The present invention is about an apparatus for scanning an object. The apparatus comprises an image capture module having a lens and a sensors array for capturing light after scanning the object. There are light sources comprising a visible light source and an infrared light source. Next, a key module of the present invention is a first translation module connected with the lens and the sensors array. The first translation module is-used for changing a first location of the lens and a second location of the sensors array according to using different the light sources so as to improve some optical characteristics, such as aberration resulting from different wavelengths of light sources. A power module connects with the first translation module and the light sources for supporting energy to the first translation module and the light sources. Moreover, a second translation module connects with the light sources and the image capture module, and the second translation driven by the power module. A control module connects to the power module and the image capture module, and a loading platform module has a platform and therein all the modules and the light sources are placed.
|
0. 23. A method comprising:
selecting one light source from a plurality of light sources based, at least in part, on a type of object to be scanned; and
changing, with a translation module, a location of a sensor array with respect to said one light source, at least in part, in response to the selection of said one light source, wherein said location of said sensor array is changed prior to said object being scanned.
14. A method of scanning by a scanner comprising:
using selecting a light source from a plurality of light sources of a scanner configured to scan an object with different wavelengths, wherein said scanner comprises a lens and an image sensor;
changing, with a translation module, a first location of a said lens according to the selection of said light source; and
changing a second location of a sensors array said image sensor according to the selection of said light source.
0. 18. A scanning apparatus, comprising:
an image capture module including an image sensor;
a first light source having a first range of wavelengths;
a second light source having a second range of wavelengths;
a control module configured to select one light source from a group consisting of said first and second light sources; and
a translation module configured to change a location of said image sensor with respect to said one light source in response to a selection of said one light source.
1. Apparatus for scanning an object An apparatus comprising:
an image capture module having at least including a lens and a sensors array for capturing an image sensor configured to capture light after in response to scanning said an object;
a plurality of light sources with different wavelengths for projecting said object through configured to transmit said light to said image capture module, wherein one of said light sources is selected for scanning said object; and
a first translation module connected with said lens and said sensors array of said image capture module, and said first translation module for changing configured to change a first location of said lens and a second location of said sensors array according to using different said light sources; and
a power module connected with said first translation module and said light sources for supporting energy to said first translation module and said light sources image sensor with respect to said selected light source.
9. A scanner comprising:
an image capture module having at least a lens and a sensors array for capturing light after scanning an object;
a plurality of light sources comprising a visible light source and an infrared light source;
a first translation module connected with said lens and said sensors array of said image capture module, and said first translation module for changing a first location of said lens and a second location of said sensors array according to using different said light sources;
a power module connected with said first translation module and said light sources for supporting energy to said first translation module and said light sources;
a second translation module connected with said light sources and said image capture module, and said second translation driven by said power module;
a control module connected to said power module and said image capture module; and
a loading platform module having a platform and therein all said modules and said light sources placed.
2. The apparatus of
3. The apparatus of
4. The apparatus of
5. The apparatus of
6. The apparatus of
7. The apparatus of
a second translation module connected with said light sources and said image capture module, and said second translation driven by said power module;
a control module connected with said power module and said image capture module; and
a loading platform module having a platform and therein all said modules and said light sources placed.
8. The apparatus of
10. The scanner of
11. The scanner of
12. The scanner of
13. The scanner of
15. The method according to of
16. The method according to of
17. The method according to of claim 14 16, wherein the a distance between said second location and said lens is an image length in said imaging system and is changed by a plurality of second translation devices device.
0. 19. The apparatus of claim 18, wherein said image capture module further includes a lens, and wherein said translation module is further configured to change a location of said lens in response to the selection of said one light source.
0. 20. The apparatus of claim 18, wherein said first light source comprises a light source configured to generate visible light.
0. 21. The apparatus of claim 20, wherein said second light source comprises a light source configured to generate infrared light.
0. 22. The apparatus of claim 18, wherein said control module is configured to select said one light source based, at least in part, on a type of object to be scanned.
0. 24. The method of claim 23, wherein said selecting said one light source comprises selecting said one light source from a group of light sources consisting of a visible light source and an infrared light source.
0. 25. The method of claim 23, further comprising changing a location of a lens, at least in part, in response to the selection of said one light source.
0. 26. The method of claim 23, wherein said plurality of light sources comprises:
a first light source configured for a first document type; and
a second light source configured for a second document type.
0. 27. The method of claim 26, wherein said first light source comprises a first range of wavelengths, and wherein said second light source comprises a second range of wavelengths different than said first range of wavelengths.
0. 28. The method of claim 26, wherein said first document type comprises an opaque object, and wherein said second document type comprises a transparent object.
0. 29. The method of claim 26, wherein said plurality of light sources comprises an infrared light source.
0. 30. The apparatus of claim 18, wherein said first light source is selected when said type of object comprises an opaque object, and wherein said second light source is selected when said type of object comprises a transparent document.
0. 31. The method of claim 23, wherein said plurality of light sources are associated with different wavelengths.
|
1. Field of the Invention
The present invention generally relates to an apparatus for scanning objects of various types, and more particularly to a scanner which can compensate for optical characteristics according to using different wavelength light sources.
2. Description of the Prior Art
Optical scanning apparatuses are currently in great demand as a result of the rapid development of high speed, low cost imaging devices and the ever decreasing cost of personal computers. Optical scanners, in general, are capable of reflective and/or transmissive scanning of documents, photographs and the like, whereby reflective scanning is used with opaque objects such as photographs and transmissive scanning is used with transparent objects, such as slides and the like. Reflective scanners project light onto the side of the object to be scanned. The reflected light is viewed by an optical sensor which converts the reflected light into digital code. The code is then transmitted to the operator's computer for further processing. Transmissive scanners operate on the same principle except that light is projected through the transparent object being scanned. A great demand exists for high quality, low cost, low maintenance, easy to calibrate, versatile optical scanners capable of both high and low resolution reflective and transmissive scanning.
As shown on
Generally, there are many different types for scanned objects, such as paper document, transparent slide, and so on. A high-quality output image depends on the imaging system of a scanner for different types of objects. However, there are many factors related to the good imaging system, such as wavelength of light source, optical characteristics of optical devices and optical pathway, and so on. That is, the high-quality output images can't be satisfied for objects of various types if there is only one imaging system in a scanner.
Accordingly, it is an object of the present invention to provide an apparatus of scanning which has different light sources to fit the scanned objects of various types.
It is further object of the invention to provide a scanner which can adjust the location of a lens and a sensors array of the scanner according to using the light sources of different wavelengths.
It is another object of the invention to provide a scanner which can compensate for the optical characteristics of different light sources to improve the qualities of an output image.
In the present invention, an apparatus for scanning images comprises an image capture module having at least a lens and a sensors array for capturing light after scanning the object. A plurality of light sources comprise a visible light source and an infrared light source. Next, a key module of the present invention is a first translation module connected with the lens and the sensors array of the image capture module. To be specific, the first translation module is used for changing a first location of the lens and a second location of the sensors array according to using different the light sources so as to improve some optical characteristics, such as aberration resulting from different wavelengths of light sources. A power module connects with the first translation module and the light sources for supporting energy to the first translation module and the light sources. Moreover, a second translation module connects with the light sources and the image capture module, and the second translation driven by the power module. A control module connects to the power module and the image capture module, and a loading platform module has a platform and therein all the modules and the light sources are placed.
The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
There is shown a representative portion of a scanner structure of the present invention in enlarged, cross-sections of two dimensional views for a scanner. The drawings are not necessarily to scale, as the size of the various devices are shown for clarify of illustration and should not be interpreted in a limiting sense. Accordingly, these regions will have dimensions, including length, width and depth, when fabricated in an actual device.
In the present invention, an a scanner for scanning an object comprises an image capture module having at least a lens and a sensors array for capturing light after scanning the object. A plurality of light sources comprise a visible light source and an infrared light source. Next, a key module of the present invention is a first translation module connected with the lens and the sensors array. To be specific, the first translation module is used for changing a first location of the lens and a second location of the sensors array according to using different the light sources so as to improve some optical characteristics, such as aberration resulting from different wavelengths of light sources. A power module connects with the first translation module and the light sources for supporting energy to the first translation module and the light sources. Moreover, a second translation module connects with the light sources and the image capture module, and the second translation driven by the power module. A control module connects to the power module and the image capture module, and a loading platform module has a platform and therein all the modules and the light sources are placed.
The embodiments of the present invention are described in detail hereinafter with reference to the accompanying drawings.
In the present invention, a scanning apparatus comprises a control module 10, light sources 11, a power module 12, an image capture module 13, a loading platform module 14, a first translation module 15, and a second translation module 16, as shown in
Next, the image capture module 13 has at least a lens and a sensors array wherein sensors can be charge-coupled devices. The lens is for converging light from any object onto the sensors array. The sensors array is for transforming the light into corresponding image electric signals. The power module 12 comprises power supplies, motors, gears and belts for supporting energies to any scanning process.
Next, the first translation module 15 comprises a plurality of feeding devices, such as feeding rods and feeding screws. The first translation module 15 can be driven by the power module 12 and changing locations of the lens or the sensors array. In the present invention, the first translation module 15 can adjust the locations of the lens or the sensors array to compensating some optical defeats such as aberration that results from switching different light sources. Moreover, the second translation module 16 also comprises a plurality of feeding devices and feeds the light sources 11 and the image capture module 13 in any scanning motion.
Following, one preferred embodiment is described in
As shown in
The other one preferred embodiment is shown as
As shown in
Accordingly, with adjusting the distance between the object and the lens or the sensors array, some optical defeats resulting from using different light sources can be compensated for getting better scanning images.
While the present invention has been described herein in terms of preferred embodiments, numerous modifications and variations will occur to a person the spirit and scope of the present invention. It is intended that the appended claims encompass those modifications and variations.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4751376, | Apr 12 1985 | Minolta Camera Kabushiki Kaisha | Image reader with focus and magnification detection control |
5153636, | Apr 17 1990 | Canon Kabushiki Kaisha | Reader printer |
5381245, | Jan 18 1990 | CARESTREAM HEALTH, INC | X-ray film scanning and digitizing apparatus |
5566006, | Jul 08 1993 | Canon Kabushiki Kaisha | Image reading apparatus for selectively illuminating a first object and a second object by the same light beam and selectively detecting imaged image information therefrom |
5724173, | Nov 25 1996 | Optical scanning device | |
5845019, | Aug 20 1992 | Nikon Corporation | Image reader |
6151419, | Mar 27 1997 | Seiko Epson Corporation | Image reading method and image reading apparatus |
6188465, | Jan 21 1997 | Amersham Biosciences Corp | Dual depth of focus imaging system |
6233063, | Jun 29 1995 | Agfa Corporation | Two lens converging device in a dual plane flat-bed scanning system |
6252684, | Nov 13 1998 | HANGER SOLUTIONS, LLC | Automatic paper feeder including an upper light source |
6553154, | Nov 05 1998 | Benq Corporation | Image reading apparatus |
6639694, | Sep 05 2000 | Transpacific Systems, LLC | Imaging apparatus with divers resolution |
7034967, | Apr 14 1997 | Nikon Corporation | Image reading apparatus and transparent original adapter |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 18 2005 | Transpacific Systems, LLC | (assignment on the face of the patent) | / | |||
Feb 13 2013 | Transpacific Systems, LLC | TITUSVILLE CANAVERAL LLC | MERGER SEE DOCUMENT FOR DETAILS | 030628 | /0681 | |
Feb 14 2013 | TITUSVILLE CANAVERAL LLC | Intellectual Ventures I LLC | MERGER SEE DOCUMENT FOR DETAILS | 030639 | /0330 |
Date | Maintenance Fee Events |
Apr 24 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Sep 20 2014 | 4 years fee payment window open |
Mar 20 2015 | 6 months grace period start (w surcharge) |
Sep 20 2015 | patent expiry (for year 4) |
Sep 20 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 20 2018 | 8 years fee payment window open |
Mar 20 2019 | 6 months grace period start (w surcharge) |
Sep 20 2019 | patent expiry (for year 8) |
Sep 20 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 20 2022 | 12 years fee payment window open |
Mar 20 2023 | 6 months grace period start (w surcharge) |
Sep 20 2023 | patent expiry (for year 12) |
Sep 20 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |