The present invention provides a text-to-speech conversion system (TTS) for interlocking synchronizing with multimedia and a method for organizing input data of the TTS which can enhance the natural naturalness of synthesized speech and accomplish the synchronization of multimedia with TTS by defining additional prosody information, the information required to interlock synchronize TTS with multimedia, and interface between these this information and TTS for use in the production of the synthesized speech.

Patent
   RE42647
Priority
May 08 1997
Filed
Sep 30 2002
Issued
Aug 23 2011
Expiry
Feb 09 2018
Assg.orig
Entity
Small
1
41
all paid
0. 28. A process for producing synthesized speech in synchronism with an associated moving picture characterized in that the process comprises receiving a set of multimedia information including text information, moving picture information and synchronization information; and synthesizing speech from the received text information in synchronization with the received moving picture information using the received synchronization information.
0. 30. A synthesizer for producing a synthesized speech using a text information, comprising:
receiving means for receiving the text information usable for synthesizing speech, and synchronization information including a number of lip-shape change points and a lip-shape representation at every lip-shape change point;
synthesizing means, for producing the synthesized speech from the text information using the synchronization information; and
outputting means for outputting the synthesized speech.
0. 29. A speech synthesizer for use in synchronizing synthesized speech generated from a TTS and a moving picture which is to be displayed on a picture output apparatus which is connected with the TTS, the speech synthesizer comprising:
means for receiving prosody control parameters including a duration of each phoneme, synchronization information and moving picture data;
means for adjusting the duration of each phoneme of each phoneme stream using the synchronization information to synchronize between the synthesized speech and the moving picture; and
means for producing the synthesized speech using the prosody control parameter values and data in a synthesis unit database, in synchronism with the moving picture to be displayed.
0. 27. A method for synchronizing synthesized speech generated from a TTS and a moving picture which is to be displayed on a picture output apparatus which is connected with the TTS, the method comprising the steps of:
receiving a set of multimedia information which includes text information, moving picture information, synchronization information and prosody control parameters, said prosody control parameters including a duration of each phoneme;
classifying a set of the received multimedia information into a plurality of subsets of the information including a synchronization information subset;
adjusting the duration of each phoneme using the classified synchronization information subset to synchronize between the synthesized speech and the moving picture; and
producing the synthesized speech using the prosody control parameter values included in a set of the received multimedia information and data in a synthesis unit database, in synchronism with the moving picture to be displayed onto screen in the picture output apparatus.
0. 15. A method for synchronizing synthesized speech generated from a TTS and a moving picture which is to be displayed on a picture output apparatus which is connected with the TTS, the method comprising the steps of:
receiving a set of multimedia information which includes text information, moving picture information and synchronization information;
classifying the set of the received multimedia information into a plurality of subsets of the information including a synchronization information subset;
converting each classified text information subset into a phoneme stream;
presuming prosody information from each phoneme stream;
calculating prosody control parameter values based on the prosody information;
adjusting the duration of each phoneme of each phoneme stream using the respective classified synchronization information subset to synchronize between the synthesized speech and the moving picture; and
producing the synthesized speech using the prosody control parameter values and data in a synthesis unit database, in synchronism with the moving picture to be displayed.
1. A text-to-speech conversion system for interlocking with multimedia comprising;
a multimedia information input unit for organizing text, prosody information, information on synchronization with a moving picture, lip-shape information, picture information, and individual property information including a gender, age, accent, pronunciation and speech rate of synthesized speech;
a data distributor for distributing the information from said multimedia information input unit into information for each media;
a language processor for converting the text distributed by said data distributor into a phoneme stream, presuming prosody information and symbolizing the presumed prosody information;
