A method of cutting material for use in an implantable medical device employs a plotted laser cutting system. The laser cutting system is computer controlled and includes a laser combined with a motion system. The laser precisely cuts segments out of source material according to a predetermined pattern as designated by the computer. The segments are used in constructing implantable medical devices. The cutting energy of the laser is selected so that the cut edges of the segments are melted to discourage delamination or fraying, but communication of thermal energy into the segment beyond the edge is minimized to avoid damaging the segment adjacent the edge.
|
5. A method of creating an implantable medical prosthesis, comprising: providing a sheet of pericardium, wherein the pericardium has at least two tissue layers; and cutting a segment of tissue out of the sheet of pericardium with a laser beam; said cutting comprising operating a laser at a power and pulse rate having the following parameters: 1.5 lens, 20 percent power setting, 3.4 percent speed, 1,000 pulses per inch and 1,000 dots per inch, such that said beam welds the layers of the pericardium together along a laser cut edge without significantly burning the pericardium adjacent the cut edge.
1. A method of creating an implantable medical prosthesis, comprising:
a. providing a sheet of pericardium, wherein the pericardium has at least two tissue layers;
b. supporting the sheet of pericardium with a support platform;
c. providing a laser cutting apparatus having a laser tube assembly configured to create a laser beam which is directed through a series of optical elements to direct a laser beam on the support platform; and
d. cutting a segment of tissue out of the sheet of pericardium with a laser beam; said cutting comprising operating the laser apparatus at a power and pulse rate such that said laser beam welds the layers of the pericardium together along a laser cut edge
wherein sufficient energy is imparted to vaporize portions of the pericardium along the cut edge and to at least partially melt the cut edges without substantial burning of the pericardium adjacent the cut edge and further wherein the cut edge of the tissue segment is not susceptible to premature wear.
3. The method of
4. The method of
6. The method of creating an implantable medical prosthesis of
7. The method of
8. The method of
9. The method of
10. The method of
11. The method of
12. The method of
15. The method of
16. The method of
17. The method of
18. The method of
19. The method of
20. The method of
21. The method of
|
This application is a
For the above embodiment, the laser energy per pulse is about:
(7.5 joules/second)/((1 inch/second)×(1,000 pulses/inch) )=0.0075 joules/pulse.
Other materials, such as bovine or other kinds of pericardium tissues and laminar materials can also be advantageously laser cut with a CO2 laser as discussed above. In another preferred embodiment wherein such materials, including equine pericardium, are laser cut, about 0.005-0.5 joules of laser energy are supplied per pulse, with a laser spot size of about 0.002 to 0.005 inches in diameter, a cutting speed of about 1 inch/second, and a pulse rate of about 1,000 PPI. More preferably, about 0.005-0.02 joules of laser energy are supplied per pulse. For the Universal Laser Systems M-series laser discussed above, the following sample settings enable laser cutting within the above-discussed parameters: a 1.5 Lens, 20% power setting, 3.4% speed, 1,000 PPI and 1,000 dots per inch.
It is to be understood that if parameters such as the pulse rate and cutting speed are adjusted, corresponding adjustments to other parameters can be made so that the energy imparted to the material substantially stays within the desired parameters. In this manner, a generally uniform weld can be formed along a cut edge without discoloring the edge or imparting excessive heat to other portions of the segment.
It is also to be understood that other types of lasers, such as an erbium laser that generates a laser beam having a wavelength of about 2.7-3.0 μm, can suitably be used to cut segments. Such alternative lasers can be operated at settings so that the cut edges are welded as discussed above.
Alternative techniques may be employed for laser cutting of segments for use in prosthetics, such as disclosed in U.S. Patent Application Publication No. US 2002/0091441, which was published on Jul. 11, 2002. The entire disclosure of this publication is hereby incorporated herein by reference.
Various types of tissue and man-made materials can be cut with a laser by using generally the same principles as discussed above. For example, other types of laminar tissue can be cut so that the cut edges are welded and have a generally uniform consistency with little or no discoloration. Similarly, for man-made materials such as woven or knitted polymers, the cut edges preferably are melted so that fraying of the woven filaments or yarns is minimized or avoided, but discoloration is also avoided.
With reference next to
Although this invention has been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. In addition, while a number of variations of the invention have been shown and described in detail, other modifications, which are within the scope of this invention, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or subcombinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the invention. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed invention. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow.
Cali, Douglas S., Myers, Keith E.
Patent | Priority | Assignee | Title |
10335271, | Jun 30 2011 | Edwards Lifesciences Corporation | Systems for assessing and cutting pericardial tissue |
10993805, | Feb 26 2008 | JenaValve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
11065138, | May 13 2016 | JENAVALVE TECHNOLOGY, INC | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system |
11076953, | Jun 30 2011 | Edwards Lifesciences Corporation | Methods for assessing and cutting bioprosthetic tissue |
11154398, | Feb 26 2008 | JenaValve Technology. Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
11185405, | Aug 30 2013 | JenaValve Technology, Inc. | Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame |
11197754, | Jan 27 2017 | JenaValve Technology, Inc. | Heart valve mimicry |
11337800, | May 01 2015 | JenaValve Technology, Inc. | Device and method with reduced pacemaker rate in heart valve replacement |
11357624, | Apr 13 2007 | JenaValve Technology, Inc. | Medical device for treating a heart valve insufficiency |
11517427, | Jun 30 2011 | Edwards Lifesciences Corporation | Systems for assessing and cutting bioprosthetic tissue |
11517431, | Jan 20 2005 | JenaValve Technology, Inc. | Catheter system for implantation of prosthetic heart valves |
11564794, | Feb 26 2008 | JenaValve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
11589981, | May 25 2010 | JenaValve Technology, Inc. | Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent |
8764818, | Jul 20 2011 | Boston Scientific Scimed, Inc | Heart valve replacement |
9744031, | May 25 2010 | JENAVALVE TECHNOLOGY, INC ; JVT RESEARCH & DEVELOPMENT CORPORATION | Prosthetic heart valve and endoprosthesis comprising a prosthetic heart valve and a stent |
Patent | Priority | Assignee | Title |
3608097, | |||
3671979, | |||
4056854, | Sep 28 1976 | The United States of America as represented by the Department of Health, | Aortic heart valve catheter |
4106129, | Jan 09 1976 | Baxter International Inc | Supported bioprosthetic heart valve with compliant orifice ring |
4222126, | Dec 14 1978 | The United States of America as represented by the Secretary of the | Unitized three leaflet heart valve |
4261342, | Oct 26 1978 | Process for installing mitral valves in their anatomical space by attaching cords to an artificial stent | |
4274437, | Feb 28 1980 | Heart valve | |
4297749, | May 07 1975 | WASHINGTON UNIVERSITY, A CORP OF MO | Heart valve prosthesis |
4388735, | Nov 03 1980 | SORIN BIOMEDICAL INC | Low profile prosthetic xenograft heart valve |
4470157, | Apr 27 1981 | Autogenics | Tricuspid prosthetic tissue heart valve |
4501030, | Aug 17 1981 | Edwards Lifesciences Corporation | Method of leaflet attachment for prosthetic heart valves |
4624822, | Jul 25 1983 | SORIN BIOMEDICA CARDIO S P A | Methods for manufacture of valve flaps for cardiac valve prostheses |
4626255, | Sep 23 1983 | PETER KENNEDY PTY LTD | Heart valve bioprothesis |
4629459, | Dec 28 1983 | SORIN BIOMEDICAL INC | Alternate stent covering for tissue valves |
4739487, | May 22 1984 | Etablissements G. Imbert | Method and apparatus for a reciprocating lay system of profile pieces on a base for the purpose of plotting and/or cutting |
4787901, | Jul 17 1984 | Two-way acting valve and cardiac valve prosthesis | |
4790844, | Jan 30 1987 | Replacement of cardiac valves in heart surgery | |
4960424, | Jun 30 1988 | Method of replacing a defective atrio-ventricular valve with a total atrio-ventricular valve bioprosthesis | |
5032128, | Jul 07 1988 | Medtronic, Inc. | Heart valve prosthesis |
5037434, | Apr 11 1990 | CarboMedics, Inc. | Bioprosthetic heart valve with elastic commissures |
5089971, | Apr 09 1990 | ABLECO FINANCE LLC, AS COLLATERAL AGENT | Method and apparatus for cutting parts from hides or similar irregular pieces of sheet material |
5163955, | Jan 24 1991 | Medtronic, Inc | Rapid assembly, concentric mating stent, tissue heart valve with enhanced clamping and tissue alignment |
5258917, | Apr 19 1990 | WOLFGANG BRUDER | Method for nesting contours to be cut out of natural leather |
5326370, | Jan 24 1991 | Medtronic, Inc | Prefabricated sterile and disposable kits for the rapid assembly of a tissue heart valve |
5332402, | May 12 1992 | Percutaneously-inserted cardiac valve | |
5344442, | May 16 1991 | 3F THERAPEUTICS, INC | Cardiac valve |
5370685, | Jul 16 1991 | Heartport, Inc | Endovascular aortic valve replacement |
5411552, | May 18 1990 | Edwards Lifesciences AG | Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis |
5415667, | Jun 07 1990 | GLYCAR II, L P | Mitral heart valve replacements |
5480424, | Nov 01 1993 | 3F THERAPEUTICS, INC | Heart valve replacement using flexible tubes |
5489298, | Jan 24 1991 | Medtronic, Inc | Rapid assembly concentric mating stent, tissue heart valve with enhanced clamping and tissue exposure |
5500015, | May 16 1991 | MEDTRONIC 3F THERAPEUTICS, INC | Cardiac valve |
5554184, | Jul 27 1994 | Heart valve | |
5713950, | Nov 01 1993 | 3F THERAPEUTICS, INC | Method of replacing heart valves using flexible tubes |
5713953, | May 24 1991 | Sorin Biomedica Cardio S.p.A. | Cardiac valve prosthesis particularly for replacement of the aortic valve |
5757950, | Jun 22 1995 | WOLFGANG BRUDER | Process for the cutting or stamping of individual parts from an animal skin |
5824063, | Nov 01 1993 | 3F THERAPEUTICS, INC | Method of replacing atrioventricular heart valves using flexible tubes |
5824065, | Dec 01 1995 | Medtronic, Inc. | Sewing tube for a xenograft mitral valve |
5824067, | Dec 01 1995 | Medtronic, Inc. | Physiologic mitral valve bioprosthesis |
5838569, | Apr 27 1994 | Lectra SA | Method of digitizing and cutting up remnants of non-repetitive shapes |
5849006, | Apr 25 1994 | ALCON UNIVERSAL LTD | Laser sculpting method and system |
5861028, | Sep 09 1996 | GABBAY, SHLOMO | Natural tissue heart valve and stent prosthesis and method for making the same |
5928281, | Mar 27 1997 | Edwards Lifesciences Corporation | Tissue heart valves |
5961549, | Apr 03 1997 | Edwards Lifesciences Corporation | Multi-leaflet bioprosthetic heart valve |
6092529, | Nov 01 1993 | 3f Therapeutics, Inc. | Replacement semilunar heart valves using flexible tubes |
6129758, | Oct 06 1995 | CardioMend LLC | Products and methods for circulatory system valve repair |
6254636, | Jun 26 1998 | St. Jude Medical, Inc. | Single suture biological tissue aortic stentless valve |
6338740, | Jan 26 1999 | Edwards Lifesciences Corporation | Flexible heart valve leaflets |
6350282, | Apr 22 1994 | Medtronic, Inc. | Stented bioprosthetic heart valve |
6378221, | Feb 29 2000 | Edwards Lifesciences Corporation | Systems and methods for mapping and marking the thickness of bioprosthetic sheet |
6454799, | Apr 06 2000 | Edwards Lifesciences Corporation | Minimally-invasive heart valves and methods of use |
6461382, | Sep 22 2000 | Edwards Lifesciences Corporation | Flexible heart valve having moveable commissures |
6463351, | Jan 08 1997 | Clynch Technologies, Inc. | Method for producing custom fitted medical devices |
6475239, | Oct 13 1998 | CORCYM S R L | Method for making polymer heart valves with leaflets having uncut free edges |
6553681, | Feb 29 2000 | Methods for measuring a bio-material for use in an implant | |
6652578, | Dec 31 1999 | VACTRONIX SCIENTIFIC, LLC | Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof |
6801643, | Jun 01 1995 | Medical Media Systems | Anatomical visualization system |
6872226, | Jan 29 2001 | 3F THERAPEUTICS, INC | Method of cutting material for use in implantable medical device |
6911043, | Jan 27 2000 | MEDTRONIC 3F THERAPEUTICS, INC | Prosthetic heart value |
7163563, | Jul 16 2001 | Depuy Synthes Products, LLC | Unitary surgical device and method |
20010021872, | |||
20020091441, | |||
20020157271, | |||
20020191822, | |||
EP51451, | |||
EP103546, | |||
EP276975, | |||
EP515324, | |||
FR2591100, | |||
GB1599407, | |||
WO42950, | |||
WO154624, | |||
WO176510, | |||
WO2053069, | |||
WO224118, | |||
WO9117720, | |||
WO9119465, | |||
WO9220303, | |||
WO9930884, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 22 2010 | 3f Therapeutics, Inc. | (assignment on the face of the patent) | / | |||
Aug 12 2010 | ATS MEDICAL, INC | MEDTRONIC ATS MEDICAL, INC | MERGER AND CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 056821 | /0401 | |
Aug 12 2010 | PILGRIM MERGER CORPORATION | MEDTRONIC ATS MEDICAL, INC | MERGER AND CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 056821 | /0401 | |
Aug 12 2010 | ATS MEDICAL INC | MEDTRONIC ATS MEDICAL INC | MERGER SEE DOCUMENT FOR DETAILS | 026064 | /0197 | |
Aug 12 2010 | PILGRIM MERGER CORPORATION | MEDTRONIC ATS MEDICAL INC | MERGER SEE DOCUMENT FOR DETAILS | 026064 | /0197 |
Date | Maintenance Fee Events |
Sep 29 2011 | M1461: Payment of Filing Fees under 1.28(c). |
Mar 14 2013 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Mar 29 2017 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Feb 18 2021 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Oct 11 2014 | 4 years fee payment window open |
Apr 11 2015 | 6 months grace period start (w surcharge) |
Oct 11 2015 | patent expiry (for year 4) |
Oct 11 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 11 2018 | 8 years fee payment window open |
Apr 11 2019 | 6 months grace period start (w surcharge) |
Oct 11 2019 | patent expiry (for year 8) |
Oct 11 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 11 2022 | 12 years fee payment window open |
Apr 11 2023 | 6 months grace period start (w surcharge) |
Oct 11 2023 | patent expiry (for year 12) |
Oct 11 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |