An instrument for measuring aberration refraction of an eye is provided, having: a lens system defining an instrument optical axis and an alignment device for aligning the visual axis of the eye with the instrument optical axis. A light source produces a probing beam that is projected through the lens system parallel to the instrument optical axis and is selectably positionable partially off-set from the instrument optical axis for entering the eye parallel to the instrument optical axis at a plurality of locations on the cornea of the eye. A first photodetector measures the position of a first portion of the probing beam light scattered back from the retina of the eye to measure aberration refraction of the eye at a plurality of locations. A second photodetector synchronously measures the position of a second portion of the probing beam light reflected back from the cornea of the eye.
|
1. A device for measuring aberration refraction of an eye, comprising: a polarized light source producing a probing beam along a path to the eye; a telescopic system of lenses having an entrance pupil and an exit pupil; a two-coordinate deflector consisting of two single-coordinate deflectors separated by a zone; a deflection control unit; an aperture stop; a field stop; a collimating lens; a first position-sensitive photodetector with an objective lens operatively positioned for receiving non-polarized light reflected from the retina of the eye, a second position-sensitive photodetector for simultaneously receiving polarized light reflected from the cornea of the eye; and a data processing and display unit including a computer coupled to said first and second photodetectors for calculating total eye refraction aberration and the component caused by cornea aberration.
30. A device for measuring aberration refraction of both of a patient's eyes, comprising: a polarized light source producing a probing beam along paths of a patient's eyes; a telescopic system of lenses having an entrance pupil and an exit pupil; a two-coordinate deflector consisting of two single-coordinate deflectors separated by a zone; a deflection control unit; an aperture stop; a field stop; a collimating lens; a first position-sensitive photodetector with an objective lens operatively positioned for receiving non-polarized light reflected from the retina of both eyes, one eye at a time, a second position-sensitive photodetector for simultaneously and selectively receiving polarized light reflected from the cornea of both eyes, one eye at a time, coordinated to receive polarized light from the cornea of the same eye as the non-polarized light is received from the retina; and a data processing and display unit including a computer coupled to said first and second photodetectors for calculating total eye refraction aberration and the component caused by cornea aberration separately and substantially simultaneously for both of the patient's eyes.
12. An instrument for measuring aberration refraction of an eye having a visual axis, the instrument comprising: a lens system defining an instrument optical axis; an alignment device for aligning the visual axis of the eye with the instrument optical axis; a light source producing a probing beam projected through the lens system parallel to the instrument optical axis and selectably positionable partially off-set from the instrument optical axis so that said probing beam imates impacts upon the eye parallel to the instrument optical axis at a plurality of impingement locations on the cornea of the eye; a first photodetector for measuring the position of probing beam light scattered back from the retina of the eye to measure aberration refraction of the eye at plurality of locations corresponding to each of said plurality of impingement locations; a second photodetector for measuring the position of probing light beam reflected from the cornea at said plurality of impingement locations, and a computer for receiving input from said first and second photodetectors to calculate said total refraction aberration and said component thereof due to said cornea.
18. An aberration refractometer comprising:
a) an optical beam input channel which generates parallel light rays along an optical axis at spatially defined points onto an eye of a patient, either simultaneously or sequentially, including at least one light source and at least one lens;
b) an eye alignment verification channel for confirming alignment of the visual axis of the eye as the patient maintains fixation with the optical axis of the input channel;
c) a fixation target channel including at least one visual target which can be adjusted manually or in an automatic fashion to simulate different focal distances and which is in optical communication with the eye;
d) a retinal spot position-detecting channel in optical communication with the eye including at least one first photodetector for recording at least one characteristic of a first portion of input channel light from at least one of said spatially defined points and scattered back from the retina of the eye; and
e) a cornea reflection position detecting channel in optical communication with the eye including at least one second photodetector for recording at least one characteristic of a second portion of input channel light from said at least one of said spatially defined points and reflected back from said cornea.
22. A method for synchronous mapping of the total refraction non-homogeneity of the eye and selected refractive components of the total refraction non-homogeneity, said method comprising steps of:
a) directing a measuring beam of light into said eye, the cross-section of beam being narrower than the entrance aperture of said eye, said beam being centered and its axis coinciding with the visual axis of said eye, said beam having a first portion thereof passing through an anterior surface of said eye to impinge upon the cornea of said eye, as well as having a second portion thereof reflecting from the corneal surface;
b) changing the position of a measuring point of beam entrance into said eye keeping said beam parallel to said visual axis;
c) measuring an offset between the location on the retina at which said beam impinges on the retina at the central position of said beam and the changed position of said measuring point;
d) determining the total refractive characteristic of said eye from the measured offset in step 22(c);
e) determining the angle of reflection of said second portion of said measurable beam reflected from said cornea;
f) determining the partial refractive characteristic, caused by said cornea, from the determined angle of reflection in step 22(e);
g) comparing, in each measuring point, the total refractive characteristic determined in step 22(d) with the partial refractive characteristic determined in step 22(c) by means of subtraction of said partial characteristic from said total refractive characteristic;
h) storing refractive characteristics determined in steps 22(d), 22(f) and 22(g) for each measuring point;
i) transforming the discrete sets of said refractive characteristics into continuous surfaces by means of approximation; and
j) presenting said surfaces as color coded charts on the screen of a display or in any other way of presentation of the three-dimensional information.
26. A device for synchronous mapping of the total refraction non-homogeneity of the eye and its refractive components comprising:
a) means for providing a narrow beam of light to be directed into said eye;
b) means for shifting said beam over the entrance aperture of said eye in parallel to itself and positioning said beam in a measuring point;
c) means for detecting the light back-scattered from the retina of said eye;
d) means for measuring an offset between the location on the retina at which said beam impinges on said retina for the first position when the beam's axis coincides with the visual axis of said eye and for the second position when the beam is displaced to said measuring point;
e) means for calculating the total refractive characteristic of said eye in said measuring point from the measured offset by means of 26(d);
f) a semitransparent light-scattering screen inserted in outer zone of said entrance aperture;
g) means for detecting the light reflected from the cornea of said eye and projected on said semitransparent light-scattering screen;
h) means for measuring the coordinates of the location of said beam reflected from said cornea in said measuring point and projected on said screen;
i) means for calculating the partial refraction characteristic of said eye in said measuring point, caused by said cornea, from the coordinates measured by means of 26(h);
j) means for calculating the difference between the values of said total refractive characteristic calculated by means of 26(d) and the value of said partial refractive characteristic caused by said cornea and calculated by means of 26(i);
k) means for storing refractive characteristics calculated by means of 26(d), 26(i), and 26(j) for each measuring point;
l) means for transforming the discrete sets of said refractive characteristics into continues three-dimensional distributions of said refractive characteristics; and
m) means for displaying said three-dimensional distributions of said refractive characteristics.
2. The measuring device of
3. The measuring device of
4. The measuring device recited in
5. The measuring device recited in
6. The measuring device recited in
7. The measuring device recited in
8. The measuring device recited in
9. The measuring device recited in
10. The measuring device of
11. The measuring device of
13. An instrument for measuring aberration refraction of an eye according to
14. An instrument for measuring aberration refraction of an eye as in
15. An instrument for measuring aberration refraction of an eye as in
16. An instrument for measuring aberration refraction of an eye as in
17. An instrument for measuring aberration refraction of an eye as in
19. The aberration refractometer of
20. The aberration refractometer as in
21. The aberration refractometer as in
23. The method recited in
a) projecting the reflected part of said beam from the cornea at said measuring point onto a semitransparent light scattering screen positioned out of the zone of said entrance aperture of said eye; and
b) measuring the coordinates of the location of the beam projection on said screen.
24. The method recited in
a) limiting a spatial zone of determining mean value of refraction of said eye to a cross-sectional area of said eye less than or equal to the cross-sectional area of said entrance aperture of said eye; and
b) determining the zonal refraction by averaging the sets of values determined in steps 22(d), 22(f), or 22(g) for the measuring points inside said spatial zone.
25. The method recited in
a) comparing the refraction characteristic in each measuring point determined in steps 22(d), or 22(g) with the corresponding refraction characteristic for the neighbor measuring point by means of extracting the value of the refractive characteristic in said measuring point from the value of the refractive characteristic in the measuring point neighbor to said measuring point;
b) inserting an additional measuring point, located between the neighboring measuring points used for the comparison in step 25(a), if the difference value determined in step 25(a) is higher than a specified threshold; and
c) repeating the steps 22(a)-22(k) until there is no more value determined in step 25(a) higher than said specified threshold.
27. The device recited in
28. The device recited in
a) means for calculating the absolute difference between the values of the same refractive characteristic in each pair of neighboring measuring points; and
b) means for producing a control command for repeating the measurements of said refractive characteristic in an additional measuring point inserted between said neighboring points.
29. The device recited in
|
This is a continuation-in-part of PCT Application No. PCT/US99/23327he the cornea cause refraction calculator 164 is fed into a comparator 168 and also to memory 170. The comparator information produces data, including the total refraction for each point, the cornea cause refraction for each impingement, i.e., for each shifted probing beam and may also determine the component of the refraction aberration due to components of the eye other than the cornea. From this information, a map of refractive characteristics of the eye is reconstructed in a map reconstruction unit 172. The reconstruction map produced at 172 may be displayed at a display 174, such as a CRT screen or a color printout. All of the total refraction calculator 146, the cornea cause refraction calculator 164, the comparator 168, the memory 170, the map reconstruction unit 172 and the display 174 may be separately provided or alternatively may be included in a computer system and display screen and/or printer schematically represented by system dash lines 148 in
The semitransparent light scattering screen 158 may, for example, be milk glass or translucent fluorescent light cover material having a substantially homogeneous characteristics so that polarized light beams impacting at any point produce the same relative intensity and same relative diffusion by which the position of such light beams may be detected with position sensor 156. The second position sensor 156, although not depicted, may also be constructed similarly to position sensor 146 so that x component sensor array 88 and y sensor component array 89 are used in combination to get an x-y position sensor.
Light sources placed in front of the eye are used to align the visual axis of the eye with the optical axis of the instrument. Preferably a plurality of orthogonally placed light emitting diodes (LEDs) 102, for example emitting at a λ of 940 mm could be employed. Light produced by LEDs 102 is reflected off the cornea and imaged by camera 112. When the reflected light aligns with preset targeting parameters, the instrument is in the proper alignment and therefore in the permissive mode for firing of the spatially resolved parallel beams formed along channel 59.
The illuminated eye is then ultimately imaged by camera 112 as the image passes through the beam splitter prism 92 and is redirected at beam splitter 100 to pass through optical elements 104, 106, 108 and 110 to finally fall upon the CCD camera 112.
A retinal spot position detecting channel 99 is used to detect the position of reflected spots from the retina of eye 98 created by the input channel and includes a interferential polarization beam splitter 92 that directs non-polarized reflected light from the retina of eye 98 to a position sensor.
In one embodiment of a photodetection position sensor as shown in
Details of the embodiment depicted in
Light source 96 and condenser lenses 77 and 79 enable homogeneous irradiating of the linear arrays 88 and 89, thus checking their homogeneity at servicing. Light emitting diode 96 and condenser lenses 77, 79 form a wide beam for calibrating photodetectors 88 and 89. If any of the elements is out of tolerance, its output can be corrected at signal processing procedures.
A fixation target channel 85 preferably comprises a light source. In a preferred embodiment the light source is a green 565 λ LED 84. The light may be transmitted through lenses 74 and 75 and directed by prism 86 and through beam splitter 100 which has wavelength differentiating optical coatings. Fixation target is positioned on the optical element 106. The light beam from LED 84 passes through lenses 104 and 108 and fixation target 106 and is reflected off of the mirror 110. The fixation target light passes back through the lens 104 and is redirected by beam splitter 100 at 90 degrees out toward the eye for the patient to visualise the image as coming from the location of the surface 110 which image can be moved from near fixation to far fixation or adjustable anywhere in between and this may be used for changing the eye accommodation over a period of time and simultaneously taking a series of measurements including spatially resolved aberration refraction measurements as well as pictures on the CCD camera 112. This produces a time lapse imaging of the eye and measurements of the aberration refraction as it cycles through different fixation target distances. The different target fixation distances may be automatically moved or adjusted from near to far using electro mechanical adjustment means that may be synchronized with the measurements and/or images taken on a time lapse basis.
The instrument described herein was developed to provide a total aberration refractometer able to accurately and quickly provide a refractive map of either emmetropic or ametropic eyes without accommodation error.
An ametropia compensator is schematically depicted as a varifocal group of lenses 10 and 11, adjustable to compensate for the patient's eye ametropia. One of the lenses is mounted on a movable base connected to actuator drive 38. An accommodation controller is schematically depicted as lenses 16 and 17 that constitute a varifocal group of lenses for accommodation control of the patients eye.
An objective lens 18, at whose focal point the photosensitive surface of a position-sensitive photodetector 19 is located, is intended to form an image of the irradiated retina in the plane of the photosensitive surface of the position-sensitive photodetector. The photosensitive elements of the photodetector are connected through a preamplifier 22 and an analog-to-digit converter 23 to a computer 24. A beam coupler 39 is movably mounted between the objective lens 18 and the photodetector 19 to optically conjugate the plane of the test-target or plate 20 with the photosensitive surface of the first photodetector 19 as well as with the fovea surface. The plate 20 is needed to ensure the fixation of the patient's gaze. Located behind the plate 20 is a light source or radiator 21 serving to illuminate the plate.
Elements 25 through 30 comprise a microscope whose objective lens consists of lenses 25 and 27 together with mirror 26. A plate 29 with first coordinate-grid is preferably located at the back focal plane of a lens 27. A lens or a group of lenses 30, the front focal point of which coincides with the back focal point of the lens 27, comprises an eyepiece of the microscope. The beam splitter 28 serves to optically couple the retinal plane with the photosensitive plane of a TV camera 32 connected to the computer through a video signal conversion and input board, alternatively termed a frame grabber board, 33.
By means of a mirror 12 provided with an opening, the optical axis of the microscope is aligned with the optical axes of the ray tracing channel (elements 1-11) and the photoelectric arrangement for measuring the transverse ray aberration on the retina (elements 16-19).
In a preferred embodiment, four light-emitting diodes (LEDs) 14 are installed in a cross-wise configuration in front of the patient's eye. Each LED is preferably located in the same plane as each other LED, at an equal distance from the optical axis and perpendicular with the axis. The microscope and the LEDs comprise a system for the visual and television positioning of the instrument relative to the patient's eye. The microscope is installed so that the front focal plane of lens 25 coincides with the plane, where imaginary or virtual images of the LEDs 14, mirrored by the anterior corneal surface, are located.
Before the total refraction measurement process is commenced, the instrument is positioned relative to the patient's eye and the instrument is calibrated using the optical calibration unit 34-36. Movably mounted between the lens 11 and the LEDs 14 is a mirror 13 which serves to join the optical axes of the instrument and the optical calibration unit 34-36. In one preferred embodiment of an optical calibration unit, it comprises a meniscus or cornea simulator 34, liquid medium or vitreous simulator 35, and retina simulator 36. The retina simulator 36 is preferably movably mounted so that it can be moved along the optical axis by means of actuator or drive 37.
The instant measuring instrument incorporates a computer 24 or like device for controlling the acousto-optic deflector 4, analog-to-digital converter 23, and actuators or drives 37 and 38. The computer 24 or like device or devices may perform additional duties including, for example, mathematical processing and data storage, calculation and display of aberration parameters and the ocular refraction characteristics as well as provide setting measurement modes and implementation of automatic instrument alignment.
The instrument for measurement of the total eye refraction, in its preferred embodiment, functions in the following way. The light beam emitted, for example by laser 1, is expanded, collimated and directed to the acousto-optic deflector 4, which changes its angular position in accordance with the corresponding computer program. The telescopic narrower 5 and 6 reduces the beam thickness to the requisite magnitude. The center of the stop or diaphragm 7 is a point of angular “swinging” of the beam exiting from the telescopic narrower. Due to its positioning in the front focal plane of the lens 6, the aperture stop or diaphragm AD has its image in the back focal plane of the lens 8 which is aligned with the eye pupil. Further, because the stop or diaphragm 7 is positioned in the front focal plane of the collimating lens 8, angular swinging of the laser beam with the angle vertex located on the stop or diaphragm 7 is converted into parallel shifting of its optical axis after passing the lens 8.
If the patient's eye is ametropic, the axial movement of the lens 10 (or 11) converts the telocentric beam into a beam which diverges (in the case of myopia), or converges (in the event of hyperopia), so that the image of the diaphragm 7 is optically conjugated with the retina. This also ensures parallelism of the rays reflected by the retina in the zone in front of the beam splitter 9, which is necessary for its normal functioning.
The light entering the eye 15 of the patient is polarized in the plane shown in
Lenses 16 and 17 and the objective lens 18 produce an image of the illuminated area of the retina in the plane of the first photodetector 19. In
In one more embodiment, presented in
Still another embodiment of the invention, schematically shown in
In the various embodiments of
If photodetector 19 is a four-quadrant photodiode, as, for example, that shown diagrammatically in
where β is the transverse magnification in the plane of the first photodetector as related to the plane of the retina, b is a coefficient depending on the size of the light spot in the plane of the photodetector, and U1, U2, U3 and U4 are the photoelectric signals coming from the corresponding photodetector channels.