a prosody processor for calculating a prosody control parameter value from the symbolized prosody information from the language processor;
a synchronization adjuster for adjusting a duration of each phoneme using the synchronization information distributed by said data distributor;
a synthesis unit database for receiving the individual property information from said data distributor, selecting synthesis units adaptable to gender and age and outputting data required for synthesis;
a signal processor for producing a synthesized speech using the prosody control parameter and the data output from said synthesis unit database; and
a picture output apparatus for outputting the picture information distributed by said data distributor onto a screen.
0. 14. A text-to-speech conversion system (TTS) for synchronizing synthesized speech and a moving picture which is to be displayed on a picture output apparatus which is connected with the TTS, the TTS including a language processor for converting the text into phoneme stream and presuming prosody information from the phoneme stream; a prosody processor for calculating prosody control parameter values from the prosody information using a predefined rule; and a signal processor for producing synthesized speech using the prosody control parameter values and synthetic data stored in a synthesis unit database, characterized in that the TTS comprises:
a multimedia information input unit for inputting a set of multimedia information, the set of multimedia information including moving picture information, text information, and synchronization information;
a data distributor for classifying the set of multimedia information into a plurality of subsets of the multimedia information to distribute each subset of the multimedia information into a corresponding one of the language processor, prosody processor, signal processor and the picture output apparatus; and
a synchronization adjuster for adjusting the duration of each phoneme in the phoneme stream using the synchronization information subset distributed by said data distributor to synchronize between synthesized speech to be produced by the signal processor and the moving picture to be displayed on the picture output apparatus.
2. A method for organizing input data of a text-to-speech conversion system for interlocking with multimedia, said method comprising the steps of:
(a) classifying multimedia input information organized for enhancing natural synthesized speech and implementing synchronization of multimedia with text-to-speech into text, prosody information, information on synchronization with a moving picture, lip-shaped information, picture information, and individual property information using a multimedia information input unit;
(b) distributing using a data distributor the multimedia input information classified in the multimedia information input unit based on respective information;
(c) converting the text distributed by the data distributor into a phoneme stream, presuming prosody information and symbolizing the presumed prosody information using a language processor;
(d) calculating a prosody control parameter value which is not included in the multimedia input information using a prosody processor;
(e) adjusting a duration of each phoneme using a synchronization adjuster so as to synchronize a processing result of the prosody processor with a picture signal according to the synchronization information distributed by the data distributor;
(f) selecting synthesis units adaptable to gender and age based on the individual property information from the data distributor using a synthesis unit database and outputting data required for synthesis;
(g) producing synthesized speech using a signal processor based on the prosody information distributed by the data distributor, a processing result of the synchronization adjuster, and the data from the synthesis unit database; and
(h) outputting the picture information distributed by the data distributor onto a screen using a picture output unit.
3. The method in accordance with claim 2, wherein the organized multimedia information comprises text information, prosody information, information on synchronization with a moving picture, lip-shaped information, and individual property information.
4. The method in accordance with claim 3, wherein the prosody information comprises a number of phoneme, phoneme stream information, duration of each phoneme, pitch pattern of the phoneme, and energy pattern of the phoneme.
5. The method in accordance with claim 4, wherein the duration time of the phoneme is indicative of a value of pitch at a beginning point, a mid point, and an end point within the phoneme.
6. The method in accordance with claim 5, wherein the energy pattern of the phoneme is indicative of a value of energy in decibels at the beginning point, the mid point, and the end point within the phoneme.
7. The method in accordance with claim 3, wherein the synchronization information comprises text, lip-shape, location information with a moving picture, and duration information.
8. The method in accordance with claim 3, wherein the synchronization information comprises a beginning point, duration and delay time information of a starting point, and duration of each phoneme is controlled by the synchronization information.
9. The method in accordance with claim 3, wherein the synchronization information is composed of a duration of a beginning point of a sentence, a duration information of a starting point, and duration of each phoneme is controlled by forecast lip-shape considered an articulation manner of the phoneme and articulation control of lip-shape within the synchronization and duration information of the synchronization information.
10. The method in accordance with claim 3, wherein the synthesized speech is produced based on beginning point information, end point information, and phoneme information for each phoneme within an interval associated with a speech signal.
11. The method in accordance with claim 3, wherein the synthesized speech is produced based on a distance of an opening between an upper lip and a lower lip, a distance between end points of the lips, and an extent of projection of a lip, and a lip-shape quantized and normalized pattern is defined depending on articulation location and articulation manner of the phoneme on a basis of pattern with discriminative property.
12. The method in accordance with claim 3, wherein if the multimedia input information comprises prosody information, further comprising the steps of:
(i) converting the prosody information into a data structure recognizable by the signal processor; and
(j) transmitting the converted prosody information to the prosody processor and the synchronization adjustor.
13. The method in accordance with claim 3, wherein if the multimedia input information includes individual property information, further comprising the steps of:
(k) converting the individual property information into a data structure recognizable by the synthesis unit database and the prosody processor within the text-to-speech;
(l) transmitting the converted individual property information to the synthesis unit database and the prosody processor.
0. 16. The method according the claim 15, wherein said prosody control parameters are comprised of the number of phonemes, duration time of each phoneme, pitch pattern of each phoneme and energy pattern of each phoneme.
0. 17. The method according to claim 16, wherein said pitch pattern of each phoneme is indicative of a value of pitch of the desired synthesized speech at a beginning point, a middle point, and an end point within each phoneme.
0. 18. The method according to claim 16, wherein said energy pattern of each phoneme is indicative of a value of energy of the desired synthesized speech in decibels at a beginning point, a mid point and an end point within each phoneme.
0. 19. The system according to claim 14, wherein said synchronization information subset includes lip-shape information, said lip-shape information including a number of lip-shape change points, a location of lip-shape change points in a sentence and a lip-shape representation at every lip-shape change point.
0. 20. The system according to claim 14, wherein a set of said multimedia information further includes individual property information, said individual property information subset including gender and age information of the synthesized speech.
0. 21. The system according to claim 14, wherein if a set of said multimedia information further includes prosody control parameters, said prosody control parameters are capable of being utilized in said synchronization adjuster without the processing of said language processor and prosody processor.
0. 22. The system according the claim 21, wherein said prosody control parameters include the number of phonemes in the data stream, a duration time of each phoneme, a pitch pattern of each phoneme and an energy pattern of each phoneme.
0. 23. The system according to claim 22, wherein said pitch pattern of each phoneme is indicative of a value of pitch of the desired synthesized speech at a beginning point, a middle point, and an end point within each phoneme.
0. 24. The system according to claim 22, wherein said energy pattern of each phoneme is indicative of a value of energy of the desired synthesized speech in decibels at a beginning point, a mid point and an end point within each phoneme.
0. 25. The method of claim 15, wherein the classified synchronization information subset includes lip-shape information, said lip-shape information including a number of lip-shape change points, a location of lip-shape change points in a sentence and a lip-shape representation at every lip-shape change point.
0. 26. The method according to claim 15, wherein said set of the received multimedia information further includes an individual property information subset, said individual property information subset including gender and age information of the synthesized speech.
0. 31. The synthesizer according to claim 30, wherein a picture output apparatus is connected to the synthesizer and operated in synchronization with the synthesizer.
0. 32. The synthesizer according to claim 31, wherein the synchronization information is related to a moving picture outputted from the picture output apparatus.

1. Field of the Invention

The present invention relates to and which represents a proper unique identifying number of for each TTS data stream.

The language_Code represents an object language such as Korean language, English language, German language, Japanese language, French language etc,. to be synthesize.

The prosody_Enable is a 1-bit flag and has a value of ‘1’ when a prosody data of original sound is included in an organized data.

The Video_Enable is a 1-bit flag and has a value of ‘1’ when a TTS is interlocked with moving picture.

The Lip _Shape_Enable is a 1-bit flag and has a value of ‘1’ when a lip_shape data is included in an organized data.

The Trick_Mode_Enable is a 1-bit flag and has a value of ‘1’ when a data is organized to support a trick mode such as stop, restart, forward and backward.

TABLE 2
Syntax
TTS_Sentence ( ) {
TTS_Sentence_Start_Code
TTS_Sentence_ID
Silence
if (Silence) {
 Silence_Duration
 }
else {
 Gender
 Age
 if(!Video_Enable) {
  Speech_Rate
  }
 Length_of_Text
 TTS_Text( )
 if(Prosody_Enable) {
  Dur_Enable
  FO_Contour_Enable
  Energy_Contour_Enable
  Number_of_Phonemes
  for(j=0 ; j<Number_of_phonemes ; j++) {
   Symbol_each_phoneme
   if(Dur_Enable) {
   Dur_each_phoneme
   }
   if(FO_Contour_Enable {
   FO_contour_each_phoneme
   }
   if(Energy_Contour_Enable) {
   Energy_contour_each_phoneme
   }
  }
 }
 if(Video_Enable) {
  Sentence_Duration
  Position_in_Sentence
  offset
  }
 if(Lip_Shape_Enable) {
  Number_of_Lip_Event
  for(j=0 , j<Number_of_Lip_Event ; j++) {
   Lip_in_Sentence
   Lip_Shape
   }
  }
 }
}

Here, the TTS_Sentence_Start_Code is a bit string represented with by Hexadecimal ‘XXXXX’ and means indicates a start of a TTS sentence. And the TTS_Sentence_Start_Code is a 10-bit ID and represents a proper number of unique identifier for each TTS data stream.

The TTS_Sentence_ID is a 10-bit ID and represents a proper number a unique identifier of each TTS sentence existed present in the TTS data stream.

The Silence become a is a one-bit flag which is set to ‘1’ when a present input frame of 1-bit flag is silence a silent speech section.

At stage of the Silence_Duration, a represents the duration time of a present silence silent speech section is represented by in milliseconds.

At stage of the Gender, indicates the desired gender is distinguished from a of the synthesized speech.

At stage of the Age, an indicates a desired apparent age of the synthesized speech distinguished into a categorized by baby, youth, middle age and or old age speech quality.

The Speech_Rate represents a desired output speech rate of the synthesized speech.

At stage of the Length_of_Text, a represents the length of an input text sentence is represented by as a byte.

At stage of the TTS_Text, represents an optional length of a sentence text having optional length is represented.

The Dur_Enable is a 1-bit flag and become a set to ‘1’ when a duration time information is included in an the organized data stream.

The FO_Contour_Enable is a 1-bit flag and become a set to ‘1’ when a pitch information of each phoneme is included in the organized data stream.

The Energy_Contour_Enable is a 1-bit flag and become a set to ‘1’ when an energy information of each phoneme is included in the organized data stream.

At stage of the Number_of_Phonemes, represents the number of phoneme needed phonemes required to synthesize a sentence are represented.

At stage of the Symbol_each_phoneme, represents a symbol, such as IPA, which is to represent each phoneme is represented.

The Dur_each_phoneme represents a duration time of each phoneme.

At stage of the FO_contour_each_phoneme, represents a pitch pattern of the phoneme represented by a pitch value of a beginning point, a mid point and an end point of the phoneme is represented.

At stage of the Energy_Contour_each_phoneme, represents an energy pattern of the phoneme is represented and an energy value of a beginning point, a mid point and an end point of the phoneme is represented by decibel in decibels (dB).

The Sentence_Duration represents a total duration time of the synthesized speech of the sentence.

The Position_in_Sentence represents a position of a present frame in the sentence.

At stage of the offset, Offset represents a delay time when the synthesized speech is interlocked synchronized with a moving picture, and a beginning point of the sentence is in the GOP (Group Of Pictures), a The delay time consumed identifies the time from the beginning point of the GOP to the beginning point of the sentence is represented.

The Number_of_Lip_Event represents the number of changing point of lip-shape in the sentence.

LipinSentence represents the location of a lipshape changing part in a sentence.

The Lip_shape represents a lip—shape at lip—shape changing point of the sentence.

Text information includes a classification code for a used language and a sentence text. Prosody information includes the number of phoneme in the sentence, phoneme stream information, the duration of every each phoneme, pitch pattern of phoneme, energy pattern of phoneme, and is used for enhancing the natural of the synthesized speech. The synchronization information of the moving picture with the synthesized speech can be considered as the dubbing concept and the synchronization could be realized in three ways.

Firstly, there is a method to synchronize between the moving picture and the synthesized speech by the sentence unit by which method the duration of the synthesized speech is adjusted using the information about the beginning points of sentences, the durations of sentences, and the delay times of the beginning points of sentences. The beginning points of each sentence indicates the locations of scenes from which output of the synthesized speech for each sentence within the moving picture is started. The durations of sentences indicate the number of scenes in which the synthesized speech for each sentence lasts. In addition, the moving picture of MPEG-2 and MPEG-4 picture compression type in which Group of Picture (GOP) concept is used should start at not any scene but a beginning scene within Group of Picture for reproduction. Therefore, the delay time of the beginning point is the information required to synchronize between the Group of Picture and the TTS and indicates delay time between the beginning scene and a speech beginning point. This method is easy to be realized and can minimize additional effort but is difficult to accomplish natural synchronization by this method.

Secondly, there is a method by which The second method produces synthesized speech on a phoneme basis by use of beginning point information, and end point information, and phoneme information are marked every for each phoneme within an interval period associated with a speech signal in the moving picture and these information is used to produce the synthesized speech. This method has an advantage in that the degree of accuracy is high since the synchronization between the moving picture and the synthesized speech by the phoneme unit can be attained but realized. However, this method also has a disadvantage in that additional effort should be fairly must be made to detect and record the duration information by of the phoneme unit within the speech interval of the moving picture.

Thirdly, there is a method to record The third method records the synchronization information based on the beginning point of speech, the end point of speech, lip-shape, information, and a change point of time information of lip-shape change. Lip-shape is numeralized information quantifies the to distance (extent of opening) between the upper lip and the lower lip, the distance (extent of width) between left and right and points of the lip, and the extent of projecting of the lip and is defined as a quantized and normalized pattern depended on dependent upon articulation location and articulation manner of the phoneme using a on the basis of pattern with high discriminative property highly discriminating pattern. This method is a method to raise improves the efficiency of synchronization, while minimizing additional effort to produce the synchronization information for synchronization can be minimized.

The organized Organizing multimedia input information which is applied to in accordance with the present invention allows an information provider to select and implement optionally among 3 any of the three synchronization methods as described above.

In addition, the organized multimedia input information is also used in the process to implement lip animation. Lip animation can be implemented by using phoneme stream prepared from the inputted text in the TTS and the duration every each phoneme, or phoneme stream distributed from the input information and the duration every each phoneme, or by using the information on lip-shape included in the inputted information.

The individual property information allows the user to change gender, age, and speech rate of the synthesized speech. Gender has male and female, and age is classified into 4, for example, 6-7 years, 18 years, 40 years, and 65 years. The change of speech rate may have 10 steps between 0.7 and 1.6 times of a standard rate. Quality of the synthesized speech can be diversified using these information.

FIG. 3 is a constructional view of the text-to-speech conversion system (TTS) according to the present invention. In FIG. 3, the TTS consists of a multimedia information input unit 10, a data distributor by each media 11, a standardized language processor 12, a prosody processor 13, a synchronization adjuster 14, a signal processor 15, a synthesis unit database 16, and a picture output apparatus 17.

The multimedia input unit 10 is configured as form of Table 1 and 2 and comprises text, prosody information, the information on synchronization with moving picture, the information on lip-shape. Among these, requisite information is text, other information can be optionally provided by an information provider as optional item for enhancing the individual property and the natural and accomplishing the synchronization with the multimedia, and if needed, can be amended by a TTS user by means of a character input device (keyboard) or a mouse. These information is transmitted to the data distributor by each media 11.

The data distributor by each media 11 receives the multimedia information of which the picture information is transmitted to the picture output apparatus 17, text is transmitted to the language processor 12, and the synchronization information is converted into data structure capable of utilizing in the synchronization adjuster 14 and transmitted to the synchronization adjustor 14. If prosody information is included in the inputted multimedia information, this multimedia information is converted into a data structure capable of utilizing in the signal processor 15 and then transmitted to the prosody processor 13 and the synchronization adjustor 14. If individual property information is included in the inputted multimedia information, this multimedia information is converted into data structure capable of utilizing in the synthesis unit database 16 and the prosody processor 13 within the TTS and then transmitted to the synthesis unit database 16 and the prosody processor 13.

The language processor 12 converts text into phoneme stream, presumes prosody information, symbolizes this information, and then transmits the symbolized information to the prosody processor 13. The symbol of prosody information is presumed from a boundary of the phrase and paragraph, a location of accent in word, a sentence pattern, and so on using the analysis result syntax.

The prosody processor 13 takes the processing result of the language processor 12 and calculates value of prosody control parameter other than prosody control parameter included in the multimedia information. Prosody control parameter includes duration pitch contour, energy contour, pause point, and pause length of phoneme. The calculated result is transmitted to thesynchronization adjustor 14.

The synchronization adjustor 14 takes the processing result of the prosody processor 13 and adjusts the duration every each phoneme in orderto synchronize the result with the picture signal. The adjustment of the duration every each phoneme utilizes the synchronization information transmitted from the data distributor by each media 11. First, lip-shape is assigned to each phoneme depended on articulation location and articulation manner of each phoneme and, on the basis of this, the assigned lip-shape information is compared to lip-shape information included in the synchronization information and then phoneme stream is divided into small groups by the number of lip-shape recorded in the synchronization information. Also, the duration of phoneme in the small groups is calculated again using the duration information of lip-shape included in the synchronization information. The adjusted duration information is transmitted to the signal processor, included in the processing result of the prosody processor.

The signal processor 15 receivesthe prosody information from the multimedia distributor 11 or the processing result of the synchronization adjustor 14 to produce and output the synthesized speech using the synthesis unit database 16.

The synthesis unit database 16 receives the individual property information from the multimedia distributor 11, selects synthesis units adaptable to gender and age, and then transmits data required for synthesis to the signal processor 15 in response to a request from the signal processor 15.

As can be seen from the description described above, according to the present invention, the individual property of the synthesized speech can be realized and the natural of the synthesized speech can be enhanced by organizing the individual property and prosody information presumed by the analysis of actual speech data, along with text information, as multistage information. Furthermore, a foreign movie can be dubbed in Korean by implementing the synchronization of the synthesized speech with the moving picture by way of the direct use of text information and lip-shape information which is presumed by the analysis of actual speech data and lip-shape in the moving picture for the production of the synthesized speech. Still furthermore, the present invention is applicable to a variety of field such as communication service, office automation, education and so on by making the synchronization between the picture information and the TTS in the multimedia environment possible.

Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims.

It is therefore intended by the appended claims to cover any and all such applications, modifications, and embodiments within the scope of the present invention.

Lee, Youngjik, Yang, Jae Woo, Lee, Jung Chul, Hahn, Min Soo, Lee, Hang Seop

Patent Priority Assignee Title
9087049, Oct 26 2005 CORTICA, LTD System and method for context translation of natural language
Patent Priority Assignee Title
4260229, Jan 23 1978 Creating visual images of lip movements
4305131, Feb 05 1979 NINTENDO CO , LTD , 60 FUKUINE, KAMITAKAMATSU-CHO, HIGASHIYAMA-KU, KYOTO 605, JAPAN A CORP OF JAPAN Dialog between TV movies and human viewers
5111409, Jul 21 1989 SIERRA ENTERTAINMENT, INC Authoring and use systems for sound synchronized animation
5313522, Aug 23 1991 Apparatus for generating from an audio signal a moving visual lip image from which a speech content of the signal can be comprehended by a lipreader
5386581, Mar 28 1989 Matsushita Electric Industrial Co., Ltd. Multimedia data editing apparatus including visual graphic display of time information
5500919, Nov 18 1992 Canon Kabushiki Kaisha Graphics user interface for controlling text-to-speech conversion
5557661, Nov 02 1993 NEC Corporation System for coding and decoding moving pictures based on the result of speech analysis
5608839, Mar 18 1994 GOOGLE LLC Sound-synchronized video system
5615300, May 28 1992 Toshiba Corporation Text-to-speech synthesis with controllable processing time and speech quality
5630017, Feb 19 1991 SIERRA ENTERTAINMENT, INC ; SIERRA ON-LINE, INC Advanced tools for speech synchronized animation
5636325, Nov 13 1992 Nuance Communications, Inc Speech synthesis and analysis of dialects
5657426, Jun 10 1994 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Method and apparatus for producing audio-visual synthetic speech
5677739, Mar 02 1995 National Captioning Institute System and method for providing described television services
5677993, Aug 31 1992 Hitachi, Ltd. Information processing apparatus using pointing input and speech input
5689618, Feb 19 1991 BANK OF AMERICA, N A Advanced tools for speech synchronized animation
5729694, Feb 06 1996 Lawrence Livermore National Security LLC Speech coding, reconstruction and recognition using acoustics and electromagnetic waves
5751906, Mar 19 1993 GOOGLE LLC Method for synthesizing speech from text and for spelling all or portions of the text by analogy
5774854, Jul 19 1994 International Business Machines Corporation Text to speech system
5777612, Mar 20 1995 Fujitsu Limited Multimedia dynamic synchronization system
5850629, Sep 09 1996 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD User interface controller for text-to-speech synthesizer
5860064, May 13 1993 Apple Computer, Inc. Method and apparatus for automatic generation of vocal emotion in a synthetic text-to-speech system
5970459, Dec 13 1996 Electronics and Telecommunications Research Institute System for synchronization between moving picture and a text-to-speech converter
AT72083,
DE4101022,
EP225729,
EP689362,
EP706170,
GB2231246,
JP2234285,
JP3241399,
JP4285769,
JP4359299,
JP5064171,
JP5188985,
JP5313686,
JP6326967,
JP6348811,
JP7038857,
JP7306692,
JP8030287,
WO8504747,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 30 2002Electronics and Telecommunications Research Institute(assignment on the face of the patent)
Date Maintenance Fee Events
Nov 22 2011ASPN: Payor Number Assigned.
Dec 28 2011M2553: Payment of Maintenance Fee, 12th Yr, Small Entity.


Date Maintenance Schedule
Aug 23 20144 years fee payment window open
Feb 23 20156 months grace period start (w surcharge)
Aug 23 2015patent expiry (for year 4)
Aug 23 20172 years to revive unintentionally abandoned end. (for year 4)
Aug 23 20188 years fee payment window open
Feb 23 20196 months grace period start (w surcharge)
Aug 23 2019patent expiry (for year 8)
Aug 23 20212 years to revive unintentionally abandoned end. (for year 8)
Aug 23 202212 years fee payment window open
Feb 23 20236 months grace period start (w surcharge)
Aug 23 2023patent expiry (for year 12)
Aug 23 20252 years to revive unintentionally abandoned end. (for year 12)