The present invention teaches a method of manufacturing an enclosed transceiver, such as a radio frequency identification (“RFID”) tag. Structurally, in one embodiment, the tag comprises an integrated circuit (IC) chip, and an RF antenna mounted on a thin film substrate powered by a thin film battery. A variety of antenna geometries are compatible with the above tag construction. These include monopole antennas, dipole antennas, dual dipole antennas, a combination of dipole and loop antennas. Further, in another embodiment, the antennas are positioned either within the plane of the thin film battery or superjacent to the thin film battery.

Patent
   RE42773
Priority
Jun 17 1992
Filed
Dec 04 2003
Issued
Oct 04 2011
Expiry
Jun 17 2012
Assg.orig
Entity
Large
6
131
EXPIRED
1. A data storing device comprising:
a housing including first and second opposed portions;
an integrated circuit coupled to the first portion of the housing, the integrated circuit including a random access memory;
a battery supported by the first portion of the housing and having first and second terminals, the first terminal being coupled to the integrated circuit; and
connection circuitry coupling the second terminal of the battery to the integrated circuit to complete a circuit, the connection circuitry including a conductor supported by the second portion of the housing and movable with the second portion of the housing.
7. A data storing device comprising:
a housing defined by first and second housing portions, the second housing portion being movable relative to the first housing portion between mated and open positions;
an integrated circuit supported by the first housing portion;
a battery in the housing; and
a conductor supported by and movable with the second housing portion, the conductor coupling the battery to the integrated circuit when the second housing portion is in the mated position; and
wherein the first and second housing portions enclose and hermetically seal the integrated circuit and the battery when the first and second housing portions are in the mated position.
0. 34. A passive radio frequency identification device comprising:
a first flexible plastic film having a first surface upon which a first dipole antenna is directly disposed, wherein the first surface comprises a peripheral region at least partially surrounding the first antenna;
a second flexible material haying a second surface laminated directly to the peripheral region of the first surface; and
a single integrated circuit coupled to the first antenna and including memory to store a value, a receiver coupled to the first antenna to receive and decode data from an RF signal in the range of 800 MHz to 80 GHz, control logic to make a comparison between the data and the value, and a transmitter coupled to the first antenna to provide a response based on the comparison.
0. 26. A passive radio frequency identification device comprising:
a first flexible film having a peripheral portion;
a second flexible film laminated directly to the peripheral portion of the first flexible film;
a first dipole antenna disposed directly on the first film; and
a single integrated circuit having substantially all circuitry formed on a surface of the integrated circuit facing the first film, the integrated circuit being coupled to the first dipole antenna and including memory to store an identification number, a receiver coupled to the first dipole antenna to receive and decode data from a spread spectrum signal in the range of approximately 200 MHz to 100 Hz, control logic to perform a comparison between the received data and at least a portion of the identification number, and a transmitter coupled to the first dipole antenna to transmit a response based on the comparison.
0. 25. A portable data storing device comprising:
a housing defined by first and second housing portions each including planar surfaces˜an integrated circuit including a random access memory configured to store the data, the integrated circuit being supported from the first housing portion; a thin film battery in the housing:
a conductor supported by and movable with the second housing portion, the conductor coupling the battery to the integrated circuit so that the integrated circuit is powered by the battery when the first and second portions are mated and thereby resulting in the memory being powered by the battery and so that the integrated circuit is not powered by the battery when the first and second portions are not mated: and
wherein the conductor completes a circuit and supplies electrical power to the integrated circuit when the first and second housing portions of the housing are sealed together and does not complete the circuit or supply electrical power to the integrated circuit when the first and second portions are not sealed together.
19. A portable data storing device comprising:
a housing defined by first and second housing portions each including planar surfaces;
an integrated circuit including a static random access memory configured to store the data, the integrated circuit being supported from the first housing portion;
a thin film battery in the housing; and
a conductor supported by and movable with the second housing portion, the conductor coupling the battery to the integrated circuit so that the integrated circuit is powered by the battery when the first and second portions are mated and thereby resulting in the static random access memory being powered by the battery and so that the integrated circuit is not powered by the battery when the first and second portions are not mated; and
wherein the conductor completes a circuit and supplies electrical power to the integrated circuit when the first and second portions of the housing are sealed together and does not complete the circuit or supply the electrical power to the integrated circuit when the first and second portions are not sealed together.
23. A portable data storage device comprising:
a first housing member;
an antenna formed on the first housing member;
a second housing member configured to be mated to the first housing member;
a first battery disposed between the first and second housing members, a first electrode of the first battery contacting a first power conductor on the first housing member;
a second battery disposed between the first and second housing members, a first electrode of the second battery contacting a second power conductor on the first housing member;
an integrated circuit disposed on a side of the first housing member configured to be mated to the second housing member; and
a conductor formed on the second housing member, the conductor coupling the first and second batteries in series and supplying electrical power to the integrated circuit when the second housing member is mated to the first housing member and not coupling the first and second batteries in series or supplying electrical power to the integrated circuit when the second housing member is not mated to the first housing member.
2. A data storing device in accordance with claim 1 wherein the battery is a thin film battery.
3. A data storing device according to claim 1, wherein the conductor completes a circuit and supplies electrical power to the memory when the first and second portions of the housing are sealed together and does not complete the circuit or supply electrical power to the memory when the first and second portions are not sealed together.
4. A data storing device according to claim 1, wherein the conductor completes a circuit and supplies electrical power to the memory when the first and second portions of the housing are coupled together and does not complete the circuit or supply electrical power to the memory when the first and second portions are not coupled together.
5. A data storing device according to claim 1, wherein the first and second portions of the housing hermetically seal the integrated circuit and the battery.
6. A data storing device according to claim 1, wherein the first and second portions of the housing hermetically seal the integrated circuit and the battery when the first and second portions of the housing are mated together, and wherein the conductor completes a circuit and supplies electrical power to the memory when the first and second portions of the housing are mated together and does not complete the circuit or supply electrical power to the memory when the first and second portions are not mated together.
8. A data storing device in accordance with claim 7 wherein the integrated circuit comprises a static random access memory.
9. A data storing device in accordance with claim 7 wherein the integrated circuit includes a memory and a microprocessor, and wherein the conductor couples the battery to the integrated circuit.
10. A data storing device in accordance with claim 7 wherein the integrated circuit includes a memory and a microprocessor, wherein the memory is a static random access memory, and wherein the conductor couples the battery to the integrated circuit so that the integrated circuit is powered by the battery, thereby resulting in the static random access memory being powered by the battery.
11. A data storing device in accordance with claim 7 wherein the battery comprises a thin film battery.
12. A data storing device in accordance with claim 7 wherein the housing has a thickness of about 0.03 inches.
13. A data storing device in accordance with claim 7 wherein the integrated circuit includes a memory, an RF transmitter, and a microprocessor, wherein the memory is a static random access memory, and wherein the conductor couples the battery to the integrated circuit so that the integrated circuit is powered by the battery, thereby resulting in the static random access memory being powered by the battery.
14. A data storing device in accordance with claim 7 wherein the integrated circuit includes a memory, a microwave transmitter, a microwave receiver, and a microprocessor, wherein the memory is a static random access memory, and wherein the conductor couples the battery to the integrated circuit so that the integrated circuit is powered by the battery, thereby resulting in the static random access memory being powered by the battery.
15. A data storing device in accordance with claim 7 and further comprising conductive epoxy coupling the battery to the integrated circuit.
0. 16. A data storing device according to claim 7, wherein the first and second housing portions enclose and hermetically seal the integrated circuit and the battery when the first and second housing portions are in the mated position.
17. A data storing device according to claim 7, wherein the conductor does not supply electrical power to the integrated circuit when the first and second housing portions are not in the mated position.
18. A data storing device according to claim 7, wherein the conductor completes a circuit and supplies electrical power to the integrated circuit when the first and second portions of the housing are sealed together and does not complete the circuit or supply electrical power to the integrated circuit when the first and second portions are not sealed together.
20. The portable data storing device of claim 19, wherein the integrated circuit further comprises a microprocessor, a spread spectrum RF transmitter controlled by the microprocessor, an RF receiver controlled by the microprocessor.
21. A portable data storing device in accordance with claim 19 wherein the housing has a thickness of about 0.03 inches.
22. A portable data storing device in accordance with claim 19 and further comprising conductive epoxy electrically coupling the battery to the integrated circuit.
24. The portable data storage device of claim 23, wherein the integrated circuit further comprises a microprocessor, a RF transmitter controlled by the microprocessor, an RF receiver controlled by the microprocessor and a static random access memory coupled to the microprocessor and configured to store the data, the RF transmitter and RF receiver being operatively coupled to the antenna.
0. 27. The radio frequency identification device of claim 26, further comprising an adhesive backing to affix the circuit to a surface.
0. 28. The radio frequency identification device of claim 26, further comprising a second dipole antenna coupled to the integrated circuit and disposed between the first and second films, wherein the first and second dipole antennas are approximately perpendicular to each other in a generally X-shaped configuration.
0. 29. The radio frequency identification device of claim 26, wherein the first dipole antenna comprises a printed conductive ink or epoxy.
0. 30. The radio frequency identification device of claim 26, wherein only two terminals connect off-chip components to the integrated circuit.
0. 31. The radio frequency identification device of claim 26, further comprising a printed label adhered to the first flexible film.
0. 32. The radio frequency identification device of claim 26, wherein the package is bar coded.
0. 33. The radio frequency identification device of claim 26, wherein the second flexible film has a peripheral portion which is laminated directly to the peripheral portion of the first flexible film to form an approximately hermetically sealed flexible package, and wherein the first dipole antenna is disposed between the first and second films, and wherein the single integrated circuit is disposed between the first and second films, and wherein the integrated circuit is coupled to the first dipole antenna using a conductive epoxy.
0. 35. The device of claim 34, further comprising a second dipole antenna coupled to the integrated circuit and disposed between the first film and the second material, wherein the first and second dipole antennas are approximately perpendicular to each other where they cross.
0. 36. The device of claim 34, wherein only two terminals connect off-chip components to the integrated circuit.
0. 37. The device of claim 34, further comprising an adhesive backing to affix the device to a surface.
0. 38. The device of claim 35, further comprising a printed label.
0. 39. The device of claim 38, further comprising a bar code.
0. 40. The device of claim 34, wherein the control logic is configured to store information received by the receiver into the memory.
4-4 line 4A-4D of FIG. 3 showing four processing steps used in constructing the enclosed transceiver shown in FIG. 3. FIG. 4A shows in cross sectional view IC 32 bonded to base support member 30 by means of a spot or button of conductive epoxy material 56. Conductive strip 48 is shown in cross section on the upper surface of base support member 30.

In FIG. 4B, battery 40 is aligned in place as indicated earlier in FIG. 2 and has the right hand end thereof bonded and connected to the upper surface of conductive strip 48 by means of a spot of conductive epoxy applied to the upper surface of conductive strip 48, but not numbered in this figure.

In FIG. 4C, a stiffener material 58 is applied as shown over the upper and side surfaces of IC 32. The stiffener material will preferably be an insulating material such as “glob-top” epoxy to provide a desired degree of stiffness to the package as completed. Next, a spot of conductive epoxy is applied to each end of conductive strip 50, and then cover layer material 42 with the conductive epoxy thereon is folded over onto batteries 38 and 40 and base member 30 to cure and heat seal and, thus, complete and seal the package in the configuration shown in FIG. 4D.

FIG. 5A is a perspective view of an alternate embodiment of the invention wherein the IC is mounted on a parallel plate capacitor which in turn is mounted on a battery. FIG. 5B is an enlarged portion of FIG. 5A. The enclosed transceiver shown includes the combination of battery 60, capacitor 62, and IC 64. When inrush current requirements for IC 64 exceed the capability of battery 60 to supply surge current, for example, due to inductive coupling or battery structure, inrush current is supplied by capacitor 62. The structure of battery 60 is in direct contact with the upper surface 66 of a base support member 68. The structure of parallel plate capacitor 62 is positioned intermediate to the upper surface of the structure of battery 60 and the bottom surface of IC 64. In order to facilitate making electrical contacts to capacitor 62 and battery 60, respectively, an exposed capacitor bottom plate area 65 is provided on the left hand side of this structure and an exposed battery bottom plate area 67 is provided on the right hand side of the battery-capacitor-chip structure. A plurality of antenna lines 70, 72, 74, and 76 form two dipole antennas connected to opposite corners of IC 64 in a generally X-shaped configuration and extend as shown from IC 64 to the four corners of the package. Upper polymer cover 77 is sealed in place as shown to hermetically seal all of the previously identified elements of the package between base support member 68 and polymer cover 77.

FIG. 6A through FIG. 6E are cross sectional views taken along lines 6-6 of FIG. 5 showing five processing steps used in constructing the embodiment shown in FIG. 5. Base starting material includes a first or base polymer layer 78, such as polyester or polyethylene, which is laminated with a relatively impermeable material such as metal film, PVDC, or silicon nitride. Base layer 78 is coated on the bottom surface thereof with a suitable adhesive film 80 which will be used for the device adhesion during device usage. If the adhesive is sufficiently impermeable, the impermeable coating may be omitted. The battery connection and attachment are made on the upper surface of base layer 78 using a spot of conductive epoxy. Conductive epoxy is also used at interface 94 between battery 60 and capacitor 62 and interface 98 between capacitor 62 and IC 64.

Referring now to FIG. 6B, a thin film battery consisting of parallel plates 84 and 86 is placed on base layer 78. Next, a capacitor comprising parallel plates 90 and 92 is attached onto battery layer 84 using a conductive epoxy. Bottom plate 92 of capacitor 62 is somewhat larger in lateral extent than top capacitor plate 90 in order to facilitate the necessary electrical connection of battery 60 and capacitor 62 to integrated circuit 96. IC 96 corresponds to IC 64 in FIGS. 5A and 5B. IC 96 is then attached to top capacitor plate 90 with a conductive epoxy at interface 98, thereby providing an electrical connection. The bottom surface of IC 96 is metallized to facilitate this connection. In an alternate and equivalent fabrication process, an epoxy cure heat step or metallization anneal step is used to enhance the sealing between the various above stacked elements.

Referring now to FIG. 6C, prefabricated insulating layer 100 is now laid over the battery/capacitor/IC stack in the geometry shown. Layer 100 includes openings 102, 104, 110, and 112 therein for receiving a conductive polymer material as will be described below in the following stage of the process. Prefabricated holes 102, 104, 110, and 112 in layer 100 are aligned, respectively, to the battery contact, to the capacitor contact, and to the contacts on the top of IC 96. Layer 100 is then sealed to base polymer layer 78 using, for example, a conventional heating or adhesive step.

Referring now to FIG. 6D, a conductive polymer material 108 is deposited in openings 102 and 104 in the lower regions of layer 100 and extended up into the upper openings 110 and 112 of layer 100 to make electrical contact as indicated on the upper surface of IC 96. The shaped conductive epoxy material 108 may also be preformed utilizing a stamping tool or silk screening techniques and is applied as shown over the upper surface of layer 100. Conductive epoxy material 108 forms the innermost region of the antenna structure extending from IC 96 out in the dual dipole geometry as previously described with reference to FIGS. 5A and 5B. However, the complete antenna geometry shown in FIG. 5A is outside the lateral bounds of the fragmented cross sectional views shown in FIGS. 6A through 6E. At this point in the process, an epoxy cure heat step is optional.

Referring now to FIG. 6E, polymer insulating layer 114 is formed on the upper surface of layer 100 in the geometry shown and further extends over the exposed upper surfaces of the conductive epoxy polymer antenna material 108. Layer 114 is then sealed to layer 100 using either heat or adhesive sealing. Layer 114 provides a final hermetic seal for the completed device shown in cross section in FIG. 6E.

FIG. 7 is a cross-sectional view showing an arrangement of battery and capacitor alternate to the embodiment shown in FIG. 5. As shown in FIG. 7, the battery and capacitor are mounted side-by-side under the IC. The electrical connection for battery 118 and capacitor 120 to integrated circuit 96 is provided by positioning the battery 118 and capacitor 120 in the co-planar configuration shown on the surface of base polymer layer 78. The bottom plate of battery 118 is connected through conductive epoxy layer 128 to the top surface of IC 96. The bottom plate of parallel plate capacitor 120 is connected through conductive epoxy layer 128 to the top surface of the IC 96. A small space 126 is provided as shown to electrically isolate battery 118 and capacitor 120. In addition, in this embodiment of the invention, conductive material 128 is extended as shown between the left side opening 130 in the layer 100 and a lower opening 132 in layer 100. In a manner similar to that described above with reference to FIGS. 6A through 6E, layer 114 is then extended over the top surface of layer 100 in the geometry shown. Conductive polymer material 128 extends to connect the crossed antenna structure of FIG. 5 to IC 96 shown in FIG. 7.

FIG. 8 is a perspective view of another alternate embodiment of the present invention having battery surfaces defining and performing the function of a bow-tie antenna. IC 138 is centrally positioned as shown on the upper surface of base support member 140 and is electrically connected to two triangularly shaped batteries 142 and 144, also disposed on the upper surface of base support member 140. Batteries 142 and 144 are connected in series with IC 138 when protective cover member 146 is sealed over the top surfaces of the two batteries 142 and 144 and the IC 138 using processing steps previously described.

In the embodiment of the invention shown in FIG. 8, the entire outer surfaces of the two batteries 142 and 144 serve as a “bow tie” antenna structure for the enclosed transceiver. At communication wavelengths, the top and bottom surfaces of batteries 142 and 144 are coupled together. Batteries 142 and 144 are connected in series with the IC 138 to provide DC operating power therefore in a manner previously described. Moreover, the dual use of the batteries as power supplies and antenna structures minimizes the number of terminals required to connect IC 138 into an enclosed transceiver.

FIG. 9 shows an alternate, passive device embodiment of the present invention in partially cut-away perspective view wherein the battery has been altogether eliminated and further wherein a capacitor is periodically charged from an external source in a manner described below to provide operating power to the IC. This embodiment is known as the passive or battery-less device embodiment, since it contains no battery therein. Instead, operating power is provided by a capacitor structure identified as component 148 located beneath IC 150. A charge on capacitor 148 is maintained by conventional RF charging circuits (not shown) on IC 150 which are energized from a remote source.

The enclosed transceiver shown in FIG. 9 includes a first loop antenna 152 for receiving RF charging signals for capacitor 148 and a dipole antenna formed of conductive strips 154 and 156 for receiving and transmitting data to and from IC 150. As in previous embodiments, capacitor 148 and IC 150 are positioned and hermetically sealed between a base cover member 157 and a top cover member 158.

FIG. 10 is a top view of a web of enclosed transceivers of the present invention. Laminated sheet 200 includes 36 enclosed transceivers 210 simultaneously manufactured in a plurality of cavities as already described. Sheet 200 in a preferred embodiment includes 252 enclosed transceivers, each approximately 1.5 inches square. Alternatively, sheet 200 includes one folded film as illustrated in FIGS. 2, 3, and 4; three coextensive films 114, 100, and 78 as illustrated in FIGS. 6 and 7; or two coextensive films as is apparent from FIGS. 8 and 9, and FIGS. 11 and 12 to be discussed below. Sheet 200, in one embodiment is sectioned to obtain individual enclosed transceivers by interstitial cutting, perforation and tearing, or sheering; sectioning being simultaneous with or following the step of sealing each enclosed cavity by lamination, embossing, hot stamping or the like. Alternatively enclosed transceivers are manufactured in a continuous strip, for example, one enclosure.

After manufacturing has been completed, a large number of finished devices, or webs are stored on a take-up reel (not shown) supporting a corresponding large plurality of the devices. Advantageously, storage on a take-up reel not only makes the present process conducive to high speed automated manufacturing, but in addition makes the process compatible to high speed manual or automated product dispensing and use. Large numbers of enclosed transceivers may be supplied easily to a user in a conventional tape and reel format. The user can readily detach one device at a time for immediate attaching to an article. Alternatively, enclosed transceivers are manufactured and shipped in sheets and later sectioned by the customer.

In yet another embodiment, devices are cut from the tape or sheet from which they were manufactured and then removably mounted on a backing. The backing in one embodiment is in tape format and in another equivalent embodiment is in sheet format. When mounted to a backing, enclosed transceivers are more effectively stored in a cache for dispensing individually. The cache, not shown, includes means for dispensing (i.e. separately providing a transceiver on demand) and shielding means for preventing signal reception by enclosed transceivers within the cache. If shielding were not included, a supply of transceivers located within communicating range of an interrogator would soon expend battery capacity by processing signals including, for example, wake-up signals. Means for dispensing includes, for example, mechanical devices for feeding a tape or sheet through an opening and mechanical devices for separating shielding materials from a tape or sheet. The former dispensing means, in one embodiment of the cache, cooperates with shielding across the opening including conductive rollers, separating brushes, separating fingers, and the like. The latter dispensing means, in another embodiment of the cache, cooperates with conductive backing material, or conductive foam as a backing or cover layer arranged to shield the exposed edges of a roll containing transceivers.

FIG. 11 is an exploded perspective view of the top and bottom films used to construct one of the enclosed transceivers shown in FIG. 10. The embodiment shown corresponds to enclosed transceiver 18 shown in FIG. 1B. Top film 214 includes area 222 for lamination onto the top surface (pole) of battery 20; strip 218 for loop antenna 19; and, contact area 226. Each of these three features, in a preferred embodiment, is formed of conductive ink. In an alternate and equivalent embodiment, these three features are formed of conductive epoxy. Bottom film 230 includes area 238 for lamination onto the bottom surface (pole) of battery 20; strip 234 for loop antenna 19; contact area 254; and contact points 242, 246, and 250 for connecting integrated circuit 21 to the battery and antenna. Each of these six features, in a preferred embodiment, is formed of conductive ink, though conductive epoxy is equivalent.

Contact 246 is intentionally misaligned with respect to area 222 to prevent shorting battery 20. However, strips 218 and 234 are aligned to coincide, as are contact areas 226 and 254, respectively. These strips and contact areas when joined by lamination cooperate as means for coupling power from battery 20 to IC 21 and, simultaneously, for electrically matching IC 21 to the communications medium by forming loop antenna 19. Thus, contacts 242, 246, and 250 correspond respectively to lines 24, 23, and 22 shown in FIG. 1B.

Unlike the antenna pattern of the dipole antenna shown in FIGS. 1A, 2, 3, and 9, there is no null in the antenna pattern for loop antenna 19, due in part to the conductive structure of battery 20 being connected to one side of loop antenna 19. The combined loop antenna and battery structure is also preferred over the dipole in that the combination provides an antenna pattern that is less subject to variation over a broad range of frequencies.

FIG. 12 is a cross-sectional view taken along lines 12-12 of FIG. 11 showing a portion of the web shown in FIG. 10 and illustrating electrical coupling to and between the films. The completed assembly includes similarly numbered elements already discussed with reference to FIG. 11. IC 290 is prepared for assembly by forming conductive bumps 306 and 314 to terminals on its lower surface. In a preferred embodiment, bumps are formed of conductive epoxy. In an alternate embodiment, metallic bumps, such as gold, are formed by conventional integrated circuit processes. IC 290 as shown is in a “flip chip” packaging orientation having substantially all circuitry formed on the surface facing film 230. Prior to assembly, a puddle of conductive epoxy is applied to contacts 250 and 242. IC 290 is then located atop contacts 250 and 242 so that bumps 306 and 314 are surrounded within puddles 302 and 310. The film is then heated to set all conductive epoxy including puddles 302 and 310, as well as strips and areas including the antenna and contact areas 226 and 254, formed of conductive epoxy. Finally, top film 214 is aligned over bottom film 230 so that contact areas 226 and 254 are pressed together.

FIG. 13A is a process flow diagram showing the steps of the present invention used to manufacture an enclosed transceiver of the type shown in FIGS. 10-12. The manufacturing process begins with a polyester film used for the bottom and for the top. Material for the bottom in a first embodiment is identical to the top and includes film with dimensional stability, for example, polyester film that has been heat stabilized or pre-shrunk. These materials, though inexpensive, are porous to substances that degrade the life and functions of the battery and integrated circuit. This disadvantage is resolved in a preferred embodiment by coating the outer surfaces of the material used for the top and bottom film with a barrier material

In the first step 410, barrier material, such as a silicon nitride deposit, is formed on the outer surface by sputtering, or by chemical vapor deposition (CVD), preferably plasma enhanced CVD. The deposit provides a hermetic barrier to prevent water vapor and other contaminants from affecting (e.g. oxidizing) battery and transceiver components. In a first embodiment the resulting thickness of the deposit is from 400 to 10,000 angstroms. In another embodiment, where thin deposits are desirable, coating on both sides of the film prevents pin holes in each deposit from aligning in a way that defeats hermeticity. The thickness of the deposit and the manner of formation are design choices based on the selection of materials for the film and the deposit, as well as the system requirements for hermeticity over time. For example an alternate and equivalent embodiment uses other barrier materials including silicon oxide and silicon nitride deposited at a thickness of 100 to 400 angstroms. The barrier material is formed in such an embodiment using one of the processes including evaporation, deposition, chemical vapor deposition, and-plasma enhanced chemical vapor deposition.

In another embodiment of the present invention, a nitride film is sputtered on the outside portion of a top and bottom base support layer. Each base support layer preferably comprises a polymer material such as a polyester film that is laminated with a barrier layer material such as polyethylene and/or polyvinylidenechloride (PVDC). Formation of the barrier material deposit can be deferred until the enclosed transceiver is encapsulated, provided that environmental concerns such as contamination, over heating, and changes in pressure are addressed.

In step 420, a laminate adhesive is applied to the inner surfaces of the top and bottom films. The laminate adhesive is activated in a later manufacturing step to cause the top and bottom layers to adhere. Preferably, the adhesive is tack free at room temperature and selected to match laminating equipment heat and pressure capabilities. In a preferred embodiment, butyl acrylate is extruded onto the films to cover the entire inside surface of each film. In another embodiment, the adhesive is screen printed for economy.

In step 430, conductors are screen printed onto the films. In a preferred embodiment, the conductors are formed on top of laminate adhesive. Areas such as grid conductors 222 and 238 shown in FIG. 11 for contacting the battery are, consequently, interspersed with areas of exposed laminate adhesive to provide a more durable enclosure. In this embodiment, a polymer thick film ink is employed. High conductivity is provided by such inks that include copper or silver constituents. The ink preferably provides a stable surface for electrical butt contact formations. A low oxidation rate at storage temperature is desirable, though oxidation could be minimal in a controlled manufacturing environment.

Printed circuits on the top layer are arranged to perform multiple functions when the top and bottom layers are joined.

First, a conductor on the top layer completes series or parallel circuits for devices having contacts in two planes. Conductor 50 in FIG. 2 is one example. Second, a conductor on the top layer completes an antenna structure for the transceiver integrated circuit, as illustrated in FIG. 8.

Third, a single conductor in the top layer accomplishes both the first and second functions. See, for example, the conductor in FIG. 11 identified as areas 226, 222, and 216 218.

In an alternate embodiment, conductors are formed in a subtractive process, for example, chemical etching. By using a positive screen print process, energy and material are conserved. Printed circuit technology is applied in another embodiment wherein the step of attaching the integrated circuit and the battery to a base material includes soldering and brazing. The base material in such an embodiment is one of a wide variety of printed circuit materials including polyimide and glass-epoxy materials.

In step 440, the top and bottom base support layers are cut from the roll or web to form sheets as illustrated in FIG. 10 to facilitate use of automated component placement machinery. Each sheet is attached, in step 450, to a carrier panel for compatibility with conveyor based manufacturing facilities. At step 460, a carrier with sheet attached is loaded into a magazine or placed onto a conveyor for automated manufacturing. Steps 440-460, in an alternate embodiment of the manufacturing process of the present invention, are omitted as unnecessary when continuous manufacturing from roll stock is desirable.

In step 470, those portions of conductors that are to make electrical contact with the integrated circuit are prepared with a coating or puddle of conductive epoxy. In a preferred embodiment, silver filled epoxy is employed that remains wet at room temperature until thermally cured. Application of the epoxy is by screen printing in an alternate embodiment, epoxy is applied by dispensing.

In step 480, integrated circuit die are placed so that epoxy bumps previously formed on the integrated circuit enter the puddles formed in step 470. The arrangement of the integrated circuit face down on the bottom film is commonly referred to as “flip-chip” orientation. In an alternate and equivalent embodiment, integrated circuits are also placed in contact puddles formed on the top, i.e. cover layer. All die on the sheet are placed and aligned in this step 480 prior to proceeding with subsequent cure.

In step 490, a batch of panels is heated to set the epoxy applied in step 470. In an alternate embodiment, a conveyor based oven supports continuous curing. Curing temperature and duration are design choices that match the epoxy curing requirements. In a preferred embodiment, curing is performed at 150 degrees Celsius for 3 to 5 minutes. The cure is selected so as not to interfere with the characteristics of the laminate adhesive applied in step 420.

In step 500, an encapsulation material, commonly called “glob top epoxy” is applied over the integrated circuit. Suitable nonconductive materials include those providing a stiffening property to protect the integrated circuit and the electrical connections thereto from mechanical damage.

In step 510, the encapsulating material is cured. In a preferred embodiment, the encapsulating material is cured with ultraviolet radiation. An alternate and equivalent embodiment, employs a thermal curing process. The ultraviolet cure is preferred for rapid manufacturing. However, use of a thermal cure in step 510 may permit use of a partial thermal cure in step 490, later perfected by additional thermal cure duration provided in step 510.

In step 520, the battery or batteries are aligned and placed on the base support film. In an embodiment including stacked battery calls, connection is made using conductive tape having adhesive on both sides of the tape. Such tape commonly includes conductive particles in the adhesive.

In step 530, the top or cover film is aligned over the bottom or base film. In an embodiment including a folded film, the top film is folded over the base film. In an alternate embodiment employing-continuous manufacturing from roll stock, the base film and top film are aligned for continuous lamination.

In step 540, the top cover film is pressed onto the bottom base film and heat is applied to activate the adhesive applied in step 420. For butyl acrylate adhesive a temperature of from 95 to 110 degrees Celsius is preferred.

In applications where the transceiver is to be used in harsh environments, the seal provided by automated lamination equipment may be incomplete or have weaknesses caused, for example, by insufficient heat or pressure at a point in an area to be sealed. Enclosing components of varying thicknesses can result in air pockets surrounding such components that, if too near the periphery, can also lead to weaknesses and voids. In such applications, the preferred process includes step 550 wherein the periphery of each transceiver on a sheet is subject to a second application of heat and pressure for activating laminate adhesive applied in step 420. The additional heat and pressure in such a localized periphery can deform the films to form minute bosses. Thus, the step is called embossing. The aspect of the effective application of heat and pressure is more important than the extent of consequential deformation.

In an alternate embodiment, each enclosure is evacuated. Lamination for such an embodiment is conducted in an evacuated environment. Embossing in yet another embodiment is also conducted in an evacuated environment

After step 540, the circuitry of the battery powered transceiver is active by virtue of the completed circuits formed when the top cover layer is aligned and butt contacts are formed with components and the base layer. Functional tests of multiple or individual transceivers are now feasible.

In step 560, transceivers are functionally tested. To prevent interference between tests of individual transceivers, a pair of grounded plates with surface features are placed on both sides of a sheet of enclosed transceivers so that each transceiver operates inside a shielded cavity. The wavelength used for testing is selected such that leakage through the thickness of the embossed seal is negligible. Plates similar to the embossing die used in step 550 are used in one embodiment. Each cavity includes an antenna for transmitting stimulus signals and for receiving response signals for measuring the quality of each transceiver. Measurements include, for example, receiver sensitivity, transmitted spectrum, message handling capability, self-testing, and response timing.

In step 570, the sheet of tested transceivers is sheered in two dimensions to singulate or separate the transceivers from one another. In an alternate and equivalent embodiment, a backing material is applied to one side of the sheet prior to singulation. Singulation for this embodiment is accomplished by kiss cutting through the top and base films leaving the transceivers attached to the backing material. Transceivers, whether attached to the backing or loose are then sorted based on the results of functional testing performed in step 560 and additional testing as needed.

FIG. 13B is a process flow diagram showing the steps of the present invention used to manufacture another enclosed transceiver of the types shown in FIGS. 2-9. This embodiment of the method of the present invention includes nine (9) processing steps or fabrication stages which are used in the overall manufacturing process and in the construction of an enclosed transceiver.

In one embodiment the nine steps are performed sequentially as follows. In step 610, a circuit pattern is initially formed on a base layer material. This base layer material is preferably a polymer such as a polyester film that is laminated with a barrier layer material such as polyethylene and/or polyvinylidenechloride (PVDC). In step 612, the circuit pattern is cured and a conductive epoxy material is applied. In step 614 an integrated circuit chip is aligned onto the base layer. In step 616, two (2) batteries are aligned onto the base layer. In an alternate enclosed transceiver, the batteries are stacked vertically in either a series or parallel electrical connection. In step 618, the epoxy applied in step 612 is cured. In step 620, a stiffener material is applied. In step 622 epoxy is applied to the top surface of the battery and then the top half of the base layer is folded over the bottom half so that the top half forms the top cover. In step 624, the epoxy material applied in step 622 is cured. Finally, in step 626, the package is sealed to complete manufacturing of the package.

Various modifications may be made in and to the above described embodiments without departing from the spirit and scope of this invention. For example, various modifications and changes may be made in the antenna configurations, battery arrangements (such as battery stacking), device materials, device fabrication steps, and the functional block diagrams without departing from the scope of this invention. The various off-chip components such as the antenna, battery, and capacitor are manufactured on-chip in alternate and equivalent embodiments. As a second example, the antenna in another alternate and equivalent embodiment is formed on the outer surface or within the outer film. In such an arrangement, coupling to the antenna is through the capacitance of the outer film as a dielectric. When formed on the exterior, the material comprising the antenna also provides hermeticity to the film for protecting the enclosed transceiver. Accordingly, these and equivalent structural modifications are within the scope of the following appended claims.

As previously suggested, an enclosed transceiver used as an RFID device has utility directed to a wide variety of applications including, but not limited to, airline baggage (luggage, freight, and mail); parcel post (Federal Express and United Parcel Service); U.S. Mail; manufacturing; inventory; personnel security.

While the particular invention has been described with reference to illustrative embodiments, this description is not meant to be construed in a limiting sense. It is understood that although the present invention has been described in a preferred embodiment, various modifications of the illustrative embodiments, as well as additional embodiments of the invention, will be apparent to persons skilled in the art, upon reference to this description without departing from the spirit of the invention, as recited in the claims appended hereto. It is therefore contemplated that the appended claims will cover any such modifications or embodiments as fall within the true scope of the invention.

The words and phrases used in the claims are intended to be broadly construed. A “sticker” refers generally to a label, tag, marker, stamp, identifier, packing slip, invoice, package seal, tape, band, clasp, medallion, emblem, shield, and escutcheon regardless of printed or handwritten material thereon. Mechanical coupling of a “sticker” so defined to an article, person, plant, or animal is not restricted to adhesive but is intended to broadly include all forms of fastening, tieing, and securing.

Tuttle, John R., Lake, Rickie C., Tuttle, Mark E.

Patent Priority Assignee Title
10090589, Oct 27 2015 Microsoft Technology Licensing, LLC Batteries as antenna for device
10311722, Apr 14 2014 LICENSYS AUSTRALASIA PTY LTD Vehicle identification and/or monitoring system
10581176, May 10 2016 The Government of the United States of America, as represented by the Secretary of the Navy Thin-film sensor antenna
11317525, Jul 16 2013 Semiconductor Energy Laboratory Co., Ltd. Electronic device
11392784, Mar 24 2010 Murata Manufacturing Co., Ltd. RFID system
11672086, Jul 16 2013 Semiconductor Energy Laboratory Co., Ltd. Electronic device
Patent Priority Assignee Title
3660916,
3702464,
3706094,
3750167,
3780368,
3832530,
3849633,
3858031,
3947930, Oct 30 1974 I D SYSTEMS, INC ; SENSORMATIC ELECTRONICS CORPORATION, A DE CORP Anti-theft fastening device and tool for releasing same
4049969, Mar 19 1970 The United States of America as represented by the Secretary of the Air Passive optical transponder
4065343, Nov 14 1975 BABCOCK INDUSTRIES INC , A CORP OF NEW YORK Label system for package and baggage handling
4067011, Oct 22 1976 Motorola, Inc. Digital transponder universal pulse assembly
4068232, Feb 12 1976 CITICORP NORTH AMERICA, INC Passive encoding microwave transponder
4075632, Aug 27 1974 The United States of America as represented by the United States Interrogation, and detection system
4129855, Jul 15 1977 Animal identification system
4177466, Nov 16 1977 BAYBANK NORFOLK Auto theft detection system
4188629, Jul 19 1976 Motorola, Inc. Passive navigation system with frequency coding
4226361, Oct 27 1978 Positive identification system for authenticating the identity of a card user
4242663, Feb 01 1979 Lockheed Electronics Corporation Electronic identification system
4262631, Oct 01 1979 Thin film deposition apparatus using an RF glow discharge
4331957, Apr 20 1979 Transponder for use in locating avalanche victims
4399441, Jan 25 1980 UNISEARCH LIMITED, 221-227 ANZAC PARADE, KENSINGTON, NEW SOUTH WALES, AUSTRALIA, A COMPANY LIMITED BY GUARANTEE OF NEW SOUTH WALES Apparatus for remote temperature reading
4418411, Mar 11 1980 Brown, Boveri & Cif AG Method and apparatus for generating an equipment reply signal for the automatic identification of objects and/or living beings
4442430, May 11 1981 Identification technique for air traffic
4453074, Oct 19 1981 American Express Company Protection system for intelligent cards
4471344, Oct 09 1980 KNOGO NORTH AMERICA INC Dual frequency anti-theft system
4484355, Apr 11 1983 Ritron, Inc.; RITRON, INC Handheld transceiver with frequency synthesizer and sub-audible tone squelch system
4587038, Jun 26 1980 Canon Kabushiki Kaisha Electro-optic display device and a method of producing the same
4603326, Sep 14 1984 GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT Anti-theft detector responsive to a chemical agent
4621190, Jun 09 1983 Kabushiki Kaisha Toshiba Card with an IC module
4634849, Apr 02 1985 Uniquely numbered baggage split tag and system for handling baggage
4649233, Apr 11 1985 International Business Machines Corporation Method for establishing user authenication with composite session keys among cryptographically communicating nodes
4656478, Jul 30 1984 GRANHED, MAGNUS Passive transponder for locating avalanche victims
4680724, Dec 03 1982 Casio Computer Co., Ltd. Sheet-like miniaturized electronic device
4686358, Mar 15 1984 Kaba Schliesssysteme AG Programmable electronic-mechanical reversing flat key interactively communicatable with data processing means
4724427, Jul 18 1986 B I INCORPORATED Transponder device
4727560, May 30 1985 U S PHILIPS CORPORATION, 100 EAST 42ND ST , NEW YORK, NY 10017 A CORP OF DE Charge-coupled device with reduced signal distortion
4737789, Dec 02 1986 X Cyte, Inc. Inductive antenna coupling for a surface acoustic wave transponder
4745401, Sep 09 1985 Minnesota Mining and Manufacturing Company RF reactivatable marker for electronic article surveillance system
4746618, Aug 31 1987 UNITED SOLAR SYSTEMS CORP Method of continuously forming an array of photovoltaic cells electrically connected in series
4746830, Mar 14 1986 HOLLAND LABORATORIES, INC A CORPORATION OF OH Electronic surveillance and identification
4756717, Aug 24 1981 POLAROID CORPORATION FMR OEP IMAGING OPERATING CORP Laminar batteries and methods of making the same
4777563, May 02 1986 Toshiba Battery Co., Ltd. Thin type electronic instrument
4780791, Apr 08 1986 FUJISOKU CORPORATION A CORPORATION OF JAPAN Card-shaped memory having an IC module
4783646, Mar 07 1986 Kabushiki Kaisha Toshiba Stolen article detection tag sheet, and method for manufacturing the same
4814943, Jun 04 1986 Oki Electric Industry Co., Ltd. Printed circuit devices using thermoplastic resin cover plate
4827110, Jun 11 1987 ASYST TECHNOLOGIES, INC Method and apparatus for monitoring the location of wafer disks
4827395, Apr 21 1983 Intelli-Tech Corporation Manufacturing monitoring and control systems
4854328, Mar 23 1987 Animal monitoring telltale and information system
4855583, Aug 17 1987 CASI-RUSCO INC , A CORP OF FLORIDA Structure and method of making combination proximity/insertion identification cards
4862176, Feb 20 1977 Emi Limited Identification of friend or foe (IFF) systems
4882294, Aug 17 1988 Delphi Technologies Inc Process for forming an epitaxial layer having portions of different thicknesses
4888591, Oct 06 1988 Intermec IP CORP Signal discrimination system
4908502, Feb 08 1988 Pitney Bowes Inc. Fault tolerant smart card
4910521, Aug 03 1931 RAYTHEON COMPANY, A CORPORATION OF DELAWARE Dual band communication receiver
4911217, Mar 24 1989 The Goodyear Tire & Rubber Company; GOODYEAR TIRE & RUBBER COMPANY, THE Integrated circuit transponder in a pneumatic tire for tire identification
4918425, Jul 25 1988 CHILD FINDER SAFETY DEVICES, INC , WINTER PARK, FL, A CORP OF FL Monitoring and locating system for an object attached to a transponder monitored by a base station having an associated ID code
4918631, Sep 07 1984 Casio Computer Co., Ltd. Compact type electronic information card
4924237, Mar 28 1988 Matsushita Electric Works, Ltd. Antenna and its electronic circuit combination
4926182, May 30 1986 Sharp Kabushiki Kaisha Microwave data transmission apparatus
4942327, Jun 01 1988 Hitachi, Ltd. Solid state electronic device
4956645, May 20 1988 Etat Francais Represente par le Ministre des Postes, Telecommunications Radio system for data transmission with one passive end and station included in such a system
4960983, Sep 28 1987 Mitsubishi Denki Kabushiki Kaisha Noncontact type IC card and system for noncontact transfer of information using the same
4962415, Dec 15 1986 Hitachi Maxell, Ltd. IC card
5008776, Jun 06 1990 SGS-Thomson Microelectronics, Inc. Zero power IC module
5023573, Sep 21 1989 Westinghouse Electric Corp. Compact frequency selective limiter configuration
5065160, May 12 1988 Mitsubishi Denki Kabushiki Kaisha Radar transponder
5068894, Aug 22 1989 De La Rue Cartes et Systemes SAS Method of generating a unique number for a smart card and its use for the cooperation of the card with a host system
5095240, Nov 13 1989 X-CYTE, INC , A CORP OF CA Inductively coupled SAW device and method for making the same
5124733, Apr 28 1989 SAITAMA UNIVERSITY, DEPARTMENT OF ENGINEERING SEIKO INSTRUMENTS INC Stacked microstrip antenna
5144314, Oct 23 1987 Allen-Bradley Company, Inc. Programmable object identification transponder system
5148504, Oct 16 1991 AMERICAN TELEPHONE AND TELEGRAPH COMPANY, A CORP OF NEW YORK Optical integrated circuit designed to operate by use of photons
5153710, Jul 26 1991 SGS-THOMSON MICROELECTRONICS, INC , A CORP OF DE Integrated circuit package with laminated backup cell
5166502, Jan 05 1990 NEVADA STATE BANK Gaming chip with implanted programmable identifier means and process for fabricating same
5192947, Feb 02 1990 Credit card pager apparatus
5200362, Sep 06 1989 Freescale Semiconductor, Inc Method of attaching conductive traces to an encapsulated semiconductor die using a removable transfer film
5214410, Jul 10 1989 CSIR Location of objects
5231273, Apr 09 1991 Comtec Industries Inventory management system
5250843, Mar 27 1991 Integrated System Assemblies Corp. Multichip integrated circuit modules
5274221, Jun 22 1990 Mitsubishi Denki Kabushiki Kaisha Non-contact integrated circuit card
5283423, Mar 15 1991 NXP B V Contactless microcircuit card
5302954, Dec 04 1987 Magellan Corporation (Australia) Pty. Ltd. Identification apparatus and methods
5313052, Jun 28 1991 Nippondenso Co., Ltd. Aircraft baggage managing system utilizing a response circuit provided on a baggage tag
5313211, Aug 13 1990 Sharp Kabushiki Kaisha Portable data processing device capable of transmitting processed data on a radio by reflection of unmodulated carrier signal externally applied
5326652, Jan 25 1993 Round Rock Research, LLC Battery package and method using flexible polymer films having a deposited layer of an inorganic material
5337063, Apr 22 1991 Mitsubishi Denki Kabushiki Kaisha Antenna circuit for non-contact IC card and method of manufacturing the same
5340968, May 07 1991 NIPPONDENSO CO , LTD Information storage medium with electronic and visual areas
5350645, Jun 21 1993 Round Rock Research, LLC Polymer-lithium batteries and improved methods for manufacturing batteries
5414427, Jul 24 1990 Device for information transmission
5416423, Apr 07 1993 GPT Limited Method and apparatus for verifying the integrity of a smart card
5432027, Mar 02 1994 Round Rock Research, LLC Button-type battery having bendable construction, and angled button-type battery
5434397, Nov 03 1989 Laboratoire Europeen de Recherches Electroniques Avancees, Societe en Protection against the non-authorized inhibition of writing in certain storage areas of a smart card
5448110, Jun 17 1992 Round Rock Research, LLC Enclosed transceiver
5480462, Mar 02 1994 Round Rock Research, LLC Method of forming button-type battery lithium electrodes
5480834, Dec 13 1993 Round Rock Research, LLC Process of manufacturing an electrical bonding interconnect having a metal bond pad portion and having a conductive epoxy portion comprising an oxide reducing agent
5486431, Mar 02 1994 Round Rock Research, LLC Method of producing button-type batteries and spring-biased concave button-type battery
5491482, Dec 29 1992 Sarnoff Corporation Electronic system and method for remote identification of coded articles and the like
5494495, Oct 11 1994 Round Rock Research, LLC Method of forming button-type batteries
5497140, Aug 12 1992 Round Rock Research, LLC Electrically powered postage stamp or mailing or shipping label operative with radio frequency (RF) communication
5510074, Feb 23 1993 Schlumberger Industries Method for manufacturing smart cards
5537105, Jan 04 1991 Zebra Technologies Corporation Electronic identification system
5558679, Aug 21 1995 Round Rock Research, LLC Method for mounting a battery on a substrate
5572226, May 15 1992 Round Rock Research, LLC Spherical antenna pattern(s) from antenna(s) arranged in a two-dimensional plane for use in RFID tags and labels
5603157, Mar 02 1994 Round Rock Research, LLC Methods of producing button-type batteries and a plurality of battery terminal housing members
5605467, Jan 19 1995 Eaton Corporation Cover for battery compartment and communications port
5605487, May 13 1994 SUNEDISON SEMICONDUCTOR LIMITED UEN201334164H Semiconductor wafer polishing appartus and method
5612513, Sep 19 1995 Round Rock Research, LLC Article and method of manufacturing an enclosed electrical circuit using an encapsulant
5619066, Nov 19 1990 Maxim Integrated Products, Inc Memory for an electronic token
5621412, Apr 26 1994 Texas Instruments Incorporated Multi-stage transponder wake-up, method and structure
5624468, Jun 02 1993 Round Rock Research, LLC Method for fabricating a leadless battery employing an alkali metal anode and polymer film inks
5649296, Jun 19 1995 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Full duplex modulated backscatter system
5652070, Mar 02 1994 Round Rock Research, LLC Thin profile battery
5719586, May 15 1992 Round Rock Research, LLC Spherical antenna pattern(s) from antenna(s) arranged in a two-dimensional plane for use in RFID tags and labels
5725967, Aug 15 1995 Round Rock Research, LLC Battery container and method of manufacture
5817207, Oct 07 1996 LEIGHTON, KEITH; LEIGHTON, LOIS; JANUZZI, ROLAND A ; JANUZZI, CONSTANCE J; NIEDZWIECKI, CARL J; NIEDZWIECKI, CATHERINE M ; KING, BRIAN P Radio frequency identification card and hot lamination process for the manufacture of radio frequency identification cards
5820716, Nov 05 1993 Round Rock Research, LLC Method for surface mounting electrical components to a substrate
5937512, Jan 11 1996 Round Rock Research, LLC Method of forming a circuit board
6049461, Jul 26 1995 GIESECKE+DEVRIENT MOBILE SECURITY GMBH Circuit unit and a method for producing a circuit unit
6052062, Aug 20 1997 Round Rock Research, LLC Cards, communication devices, and methods of forming and encoding visibly perceptible information on the same
6220516, Jun 17 1992 Round Rock Research, LLC Method of manufacturing an enclosed transceiver
6229441, Nov 13 1997 Round Rock Research, LLC Communication devices, radio frequency identification devices, methods of forming a communication device, and methods of forming a radio frequency identification device
6956538, Aug 09 1999 Round Rock Research, LLC RFID material tracking method and apparatus
7262609, Jun 03 2005 Synaptics Incorporated Methods and systems for guarding a charge transfer capacitance sensor for proximity detection
7649463, Aug 12 1992 Round Rock Research, LLC Radio frequency identification device and method
20080291027,
DE4120265,
GB1567784,
JP2000339437,
JP2257648,
JP475191,
JP8267974,
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Dec 04 2003Round Rock Research, LLC(assignment on the face of the patent)
Jun 28 2007Micron Technology, IncKeystone Technology Solutions, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0198250542 pdf
Dec 22 2009Keystone Technology Solutions, LLCMicron Technology, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0238390881 pdf
Dec 23 2009Micron Technology, IncRound Rock Research, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0237860416 pdf
Date Maintenance Fee Events
Jul 12 2013REM: Maintenance Fee Reminder Mailed.
Dec 04 2013EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Oct 04 20144 years fee payment window open
Apr 04 20156 months grace period start (w surcharge)
Oct 04 2015patent expiry (for year 4)
Oct 04 20172 years to revive unintentionally abandoned end. (for year 4)
Oct 04 20188 years fee payment window open
Apr 04 20196 months grace period start (w surcharge)
Oct 04 2019patent expiry (for year 8)
Oct 04 20212 years to revive unintentionally abandoned end. (for year 8)
Oct 04 202212 years fee payment window open
Apr 04 20236 months grace period start (w surcharge)
Oct 04 2023patent expiry (for year 12)
Oct 04 20252 years to revive unintentionally abandoned end. (for year 12)