If photodetector 19 is a lateral position sensing detector, as shown in
where β is the transverse magnification between the planes of photodetector and retina, U1, U2, U3 and U4 are the signals coming from the electrodes, 1, 2, 3 and 4 correspondingly, and a is a scaling coefficient depending on the electrical parameters of the lateral detector.
The principle of operation relating to the positioning the instrument in relation to the patient's eye is illustrated in
As can be seen from
Taking into account that the largest contribution to the optical power of the eye is made by the anterior surface of the cornea, the visual axis line is assumed to be the line passing through the fovea center and the vertex of center of curvature of the front surface of the cornea. If the radiator B1 is positioned in front of the patient's eye, then, due to reflection of the light from the anterior or front surface of the cornea, this surface functioning as a convex mirror, forms an imaginary or virtual image B′1 of the radiator, located symmetrically to the axis in accordance with the laws of geometric optics.
When several radiators, such as for example, B1 and B2, are positioned in front of the patient's eye symmetrically to the optical axis of the instrument (
Thus, to make the optical axis of the instrument and the visual axis of the eye coincide, two conditions must be satisfied: the patient's gaze is fixed on the point A and the images B″1 and B″2 are centrally positioned in relation to the axis of the objective lens 52. The positioning can be checked using the coordinate grid provided on the plate 29 (
The coincidence of the points B″1 and B″2 with the surface or plane 54 is indicative of setting the fixed working distance between the instrument and the eye which is the result of the focusing of the images B″1 and B″2 on the surface 54.
The point of gaze fixation is created by locating the mirror 39 (
Another embodiment of eye instrument alignment can be implemented using manually or automatically operated measurement of the pupil edges; forming a figure, approximately a circle. Its center does not coincide usually with the center of symmetry of four reflexes, two of which B″1 and B″2 are shown in
The calibration of the instant aberration refraction instrument may be effected using the optical calibration unit. The optical calibration unit can be made to incorporate known aberrations at the corresponding cornea simulator 34 measurement points. For example, the aberration may be determined by the computer using special optical design programs. If, for example, the front surface of the lens 34 is ellipsoidal, then the aberration refraction at all the points of the pupil is equal to zero.
When an ametropy compensator is used, nonparallel laser beams will enter the optical calibration unit. This will result in a standard aberration of defocusing; to compensate for this aberration, the retina simulator can be moved along the optical axis by means of the actuator 37 to the focus point. Thereby, the fovea can be optically conjugated with the retina simulator.
Systematic errors of measurements of the transverse aberration will be evidenced by the deviation of the measurement results from the estimated data. Such determinable systematic errors can be taken into account when measuring actual total ocular aberrations.
The calibration by comparison with the optical calibration unit is preferably performed automatically before measuring the ocular aberrations by locating the mirror 13 on the optical axis of the instrument.
Prior to the ray tracing of the patient's eye the mirrors 13 and 39 are withdrawn from the light path entering the eye and then the light passes to the photodetector. The aberration displacement of the image of the light spot on the fovea is measured at a set of points on the cornea corresponding to an ocular ray tracing grid chosen by the operator. An example of a grid or an allocation of measurement points on the pupil is shown in
The data on measurement of the transverse aberrations on the retina δx (ρ, φ) and δy (ρ, φ) are used for further calculations of the coefficients of the Zernike polynomials by means of the least squares method in order to approximate the function of the total wave aberration of the eye. The wave aberration function is then used to calculate the local total refraction at any point of the pupil. In addition, the approximation makes it possible to determine or reconstruct the nature of local aberration refraction in that small axial zone of the pupil, where it is impossible make accurate direct measurement of refraction.
In one experiment conducted using this instrument in which five replicate tests were performed and the results averaged, the laser beam total aberration on the retina at 65 points of the pupil was been performed in within 12 milliseconds with no more that 5 mW of light radiation entering the eye.
The extremely fast measurement permits the computer control program to cause a plurality or spatially resolved aberration measurements to be made in a very short period of time. The control program in one embodiment automatically activates a plurality of measurements coordinated with a series of adjusted accommodation fixation distances and automatic determination of proper eye alignment to receive a series of data measurements from the retinal spot position detecting channel. A series of refraction measurements for a dynamic eye refraction system is produced. Spatially resolved refraction measurements can be automatically programed and automatically made during a variety of dynamic changes such as varying accommodation or during normal functioning of the eye under a variety of predetermined conditions and internal or external changing conditions.
References
While this invention has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of illustrative embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to the description. It is therefore intended that the appended claims encompass such modifications and enhancements.
Other alterations and modifications of the invention will likewise become apparent to those of ordinary skill in the art upon reading the present disclosure, and it is intended that the scope of the invention disclosed herein be limited only by the broadest interpretation of the appended claims to which the inventors are legally entitled.
Molebny, Sergiy, Molebny, Vasyl, Pallikaris, Ioannis, Wakil, Youssef
Patent | Priority | Assignee | Title |
8488851, | May 04 2007 | Universitat Politecnica de Catalunya | System and method for measuring light scattering in the eyeball or eye region by recording and processing retinal images |
Patent | Priority | Assignee | Title |
3290927, | |||
4609287, | Oct 05 1982 | Canon Kabushiki Kaisha | Method of and apparatus for measuring refractive characteristics |
4691716, | Dec 27 1985 | Automatic corneal surgery system | |
4796989, | Jul 17 1986 | Tokyo Kogaku Kikai Kabushiki Kaisha | Opthalmological measuring apparatus |
5148205, | Jun 22 1988 | SECOND OPTICAL HOLDING GMBH; Rodenstock GmbH | Ophthalmic lens having a changing refractive index |
5214455, | Apr 01 1991 | General Electric Company | Objective eye alignment measurement method and system |
5258791, | Jul 24 1990 | General Electric Company | Spatially resolved objective autorefractometer |
5293871, | May 05 1993 | Cornell Research Foundation Inc.; Riverside Research Institute | System for ultrasonically determining corneal layer thicknesses and shape |
5414478, | Dec 06 1989 | Apparatus and method for determining contact lenses | |
5418714, | Apr 08 1993 | EYESYS VISION, INC | Method and apparatus for variable block size interpolative coding of images |
5581405, | Dec 29 1993 | Eastman Kodak Company | Hybrid refractive/diffractive achromatic camera lens and camera using such |
5589897, | May 01 1995 | VIMETRICS LLC | Method and apparatus for central visual field mapping and optimization of image presentation based upon mapped parameters |
5722427, | May 10 1993 | EYESYS VISION, INC | Method of refractive surgery |
5841511, | Jun 02 1992 | General Electric Capital Corporation | Method of corneal analysis using a checkered placido apparatus |
5847804, | Oct 28 1994 | General Electric Capital Corporation | Multi-camera corneal analysis system |
5875019, | Nov 21 1995 | System for the determination, the evaluation and the control of the refractive and accommodative status of the eye | |
5953100, | Oct 28 1994 | General Electric Capital Corporation | Multi-camera corneal analysis system |
6000800, | Jun 22 1998 | Schepens Eye Research Institute | Coaxial spatially resolved refractometer |
6082856, | Nov 09 1998 | WAVESOURCE, INC | Methods for designing and making contact lenses having aberration control and contact lenses made thereby |
6234631, | Mar 09 2000 | General Electric Capital Corporation | Combination advanced corneal topography/wave front aberration measurement |
6382795, | May 20 2000 | Carl Zeiss, Inc. | Method and apparatus for measuring refractive errors of an eye |
6409345, | Aug 08 2000 | TRACEY TECHNOLOGIES, INC | Method and device for synchronous mapping of the total refraction non-homogeneity of the eye and its refractive components |
CA2273528, | |||
JP609544, | |||
UA98105286, | |||
WO9923327, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 23 2004 | Tracey Technologies, LLC | (assignment on the face of the patent) |
Date | Maintenance Fee Events |
Jan 31 2014 | REM: Maintenance Fee Reminder Mailed. |
Jun 25 2014 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Jun 25 2014 | M2556: 11.5 yr surcharge- late pmt w/in 6 mo, Small Entity. |
Date | Maintenance Schedule |
Oct 04 2014 | 4 years fee payment window open |
Apr 04 2015 | 6 months grace period start (w surcharge) |
Oct 04 2015 | patent expiry (for year 4) |
Oct 04 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 04 2018 | 8 years fee payment window open |
Apr 04 2019 | 6 months grace period start (w surcharge) |
Oct 04 2019 | patent expiry (for year 8) |
Oct 04 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 04 2022 | 12 years fee payment window open |
Apr 04 2023 | 6 months grace period start (w surcharge) |
Oct 04 2023 | patent expiry (for year 12) |
Oct 04 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |