An integrated circuit biases the substrate and well using voltages other than those used for power and ground. Tap cells inside the standard cell circuits are removed. New tap cells used to bias the substrate and well reside outside the standard cell circuits. The location of the new voltage power rails is designated prior to placement of the tap cells in the integrated circuit. The tap cells are then strategically placed near the power rails such that metal connections are minimized. circuit density is thus not adversely impacted by the addition of the new power rails. Transistors are also placed inside the tap cells to address electrostatic discharge issues during fabrication.

Patent
   RE42776
Priority
Dec 15 1999
Filed
May 23 2007
Issued
Oct 04 2011
Expiry
Dec 15 2019
Assg.orig
Entity
Large
1
7
all paid
1. An apparatus comprising:
a well of a first type comprising a first plurality of regions;
a substrate of a second type comprising a second plurality of regions;
a first plurality of circuits formed on the well;
a second plurality of circuits formed on the substrate;
a first potential coupled to and powering the first plurality of circuits;
a second potential coupled to and powering the second plurality of circuits;
a third potential coupled to and biasing the first plurality of regions such that the well has the third potential; and
a fourth potential coupled to and biasing the second plurality of regions such that the substrate has the fourth potential.
2. The apparatus of claim 1, wherein the first potential is a lower voltage than the third potential.
3. The apparatus of claim 1, wherein the second potential is a lower higher voltage than the fourth potential.
4. The apparatus of claim 1, wherein the first plurality of regions are 55 microns apart.
5. The apparatus of claim 1, further comprising:
a first transistor coupled between the first potential and the third potential; and
a second transistor coupled between the second potential and the fourth potential.
6. The apparatus of claim 5, wherein the first plurality of regions and the second plurality of regions are combined as tap cells.
7. The apparatus of claim 6, wherein the tap cells comprise the first and the second transistors.
8. The apparatus of claim 1, wherein the substrate is of a p-type material and the well is of an n-type material.

This is a divisional of prior application Ser. No. 09/464,023 filed on Dec. 15, 1999 56a 76a, the heavily doped n-type region 74 is connected to the power rail 78. Likewise, for the substrate tap 76a 56a, the heavily doped p-type region 54 is connected to the power rail 58.

As described above, the well tap 56a 76a biases the n-type well 68 (FIG. 4) to Vddsupp. The substrate tap 76a 56a biases the p-type substrate 40 (FIG. 3) to Vsssupp. Although the well tap cell 56a 76a and the substrate tap cell 76a 56a together form the tap cell 80, the two tap cells 56a and 76a may be separated from one another in the integrated circuit.

In FIG. 7, an integrated circuit 100b includes a plurality of tap cells 80, scattered throughout the design. The integrated circuit designer may employ a computer program such as an automatic placement and routing tool in order to position the tap cells 80. The tap cells 80 themselves may be small relative to the other standard cell circuits 90, and may not impact the overall density of the integrated circuit 100b in one embodiment of the invention. The automatic placement and routing tool or other automated program may place the tap cells 80 in a somewhat random fashion throughout the integrated circuit 100b. The tap cells 80 may be connected to the voltages, Vsssupp and Vddsupp, such as in the integrated circuit 100c of FIG. 8.

In FIG. 9, according to one embodiment of the invention, one or more feed-throughs 58a for the power rail 58 are placed in parallel to one another through an integrated circuit 120, prior to any placement of tap cells 80. Likewise, one or more feed-throughs 78a for the power rail 78 are placed in parallel to one another and parallel to the feed-throughs 58a.

Feed-throughs are pre-determined routes for the placement of designated signals, such as the power rails 58 and 78. Instead of leaving the placement of the tap cells 80 to be determined by the automatic placement tool, the feed-throughs 58a and 78a indicate where the power rails 58 and 78 will subsequently be placed. Because the automatic placement tool “knows” where the power rails 58 and 78 will be, the tool may place the tap cells 80 close to these power rails 58 and 78. The effect is to avoid excessive use of metal for connection between the tap cells 80 and the power rails 58 and 78.

The separate feed-throughs 58a for the voltage Vsssupp 58 are placed a distance 122 apart. The feed-throughs 78a for the voltage Vddsupp 78 may likewise be placed the distance 122 apart. In one embodiment of the invention, the distance 122 is approximately 55 microns. Recall that the tap cells 80 may be optimally placed about 55 microns apart to effectively bias the substrate 40 and the well 68. Thus, the placement of the feed-throughs 58a and 78a may result both in fewer tap cells 80 and in shorter metal lines for routing to the tap cells 80.

In FIG. 10, a plurality of tap cells 80 are placed in the integrated circuit 120 following the placement of the feed-throughs 58a and 78a. By designating the location of the power rails 58 and 78 ahead of the placement of the tap cells 80, an automatic routing tool or other computer-implemented mechanism may strategically place the tap cells 80. The resulting use of metal for connecting the tap cells to the Vsssupp and the Vddsupp signals may thus be reduced.

In FIG. 10, the power rails 50 and 70, which provide current to each standard cell 90, are typically thick relative to other metal lines. In one embodiment of the invention, the power rails 50 and 70 may be 5 microns wide. Because the power rails 58 and 78 do not in general provide current, but rather only bias conditions for the n-type well 68 and the p-type substrate 40, these two power rails 58 and 78 may be routed without excessive use of metal. In one embodiment of the invention, the power rails 58 and 78 may be 0.84 microns wide to properly bias the n-type well 68 and the p-type substrate 40.

In one embodiment of the invention, the Vsssupp and the Vddsupp signals are routed in the metal 3 layer rather than in the metal 2 layer. The metal 2 layer may thus be reserved for the primary Vss and Vdd signals, which are thicker and which provide power to each cell circuit 90.

A typical integrated circuit may include multiple metal layers. For example, a circuit may include a first metal layer, M1, a second metal layer, M2, a third metal layer, M3, a fourth metal layer, M4, a fifth metal layer, MS, and so on, as needed.

Each metal layer may be thought of as a sheet of metal, with all layers being parallel to one another. However, the metal lines for each layer may run orthogonally to the metal lines for adjacent layers. Thus, if the metal lines in M1 run in one direction, the metal lines in M2 run orthogonally to the metal lines in M1, and the metal lines in M3 run orthogonally to the metal lines in M2, which are thus parallel to the metal lines in M1. The different metal layers may be connected, as needed, by vias. Vias are vertical connections between the metal layers.

In FIG. 10, a plurality of metal lines 84 connect the tap cells 80 to the power rails 58 and 78. In one embodiment of the invention, the metal lines 84 routed in the M2 layer are parallel to the power rails 50 and 70. The power rails 58 and 78 may be routed in the M3 layer and are laid orthogonal to the M2 routes. When the tap cells 80 are placed close to the M3 feed-throughs 58a and 78a, relatively short M2 routes 84 connect the tap cells 80 to the power rails 58 and 78. This use of M2 routes for the Vsssupp and the Vddsupp signals may not excessively affect circuit density. A plurality of vias 86 provide a vertical connection between the M2 routes 84 and the power rails 58 and 78.

In FIG. 11a, the power rails 50 and 70 are parallel to one another. In one embodiment of the invention, the power rails 50 and 70 are routed in the M2 layer. The power rails 58 and 78 are orthogonal to the power rails 50 and 70. In one embodiment of the invention, these power rails 58 and 78 are routed in the M3 layer.

However, the tap cells 80 are connected to the power rails 58 and 78. The metal line 84 connecting to the tap cell 80 is formed in the M2 layer. The via 86, a vertical connector of two metal layers, connects the metal line 84 (in M2) to the power rail 58 (in M3). In the cross-sectional view of FIG. 11b, the via 86 is between the M2 and the M3 layers.

Another fabrication issue arises from the addition of the power rails 58 and 78. Recall that, in conventional integrated circuit designs, the p-type substrate 40 is biased with the power rail 50 (FIG. 1), for a potential of Vss. Every standard cell circuit 90 in the integrated circuit 100 is connected to both Vss and to Vdd. When connections to the terminals of a MOSFET are etched during fabrication, electrostatic discharge may build up sufficient charge to damage or destroy the gate of the transistor.

In FIG. 12, a transistor 132 includes a gate 134 connected to a transistor 138 and a transistor 140. A line 130 couples to the source of the transistor 138 and the drain of the transistor 140 to the gate 134 of the transistor 132. During the etching of the line 130, electrostatic charge may build up. If sufficient electrostatic charge builds up, with no way to discharge, the transistor 132 may be destroyed.

The likelihood of destroying the transistor 132 may be predicted by calculating the area of the line 130, the area of the gate 134, and taking a ratio of the two. In one process technology, if the ratio exceeds a predetermined value, the transistor 132 may be destroyed.

The electrostatic discharge problem, however, does not arise if the charge being built up on the line 130 has a path to the p-type substrate 40 (which is, in effect, ground). In FIG. 12, the electrostatic discharge can pass through the transistor 140 to Vss before destroying the transistor 132. Because virtually all the cell circuits 90 of the integrated circuit 120 are connected to Vss, a path to the p-type substrate 40 is assured.

The power rails 58 and 78, however, bias the p-type substrate 40 differently. The p-type substrate 40 is no longer biased to Vss, but instead is biased to Vsssupp.

Conventionally, a node area check, or NAC, protection device, may be incorporated into a design to prevent electrostatic discharge from destroying one or more transistors during fabrication. However, conventional design tools such as automatic routing tools may not properly determine where NAC protection devices are appropriate, particularly where additional power rails 58 and 78 are used.

Accordingly, in one embodiment of the invention, NAC protection devices are incorporated into the tap cells 80. Looking back to FIG. 6, recall that the tap cell 80 includes both the substrate tap 56a and the well tap 76a of FIGS. 3 and 4, respectively. In the well tap 56a, the heavily doped n-type region 74 is connected to the power rail 78. Likewise, for the substrate tap 76a, the heavily doped p-type region 54 is connected to the power rail 58.

In addition to reducing leakage from the transistors, the tap cell 80 may be used for protection against electrostatic buildup during the fabrication of the integrated circuit 120. Turning to FIG. 13, the tap cell 80, introduced in FIG. 6, includes the heavily doped p-type region 54 and the heavily doped n-type region 74, connected to the power rail 58 and the power rail 78, respectively.

The drain of a transistor 88a is connected to the power rail 78. The source of the transistor 88a is connected to the power rail 70, which runs orthogonally to the power rail 78, in one embodiment of the invention. Using the NAC protection device 88a during the fabrication process, a transistor to which connections are etched has a path from the power rail 70 to the power rail 78.

The tap cell 80 also includes a second NAC protection device 88b. The NAC protection device 88b is connected to the power rail 58 at the drain. The source is connected to the power rail 50. During fabrication, any standard cell connected to the power rail 50 has a path to the power rail 58, thus preventing a transistor from being destroyed due to electrostatic buildup.

In FIG. 14, the NAC protection devices 88a and 88b prevent the destruction of gate dielectric during fabrication. A metal line 140, during its creation, builds up electrostatic charge. A transistor 142 includes a gate 142a. Likewise, a transistor 144 includes a gate 144a. During the etching of the metal line 140, both the gate 142a and the gate 144a are at risk if the built-up charge has no path to the p-type substrate 40.

The NAC protection device 88b, however, provides a path for the electrostatic discharge to follow. By making a connection between the power rail 50 and the power rail 58, the built-up current may discharge to the p-type substrate 40. The gates 142a and 144a are thus protected.

Thus, in accordance with some embodiments of the invention, in an integrated circuit design, tap cells are placed outside of cell circuits for connection to power rails which do not connect to the cell circuits. The tap cells may bias the substrate and the well. Feed-throughs for the power rails are provided for efficient automatic placement of the tap cells as well as efficient use of metal for connecting the tap cells to the new power rails. Additional transistors are placed inside the tap cells, where needed, such that electrostatic charge built up during fabrication does not destroy gate dielectrics.

While the present invention has been described with respect to a limited number of embodiments, those skilled in the art will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this present invention.

Hoffman, Eric J., Clark, Lawrence T., Amrelia, Vikas R., Soetan, Raphael A., Do, Tuan X.

Patent Priority Assignee Title
11615227, Jul 16 2018 Taiwan Semiconductor Manufacturing Company, Ltd. Method and system for latch-up prevention
Patent Priority Assignee Title
5488247, Sep 21 1993 Mitsubishi Denki Kabushiki Kaisha MOS-type semiconductor clamping circuit
5492856, Oct 26 1994 NIIGATA SEIMITSU CO , LTD Method of forming a semiconductor device having a LC element
5576570, Aug 19 1993 Sony Corporation Semiconductor device having CMOS circuit
5610550, Jan 29 1993 Mitsubishi Denki Kabushiki Kaisha Intermediate potential generator stably providing an internal voltage precisely held at a predeterminded intermediate potential level with reduced current consumption
6005797, Mar 20 1998 Micron Technology, Inc. Latch-up prevention for memory cells
6157070, Feb 24 1997 Winbond Electronics Corporation Protection circuit against latch-up in a multiple-supply integrated circuit
6376287, May 12 1993 Micron Technology, Inc. Method of making field effect
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
May 23 2007Marvell International Ltd.(assignment on the face of the patent)
Dec 31 2019MARVELL INTERNATIONAL LTDCAVIUM INTERNATIONALASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0529180001 pdf
Dec 31 2019CAVIUM INTERNATIONALMARVELL ASIA PTE, LTDASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0534750001 pdf
Date Maintenance Fee Events
Nov 14 2013M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Oct 04 20144 years fee payment window open
Apr 04 20156 months grace period start (w surcharge)
Oct 04 2015patent expiry (for year 4)
Oct 04 20172 years to revive unintentionally abandoned end. (for year 4)
Oct 04 20188 years fee payment window open
Apr 04 20196 months grace period start (w surcharge)
Oct 04 2019patent expiry (for year 8)
Oct 04 20212 years to revive unintentionally abandoned end. (for year 8)
Oct 04 202212 years fee payment window open
Apr 04 20236 months grace period start (w surcharge)
Oct 04 2023patent expiry (for year 12)
Oct 04 20252 years to revive unintentionally abandoned end. (for year 12)