
0. 52. A cable disc brake according to claim 49 wherein the torsion spring has a first end adjustably coupled to the caliper housing and a second end fixed relative to the actuating arm.
0. 53. A cable disc brake according to claim 52 wherein the second end of the torsion spring is directly connected to the actuating arm.
0. 54. A cable disc brake according to claim 52 wherein the caliper housing has a plurality of openings so that the first end of the torsion spring is selectively inserted into one of the plurality of openings to adjust the first end relative to the caliper housing.
0. 55. A cable disk brake according to claim 39 wherein the cable support is one piece with the surface of the caliper housing from which it extends.
0. 56. A cable disk brake according to claim 55 wherein the cable support comprises an elongated member.
0. 57. A cable disk brake according to claim 56 wherein the elongated member forms the opening such that the opening for guiding the cable is immovable relative to the surface of the caliper housing.
0. 58. A cable disc brake according to claim 39 wherein the cable support extends from a surface of the caliper housing and is not removable relative to the surface of the caliper housing.
0. 59. A cable disc brake according to claim 39 wherein a straight phantom line that originates from the rotational axis intersects the first surface and the second surface.
0. 60. A cable disc brake according to claim 39 wherein a circumferential width of the actuating arm measured circumferentially from one circumferential side surface of the actuating arm to an opposite circumferential side surface of the actuating arm is less than a radial length of the actuating arm measured in a straight line from the rotational axis to the location where the cable leaves the guide surface.
0. 61. A cable disc brake according to claim 39 further comprising a biasing mechanism that applies a biasing force between the caliper housing and the actuating arm.
0. 62. A cable disc brake according to claim 61 further comprising an adjusting mechanism that adjusts the biasing force applied between the caliper housing and the actuating arm in addition to changes of biasing force caused by rotation of the actuating arm relative to the caliper housing.
0. 63. A cable disc brake according to claim 61 wherein the biasing mechanism comprises a spring.
0. 64. A cable disc brake according to claim 62 wherein the biasing mechanism comprising a spring having a first end and a second end, and wherein the adjusting mechanism adjusts the biasing force by moving one of the first end and the second end relative to the other one of the first end and the second end.
0. 65. A cable disc brake according to claim 64 wherein the first end of the spring is coupled relative to the caliper housing at a first position, and wherein the adjusting mechanism adjusts the biasing force by coupling the first end of the spring relative to the caliper housing at a second position different from the first position.
0. 66. A cable disc brake according to claim 64 wherein the second end of the spring is coupled relative to the actuating arm at a first position, and wherein the adjusting mechanism adjusts the biasing force by coupling the second end of the spring relative to the actuating arm at a second position different from the first position.
|
1. Field of the Invention
This invention generally relates to a cable operated disc brake for a bicycle. More specifically, the present invention relates to a cable operated disc brake with cam members for moving a friction member.
2. Background Information
Bicycling is becoming an increasingly popular form of recreation as well as a means of transportation. Moreover, bicycling has become a very popular competitive sport. Whether the bicycle is used for recreation, transportation or competition, the bicycle industry is constantly improving their components. One particular component of the bicycle, which has been extensively redesigned over the past years, is the braking systems of bicycles. In particular, the braking power of the braking systems is constantly being increased.
There are several types of bicycle brake devices, which are currently available on the market. Examples of some types of common bicycle brake devices include rim brakes, caliper brakes and disc brakes. If a rider wants a very high performance brake system, then the rider typically wants a disc brake system. Disc brake systems provide a substantial braking power in relationship to the amount of braking force applied to the brake lever. Moreover, disc brake systems typically provide a high level of consistency in all types of weather and riding conditions. Of course, riders constantly desire better performance from disc braking systems, i.e., disc brake systems that have more braking power.
Conventionally, a disc brake is composed of a pair of brake pads that are movably mounted to a caliper housing. The brake pads are pressed against a disc or rotor that is fixed to the wheel to halt the rotation of the disc and thus the wheel. The brake pads are moved toward the disc hydraulically or mechanically such as by a cam mechanism. The hydraulic disc brake systems are typically complicated in construction and expensive to manufacture. Moreover, hydraulic disc brake systems are often quite heavy in construction.
The mechanical disc brake system includes a caliper housing with one brake pad that is fixed to the caliper housing and one brake pad that is movably mounted to the caliper housing by a cam mechanism. A swinging arm is coupled to the cam mechanism to move the movable pad by a cam action. Typically, a conventional brake cable is coupled to a brake lever to move the swinging arm, and thus, operate the cam mechanism. While mechanical disc brake systems are typically less expensive and lighter than hydraulic disc brake systems, mechanical disc brake systems can still be complicated in construction and require many parts resulting in expensive manufacturing costs, as with a hydraulic disc brake system. Another drawback of many mechanical disc brake systems is that the cam mechanism often has a loss of efficiency during a movement of the cam mechanism under high pressure.
In view of the above, there exists a need for a disc brake, which overcomes the problems of prior art disc brakes. This invention addresses this need in the prior art as well as other needs, which will become apparent to those skilled in the art from this disclosure.
One object of the present invention is to provide a cable disc brake that prevents loss of efficiency during a movement of the cam mechanism under high pressure.
Another object of the present invention is to provide a cable disc brake that is relatively compact and lightweight in relation to the amount of braking power.
Another object of the present invention is to provide a cable disc brake that is relatively inexpensive to manufacture.
The foregoing objects can be basically attained by providing a cable disc brake comprising a caliper housing, a first friction member, a second friction member and an actuated mechanism. The first friction member is movably coupled to the caliper housing between a release position and a braking position. The second friction member is coupled to the caliper housing and arranged substantially parallel to the first friction member to form a rotor receiving slot therebetween. The actuated mechanism is movably coupled to the caliper housing to move the first friction member from the release position towards the second friction member to the braking position. The actuated mechanism has first and second cam members movably arranged between an axially retracted position and an axially extended position with a guide member interconnecting the first and second cam members during movement between the axially retracted position and the axially extended position.
These and other objects, features, aspects and advantages of the present invention will become apparent to those skilled in the art from the following detailed description, which, taken in conjunction with the annexed drawings, discloses preferred embodiments of the present invention.
Referring now to the attached drawings which form a part of this original disclosure:
Referring initially to
As seen in
Basically, the front brake operating mechanism 18a is designed to actuate the front disc brake 12a to stop rotation of front wheel 16a. More specifically, the front brake operating mechanism 18a is operatively coupled to the front disc brake 12a by front brake cable 19a to apply a forcible gripping action on a front disc brake rotor 20a that is fixedly coupled to the front wheel 16a. Likewise, the rear brake operating mechanism 18b is designed to actuate the rear disc brake 12b to stop rotation of rear wheel 16b. More specifically, the rear brake operating mechanism 18b operatively coupled to the rear disc brake 12b by rear brake cable 19b to apply a forcible gripping action on a rear disc brake rotor 20b that is fixedly coupled to the rear wheel 16b.
Preferably, the brake operating mechanisms 18a and 18b are mounted on handlebar 14. In particular, as seen in
The front and rear brake cables 19a and 19b are well known in the art, and thus, they will not be discussed or illustrated in detail herein. Basically, the front brake cable 19a has an outer casing 24a and an inner wire 25a. The outer casing 24a extends between the mounting portion 22a of the brake lever 21a and an adjusting unit 26a that is mounted on the front cable disc brake 12a. The inner wire 25a is fixedly coupled to the lever portion 23a of the brake lever 21a and a portion of the front cable disc brake 12a as discussed below. Similarly, the rear brake cable 19b has an outer casing 24b and an inner wire 25b. The outer casing 24b extends between the mounting portion 22b of the brake lever 21b and an adjusting unit 26b that is mounted on the rear cable disc brake 12b. The inner wire 25b is fixedly coupled to the lever portion 23b of the brake lever 21b and a portion of the rear cable disc brake 12b in the same manner as in the front cable disc brake 12a discussed below.
Still referring to
Basically, as seen in
Turning to
As seen in
Basically, the internal bore 46 can be divided into three sections 51, 52 and 53 for supporting a part of the cam assembly 34, as discussed below. The first section 51 of the internal bore 46 is a cylindrical bore with the smallest diameter. The first section 51 of the internal bore 46 is located at a first end 48 of the left caliper portion 38. The first end 48 of the left caliper portion 38 has the actuating assembly 36 coupled thereto, as discussed below. Preferably, end surface of the first end 48 of the left caliper portion 38 has an annular step to form a pair of annular end surfaces 54 and 55 that lie in different planes. The inner end surface 55 adjacent the first section 51 of the internal bore 46 is preferably provided with three through bores 56 that are adapted to receive a part of the actuating assembly 36, as discussed below. Preferably, the centers of these bores 56 are spaced approximately twenty degrees apart in a circumferential direction. These bores 56 allow for adjustment of the actuating assembly 36, as discussed below. The middle one of the bores 56 is preferably spaced approximately four degrees in a circumferential direction from the center plane P1 of the disc brake device 12a.
The second section 52 of the internal bore 46 is also a cylindrical bore that is located between the first section 51 and the third section 53. The second section 52 of the internal bore 46 has a larger diameter than the first section 51 of the internal bore 46. Thus, an internal abutment surface or end wall 64 is formed radially between the first and second sections 51 and 52 of the internal bore 46.
The third section 53 of the internal bore 46 is also cylindrical, but is a discontinuous cylinder. Specifically, the third section 53 of the internal bore 46 has a pair of longitudinal slots 65 and an annular groove 66 formed therein. The slots 65 that are spaced 180° apart and divide the annular groove 66 into two sections.
The second end 50 of the left caliper portion 38 is provided with a pair of threaded bores 69 for receiving the bolts 41 to secure the left and right caliper housings 38 and 40 together. The second end 50 of the left caliper portion 38 has a brake pad mounting recess 67 that is substantially identical to the outer periphery of the brake pads 32. The bottom of the brake pad mounting recess 67 is open and the sides of the second end 50 of the caliper housing 38 has a pair of cutouts 68 for accommodating a portion of the disc brake rotor 20a therein.
The mounting flanges 43 of the left caliper portion 38 preferably have slots 70 to allow axial adjustment to and from the disc brake rotor 20a. The slots 70 receive the mounting bolts 29a therethrough to fasten the left caliper portion 38 to the front bracket 28a.
As seen in
The threaded shaft portion 73b has threads on its outer surface that threadedly engaged the internal threads of the threaded hole 72. Accordingly, rotation of the cable adjusting bolt 73 causes the cable adjusting bolt 73 to move axially relative to the cable support flange 44. As seen in
Turning now to FIGS. 6 and 18-20, the right caliper portion 40 is fixedly coupled to the second end 50 of the left caliper portion 38 by the bolts 41. The right caliper portion 40 substantially closes off the open end of the second end 50 of the left caliper portion 38, except for a slot for accommodating the disc brake rotor 20a. Accordingly, the right caliper portion 40 has a pair of through bores 75 for receiving the bolts 41 therein. Preferably, these through bores 75 are step-shaped so that the heads of the bolts 75 are recessed from the outer surface of the right caliper portion 40.
Also, the right caliper portion 40 has a threaded bore 76 for receiving the pad axle 77 therein. Preferably, as seen in
The inner surface of the right caliper portion 40 has a brake pad mounting recess 80 that has the shape of the periphery of the brake pad 32, such that the right brake pad 32 is securely retained against the inner surface of the right caliper portion 40. This brake pad mounting recess 80 should be sized and shaped such that the right brake pad 32 does not rotate or move. The side edges of the right caliper portion 40 has a pair of cutout portions 82 for forming a half of the disc brake rotor slot.
As seen in
As seen in FIGS. 6 and 25-28, a pad spring 87 is provided between the left and right brake pads 32 to bias them apart. The pad spring 87 is preferably constructed of a thin resilient material, such as a spring steel. The pad spring 87 has a central connecting portion 87a and a pair of biasing portions 87b extending outwardly from opposite ends of the connecting portion 87a. The connecting portion 87a is preferably an inverted U-shaped member with a pair of axially aligned holes 87c that receive the pad axle 77. The biasing portions 87b are also inverted U-shaped members that diverge outwardly to their free ends relative to a center line bisecting the connecting portion 87a.
Turning again to
As seen in
The operating shaft 90b is preferably a step-shaped shaft having a first cylindrical section 90f, a second non-cylindrical section 90g and a third cylindrical section 90h. The first cylindrical section 90f is sized to be received in the first section 51 of the internal bore 46 of the left caliper portion 38. Preferably, the bushing 96 is located around the first cylindrical section 90f as seen in
The guide pin 90c is preferably a short pin that is located on the longitudinal axis of the input cam 90 and engages the output cam 91 to ensure smooth movement of the output cam 91 relative to the input cam 90.
Referring now to
As seen in
In particular, the rotation stopper 94, as seen in
As seen in
The actuating assembly 36 basically includes an actuating arm 98, a return spring 99 and a cover 100 that are secured on the first end 48 of the left caliper portion 38 via the nut 97. The actuating assembly 36 basically includes an actuating arm 98 that is fixedly secured to the third section 90h of the operating shaft 90b of the input cam 90.
As seen in
As seen in
As seen in
The bores 56 and 102 form an adjustment mechanism for controlling the biasing force of the return spring 99 on the actuating arm 98. The biasing force between the caliper housing 30 and the actuating arm 98 can be adjusted by selecting various combinations of the bores 56 and 102. If both the first and second ends 99b and 99c of the return spring 99 are moved one hole in the same direction, then a 5° adjustment can be attained. For example, if the first and second ends 99b and 99c are located in the center bores 56 and 102, then either direction will result in a ±5° change in the biasing or urging force of the return spring 99. Of course, the first and second ends 99b and 99c can be adjusted independently for greater adjustment.
Moreover, it will be apparent to those skilled in the art from this disclosure that additional hole bores 56 and 102 can be provided for additional adjustment. Moreover, the angular spacing of the bores 56 and 102 can be changed as needed and/or desired. In any event, the angular spacing between the bores 56 and the angular spacing between bores 102 are preferably different from each other to provide for a small incremental adjustment of the return spring 99. As seen in
When the cable disc brake 12a is in the assembled position, the return spring 99 normally biases the input cam 90 and the actuating arm 98 to a brake releasing position. When the rider squeezes the brake lever 21a, the inner wire 25a of the cable 19a moves relative to the outer casing 24a of the cable 19a to cause the actuating arm 98 and the input cam 90 to rotate together. This rotation causes the rolling members 92 to move from the deep ends of the camming slots 90e and 91d to the shallow ends of the camming slots 90e and 91d. As the rolling members 92 move within the camming slots 90e and 91d, the output cam 91 is moved in an axial direction against the biasing force of the output cam return spring 93. This axial movement of the output cam 91 causes the left brake pad 32 to move against the urging force of the pad spring 87 to engage the rotor 20a, which is then pressed against the right brake pad 32. This engagement of the brake pads 32 with the disc brake rotor 20a causes the braking action of the cable disc brake 12a.
Referring now to
While only selected embodiments have been chosen to illustrate the present invention, it will be apparent to those skilled in the art from this disclosure that various changes and modifications can be made herein without departing from the scope of the invention as defined in the appended claims. Furthermore, the foregoing description of the embodiments according to the present invention are provided for illustration only, and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
Yamashita, Kazuhisa, Kirimoto, Kanji, Sakashita, Tsuyoshi
Patent | Priority | Assignee | Title |
10604208, | Mar 15 2017 | Shimano Inc | Bicycle suspension tube and bicycle suspension fork |
10858064, | Aug 26 2018 | Mechanical disc brake structure | |
9751586, | Apr 18 2011 | Shimano, Inc. | Cable disk brake with brake pad clearance adjustment mechanism |
Patent | Priority | Assignee | Title |
1919531, | |||
2379796, | |||
3083400, | |||
3371752, | |||
3655015, | |||
3701400, | |||
3765511, | |||
3789959, | |||
3878921, | |||
3920102, | |||
3927736, | |||
3949838, | Apr 11 1974 | The Huffman Manufacturing Company | Bicycle with self-aligning disc brakes |
3989124, | Dec 24 1974 | Shimano Industrial Company, Limited | Disc brake for a bicycle |
3998295, | Aug 12 1969 | Brake structure and adjusting device therefor | |
4022299, | Feb 17 1975 | Tokico Ltd. | Adjusting device for a mechanically operated disc brake |
4061208, | Dec 17 1975 | Sumitomo Electric Industries, Ltd. | Pad-wear compensating device for disc brake |
4162720, | Nov 20 1976 | Tokico Ltd. | Mechanical disc brake |
4170369, | Jan 23 1978 | Lauren, Strutman; Lisa, Strutman; Jerome A., Gross | Bicycle wheel suspension, driving and braking assembly |
4284176, | Aug 19 1978 | Tokico Ltd. | Mechanically operated disc brake |
4356897, | Dec 29 1978 | Eaton Corporation | Wear indicator for disc brakes |
4454933, | Apr 27 1981 | Kelsey-Hayes Company | Disc brake |
4538707, | Nov 27 1981 | Weinmann GmbH & Co. KG | Two wheel rim brake with rotatable actuating element |
4582177, | May 18 1984 | Societe Anonyme D.B.A. | Braking device with mechanical actuation |
4633978, | Jul 22 1985 | Hoffco, Inc. | Brake caliper includes mechanical actuator with camming device and manual wear compensator |
4635761, | Aug 30 1985 | Robert Bosch Technology Corporation | Disc brake parking cartridge retention device |
5082092, | Apr 20 1990 | Yoshigai Kikai Kinzoku Co. Ltd. | Cycle brake |
5191866, | Jun 01 1992 | FORD GLOBAL TECHNOLOGIES, INC A MICHIGAN CORPORATION | Throttle control system for automotive vehicle |
5193833, | Aug 24 1990 | Bicycle front suspension, steering & braking system | |
5201402, | Aug 24 1992 | Asgco Manufacturing, Inc. | Scraper blade tensioning device |
5263554, | May 28 1991 | Bendix Europe Services Techniques | Disk-brake motor subassembly equipped with a mechanical action |
5358078, | Jul 04 1992 | SANDLEFORD LIMITED | Hydraulically-operable disk brake for bicycles or similar vehicles |
5390771, | Apr 22 1993 | M&I MARSHALL & ILSLEY BANK | Hydraulic caliper brake assembly for a bicycle |
5482145, | Aug 09 1993 | Hitachi Ltd | Disk brake associated with hand brake lever |
5529150, | May 16 1995 | M&I MARSHALL & ILSLEY BANK | Parking brake |
5624334, | Nov 03 1995 | SRAM Corporation | Low-friction derailleur cable router |
5632362, | Aug 15 1995 | SRAM Corporation | Bicycle disc brake |
5697475, | Jan 31 1995 | Bosch Systems de Freinage | Disk brake equipped with a mechanical actuating device |
5855529, | May 14 1997 | Shimano, Inc. | Apparatus for guiding a control cable |
5913388, | Sep 18 1996 | Shimano, Inc. | Bicycle brake device |
5960914, | Feb 02 1999 | Goshen Industries Inc. | Mechanical disc brake |
5979609, | Sep 29 1998 | Disk brake device for use with a bicycle | |
6148964, | May 11 1999 | Front disk brake for a bicycle | |
6178367, | Dec 04 1998 | Brake system for a motor-driven vehicle | |
6199669, | Aug 20 1999 | Brake caliper for a bicycle disk brake | |
6206144, | May 05 1998 | Rivolta S.p.A. | Bicycle brake system |
6230849, | Jul 07 1999 | SRAM, LLC | Structure for adjustably attaching a disc brake caliper to a bicycle frame |
6230850, | Jun 23 1999 | Brake caliper for a bicycle disk brake | |
6250438, | Jan 28 2000 | YIH CHERNG CO , LTD | Disc brake for a bicycle |
6520297, | Apr 06 2000 | SRAM Corporation | Cable feed for a mechanical ball bearing disc brake |
EP791531, | |||
EP422240, | |||
JP311454, | |||
JP3114546, | |||
JP4894132, | |||
JP5057151, | |||
JP5213707, | |||
JP6029788, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 03 2004 | YAMASHITA, KAZUHISA | Shimano, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015231 | /0600 | |
Apr 16 2004 | Shimano, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Feb 22 2012 | ASPN: Payor Number Assigned. |
Oct 08 2014 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 23 2014 | 4 years fee payment window open |
Feb 23 2015 | 6 months grace period start (w surcharge) |
Aug 23 2015 | patent expiry (for year 4) |
Aug 23 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 23 2018 | 8 years fee payment window open |
Feb 23 2019 | 6 months grace period start (w surcharge) |
Aug 23 2019 | patent expiry (for year 8) |
Aug 23 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 23 2022 | 12 years fee payment window open |
Feb 23 2023 | 6 months grace period start (w surcharge) |
Aug 23 2023 | patent expiry (for year 12) |
Aug 23 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |