The vacuum desiccator low pressure vacuum pump and trap and is transportable upon a user's person. The device is especially useful to remove excess fluids from wounds and incisions as they heal. The device includes a desiccator cartridge containing a fluid trapping agent. The desiccator cartridge is connected to a vacuum pump member providing a low vacuum pressure to the interior chamber of the desiccator cartridge. A small battery powered, electric motor drives the pump member. An electrical control circuit, including the battery power source, controls the operation of the electric motor. A single passage, one-way, gas/liquid flow pathway connects the inlet port of the desiccator cartridge to an occlusive dressing covering the wound to be drained. The control circuit includes one or more ancillary circuits for controlling operation of the device, such as: a power circuit, a moisture sensor, a timer circuit, a vacuum pressure sensor, and a pressure differential sensor.

Patent
   RE42834
Priority
Nov 20 2001
Filed
Oct 16 2009
Issued
Oct 11 2011
Expiry
Nov 20 2021
Assg.orig
Entity
Large
6
254
EXPIRED
21. A personally portable vacuum desiccator for draining and collecting excess fluid from a wound ox incision on a user, said vacuum desiccator comprising; :
a thin moisture trap having a fluid trapping agent, a gas flow channel having a plurality of perforations along the gas flow channel, an inlet port, and an outlet port, the outlet port being connected to the gas flow channel;
a delivery tube having a first end positionable in gas/liquid flow communication with the wound or incision on the user and a second end in gas/liquid flow communication with said inlet port;
a vacuum pump in gas/liquid flow communication with said outlet port;
an electric motor operably connected to said vacuum pump; and
a control circuit in electrical communication with said motor, said control circuit having an electric power source and being operable for controlling the operation of said motor;
said vacuum desiccator being transportable upon the user's person;
said vacuum pump being operable to draw fluid from the wound or incision through said delivery tube and into said moisture trap;
said fluid trapping agent having a capacity for trapping a volume of the fluid.
0. 43. A personally portable vacuum desiccator for draining and collecting excess fluid from a wound or incision on a user, said vacuum desiccator comprising:
a thin moisture trap having a fluid trapping agent, an inlet port, and an outlet port;
a one-way valve disposed proximate the inlet port of the thin moisture trap, the one-way valve preventing gas/liquid and particulate flow out of the inlet port;
a delivery tube having a first end positionable in gas/liquid flow communication with the wound or incision on the user and a second end in gas/liquid flow communication with said inlet port;
a vacuum pump in gas/liquid flow communication with said outlet port;
an electric motor operably connected to said vacuum pump; and
a control circuit in electrical communication with said motor, said control circuit having an electric power source and being operable for controlling the operation of said motor;
said vacuum desiccator being transportable upon the user's person;
said vacuum pump being operable to draw fluid from the wound or incision through said delivery tube and into said moisture trap;
said fluid trapping agent having a capacity for trapping a volume of the fluid.
1. A personally portable vacuum desiccator comprising:
a moisture trap, the trap further comprising a desiccator cartridge having an interior chamber containing a trapping agent and a gas flow channel having a plurality of perforations along the gas flow channel, and the desiccator cartridge further including an inlet port and an outlet port in gas/liquid communication with the interior chamber, the outlet port being connected to the gas flow channel;
a vacuum pump member having a low pressure port and an exhaust port, the low pressure port in gas/liquid flow communication with the outlet port of the desiccator cartridge and with the exhaust port vented to atmosphere, and the vacuum pump member being operable to provide a low vacuum pressure to the interior chamber;
an electric motive means in communication with the vacuum pump member and operative to drive the vacuum pump member; and
an electrical control circuit, including an electrical power source, the control circuit in electrical communication with and operative to control operation of the electric motive means;
wherein said personally portable vacuum desiccator is generally flat and may be worn unobtrusively by a user and is adaptable for collecting and trapping liquid from a wound or incision on the user in said moisture trap.
20. A personally portable vacuum desiccator comprising:
a desiccator cartridge, the cartridge being removable from the vacuum desiccator and replaceable, and having an interior chamber containing a trapping agent, the trapping agent being a moisture tapping pillow, and an inlet port and an outlet port in gas/liquid communication with the interior chamber, and a one-way valve disposed proximate the inlet port for preventing gas/liquid and particulate flow out of the inlet port;
a single passage gas/liquid flow pathway having an input end and an output end, the output end being connected to the inlet port of the desiccator cartridge;
a vacuum pump member having a low pressure port and an exhaust port, the low pressure port in gas/liquid flow communication with the outlet port of the desiccator cartridge and with the exhaust port vented to atmosphere, and the vacuum pump member being operable to provide a low vacuum pressure to the interior chamber;
an electric motive means in communication with the vacuum pump member and operative to drive the vacuum pump member, the electric motive means including an electric motor coupled to the vacuum pump member; and
an electrical control circuit, including an electrical power source, the control circuit in electrical communication with and operative to control operation of the electric motive means, the electrical power source comprising a battery, with the battery being removable from the electrical control circuit and replaceable, and wherein the electrical control circuit includes one or more ancillary circuits selected from the group consisting of: a power circuit for turning the electrical control circuit on and off, a moisture sensor for detecting the presence of moisture proximate the low pressure port of the vacuum pump member, a timer circuit for intermittently operating the electric motive means, a vacuum pressure sensor for detecting a vacuum pressure in the interior chamber of the desiccator cartridge, a pressure differential sensor for sensing a difference in pressure between the inlet and outlet ports of the desiccator cartridge.
2. The personally portable vacuum desiccator of claim 1, further comprising a single passage gas/liquid flow path delivery tube, having an input end and an output end, the output end being connected to the inlet port of the desiccator cartridge.
3. The personally portable vacuum desiccator of claim 1, further comprising a housing containing the electric motive means and the electrical control circuit.
4. The personally portable vacuum desiccator of claim 1, further comprising a housing containing the electric motive means and the electrical control circuit and at least one additional element selected from the group consisting of the desiccator cartridge and the vacuum pump member.
5. The personally portable vacuum desiccator of claim 1, wherein the vacuum pump member is integral with the desiccator cartridge.
6. The personally portable vacuum desiccator of claim 1, wherein the electric motive means includes an electric motor mechanically coupled to the vacuum pump member.
7. The personally portable vacuum desiccator of claim 1, wherein the electric motive means includes an electric motor magnetically coupled to the vacuum pump member.
8. The personally portable vacuum desiccator of claim 1, wherein the electrical control circuit includes an electrical power source comprising a battery.
9. The personally portable vacuum desiccator of claim 1, wherein the electrical control circuit includes an electrical power source comprising a battery, and the battery is removable from the electrical control circuit and replaceable.
10. The personally portable vacuum desiccator of claim 1, further comprising a one-way valve disposed proximate the inlet port of the desiccator cartridge, the one-way valve preventing gas/liquid and particulate flow out of the inlet port.
11. The personally portable vacuum desiccator of claim 1, wherein the electrical control circuit includes a moisture sensor for detecting the presence of moisture proximate the low pressure port of the vacuum pump member.
12. The personally portable vacuum desiccator of claim 1, wherein the electrical control circuit includes a timer circuit for intermittently operating the electric motive means.
13. The personally portable vacuum desiccator of claim 1, wherein the electrical control circuit includes a vacuum pressure sensor for detecting a vacuum pressure in the interior chamber of the desiccator cartridge.
14. The personally portable vacuum desiccator of claim 1, wherein the electrical control circuit includes a pressure differential sensor for sensing a difference in pressure between the inlet and outlet ports of the desiccator cartridge.
15. The personally portable vacuum desiccator of claim 1, wherein the desiccator cartridge is removable from the vacuum desiccator and replaceable.
16. The personally portable vacuum desiccator of claim 1, wherein components in gas/liquid flow communication are replaceable.
17. The personally portable vacuum desiccator of claim 1, wherein the desiccator cartridge contains a trapping agent selected from the group consisting of: a desiccant, an adsorbent and an absorbent.
18. The personally portable vacuum desiccator of claim 1, further comprising a micro-filter positioned after the outlet port of the desiccator cartridge and before the exhaust port of the vacuum pump member, the micro-filter blocking the passage of bacteria.
19. The personally portable vacuum desiccator of claim 1, wherein the power source is integrally combined with the desiccator cartridge, and the combined desiccator-power source being installable in and removable from the vacuum desiccator as a single unit.
22. The personally portable vacuum desiccator of claim 21 wherein said delivery tube comprises a single passage gas/liquid flow path.
23. The personally portable vacuum desiccator of claim 21 wherein:
said moisture trap comprises a desiccator cartridge having an interior chamber; in which the gas flow channel is positioned
said interior chamber having a gas flow channel and said fluid trapping agent disposed therein;
said gas flow channel being connected to said outlet port.
24. The personally portable vacuum desiccator of claim 23 wherein said gas flow channel comprises a second tubehaving perforations therein.
25. The personally portable vacuum desiccator of claim 24 wherein said second rube is arranged in a configuration selected from the group consisting of coiled and snaked.
26. The personally portable vacuum desiccator of claim 23 wherein said desiccator cartridge comprises a cover member and a body member, said gas flow channel being integrated into said cover member.
27. The personally portable vacuum desiccator of claim 21 further comprising a one-way valve proximate said inlet port to prevent gas/liquid flow out of said moisture trap through said inlet port.
28. The personally portable vacuum desiccator of claim 21 further comprising a micro-filter proximate said outlet port to prevent bacteria or moisture from leaving said moisture tap through said outlet port.
29. The personally portable vacuum desiccator of claim 21 further comprising a moisture sensor proximate said outlet port and in communication with said control for controlling said motor in response to the detection of moisture proximate circuit said outlet port.
30. The personally portable vacuum desiccator of claim 21 further comprising a vacuum pressure sensor for detecting the vacuum pressure within said moisture trap, said vacuum pressure sensor being in communication with said control circuit for controlling said motor in response to said vacuum pressure.
31. The personally portable vacuum desiccator of claim 21 further comprising a pressure differential sensor for detecting the pressure differential between said inlet port and said outlet port, said pressure differential sensor being in communication with said control circuit for controlling said motor in response to said pressure differential.
32. The personally portable vacuum desiccator of claim 21 wherein said volume is about 50 cc.
33. The personally portable vacuum desiccator of claim 21 wherein said fluid tapping agent is selected from the group consisting of desiccants, adsorbent, and absorbents.
34. The personally portable vacuum desiccator of claim 21 wherein said moisture trap has a generally rectangular shape.
0. 35. The personally portable vacuum desiccator of claim 1, wherein the gas flow channel comprises a tube positioned within the interior chamber.
0. 36. The personally portable vacuum desiccator of claim 1, wherein the gas flow channel is positioned within the interior chamber on one side of the trapping agent.
0. 37. The personally portable vacuum desiccator of claim 1, wherein the desiccator cartridge comprises a cover member and a body member, the gas flow channel being integrated into the cover member.
0. 38. The personally portable vacuum desiccator of claim 1, wherein the trapping agent comprises a pillow-like configuration.
0. 39. The personally portable vacuum desiccator of claim 38, wherein the pillow-like configuration further includes sodium polyacrylate distributed between two layers of an elastic mesh material.
0. 40. The personally portable vacuum desiccator of claim 23, wherein the gas flow channel is positioned within the interior chamber on one side of the fluid trapping agent.
0. 41. The personally portable vacuum desiccator of claim 21, wherein the fluid trapping agent comprises a pillow-like configuration.
0. 42. The personally portable vacuum desiccator of claim 41, wherein the pillow-like configuration further includes sodium polyacrylate distributed between two layers of an elastic mesh material.
0. 44. The personally portable vacuum desiccator of claim 43, wherein said delivery tube comprises a single passage gas/liquid flow path.
0. 45. The personally portable vacuum desiccator of claim 43, wherein:
said moisture trap comprises a desiccator cartridge having an interior chamber;
said interior chamber having a gas flow channel and said fluid trapping agent disposed therein, said gas flow channel being connected to said outlet port.
0. 46. The personally portable vacuum desiccator of claim 45, wherein said gas flow channel comprises a second tube having perforations therein.
0. 47. The personally portable vacuum desiccator of claim 46, wherein said second tube is arranged in a configuration selected from the group consisting of coiled and snaked.
0. 48. The personally portable vacuum desiccator of claim 45, wherein said desiccator cartridge comprises a cover member and a body member, said gas flow channel being integrated into said cover member.
0. 49. The personally portable vacuum desiccator of claim 43 further comprising a micro-filter proximate said outlet port to prevent bacteria or moisture from leaving said moisture tap through said outlet port.
0. 50. The personally portable vacuum desiccator of claim 43 further comprising a moisture sensor proximate said outlet port and in communication with said control for controlling said motor in response to the detection of moisture proximate circuit said outlet port.
0. 51. The personally portable vacuum desiccator of claim 43 further comprising a vacuum pressure sensor for detecting the vacuum pressure within said moisture trap, said vacuum pressure sensor being in communication with said control circuit for controlling said motor in response to said vacuum pressure.
0. 52. The personally portable vacuum desiccator of claim 43 further comprising a pressure differential sensor for detecting the pressure differential between said inlet port and said outlet port, said pressure differential sensor being in communication with said control circuit for controlling said motor in response to said pressure differential.
0. 53. The personally portable vacuum desiccator of claim 43, wherein said volume is about 50 cc.
0. 54. The personally portable vacuum desiccator of claim 43, wherein said fluid trapping agent is selected from the group consisting of desiccants, adsorbents, and absorbents.
0. 55. The personally portable vacuum desiccator of claim 43, wherein said moisture trap has a generally rectangular shape.

The present invention is in the field of portable, motor driven vacuum p-umps having a movable working member which is motivated by electricity or a magnetic field. More specifically, the present invention relates to a personally portable, low negative pressure, motor driven vacuum pump having an electric power storage means and a moisture trap.

A number of portable, low pressure vacuum apparatuses capable of producing vacuum pressures down to about 500 mm HG currently exist. Medicine, particularly the wound healing arts, is a field where such devices have a specific utility. In the wound healing arts, it has been recognized that the removal of excess fluid from a wound site can improve the healing of the wound. This recognition has motivated the field to develop wound treatment regimens that include the use of vacuum devices for removing excess exudate from a wound site. For example, in full thickness dermal wounds devices to assist in the removal of excess fluid from these wounds have been developed and used. Further, because of the recognized benefits of encouraging patients to be active and mobile if possible, these devices need to be portable, and preferably, personally portable.

One strategy for providing a personally portable, low pressure vacuum source for drainage of wound site involves the use of a passive vacuum reservoir. Examples of this types of device includes those disclosed by Fell, U.S. Pat. No. 5,073,172; Seddon et al., U.S. Pat. No. 6,024,7311 and Dixon et al., U.S. Pat. No. 5,944,703. Typically, these devices comprise an evacuated cannister attached to a drainage tube. Because the vacuum pressure in the reservoir of these devices continuously decreases as the wound is drained (and the reservoir filled), they often include a means for regulating the pressure delivered to the wound site at some level below the maximum pressure of the vacuum reservoir. Additionally, these devices require a reservoir of a relatively larger volume than that of the volume of fluid they are capable of removing from a wound site.

Recognizing these limitations, the field has been further motivated to develop means for providing a portable, low pressure vacuum source for drainage of a user's wound site which provides a relatively constant vacuum pressure. A strategy for accomplishing this objective includes having the device comprise a vacuum pump to provide a constant low pressure vacuum source, or to replenish a separate vacuum reservoir. An example of this type of device includes that disclosed by McNeil et al., U.S. Pat. No. 4,710,165. Also see U.S. Pat. No. 5,134,994 to Say. Although portable, these devices are bulky and obvious to an observer of the user, and may subject the user to embarrassment or personal questions. It would be beneficial to have a portable vacuum device that was personally portable by the user without being obvious to an observer.

An apparatus which addresses this latter benefit is disclosed in U.S. Pat. No. 6,142,892 to Hunt et al. The Hunt apparatus is supported on a belt or harness worn by the user, and is small enough to be unobtrusive when worn under a jacket or the like. However, the Hunt apparatus utilizes a liquid reservoir containing the fluids drained from a wound site. Fluids contained in the liquid reservoir of Hunt are subject to slouching, which may adversely affect the function of the Hunt apparatus if the fluid prematurely enters an inappropriate pathway (the outlet end of the cannister). Also, the Hunt device requires multiple tubes or a multi-lumen tube running from the device to the wound site to accomplish its full utility. Additionally, the Hunt apparatus is intended to be worn by a patient at waist level or higher. This means that wound sites below and distal to the users waist can be subjected to a higher vacuum pressure than with a device that may be located more proximal the wound site than the Hunt apparatus.

Although the above apparatuses may be useful in the field for accomplishing their intended purposes, it would be beneficial to have an alternative personally portable vacuum device that can be worn unobtrusively by the user, and which is not subject to slouching of the fluid it retains, and further which does not require special tubing to connect it to a wound site.

The present desiccator is a personally portable vacuum pump and moisture trapping device. The invention is useful where a user desires to carry a device for collecting and trapping small volumes of liquids. As a specific example, the present invention is therapeutically useful to provide a personally portable low negative pressure source and trap for aspirating and collecting fluid exudate from a wound or incision. A further benefit of the present invention for such applications involving biological waste is that the trap and all other components of the desiccator device that contact the aspirated biological materials are removable from the device and are replaceable. The desiccator device includes a trap, a vacuum pump head member, an electric motive mechanism and an electric control and power circuit.

The trap comprises a desiccator cartridge enclosing an interior space or chamber. An inlet port and an outlet port provide gas/liquid flow communication with the interior chamber of the desiccator cartridge. The desiccator cartridge is of a design and construction to withstand the application of an appropriate vacuum without substantial collapse of the interior chamber. Some distortion of the cartridge while under vacuum is desirable in some applications, e.g., where buffering of the vacuum pressure of the system is beneficial. A trapping agent is contained within the interior chamber for retaining the fluid that enter the chamber. The composition of the trapping agent is selectable by one of ordinary skill in the art in view of the teaching herein and in consideration of the characteristics of the fluid to be trapped.

A vacuum pump member or pump head is connected in gas flow communication with the interior chamber of the trap by having the low pressure port of the vacuum pump member being connected to the outlet port of the trap. The exhaust port of the vacuum pump member is vented to atmosphere. Operation of the vacuum pump member develops a low vacuum pressure which is communicated to the interior chamber of the desiccator cartridge and then to the inlet port of the trap. The vacuum pressure at the inlet port of the trap is selectable by the ordinary skilled artisan depending on the intended use of the present device. Typically, the selected vacuum pressures range less than about 250 mm Hg, and in part depends on the vacuum pressure to be delivered to the wound site and the any loss of vacuum pressure across the delivery tube connecting the inlet port to the wound site. An electric motive means (an electric motor) is coupled to the vacuum pump member and drives the pump head. An electrical control circuit, including an electrical power source, is in electrical communication with the electric motive means. The control circuit is operable to control the operation of the electric motive means.

The desiccator cartridge of the trap has only a single, ingress gas/liquid flow pathway, which is the inlet port. Additionally, the flow path at the inlet port is unidirectional, in that gas/liquid flow can enter the trap via the inlet port, but not exit or back flow out of the trap via the inlet port. Optionally, the personally portable vacuum desiccator includes a single passage gas/liquid flow path delivery tube for connecting the trap to a source of gas or liquids to be delivered into the trap. The delivery tube has an input end for communicating with the gas/liquid source and an output end connectable to the inlet port of the desiccator cartridge. A one-way valve is located proximate the inlet port of the desiccator cartridge. The one-way valve prevents the contents of the desiccator cartridge from back-flowing out of the inlet port. The one way valve may be separate from or incorporated into the inlet port. The desiccator cartridge is removable from the vacuum desiccator and separately disposable. A fresh desiccator cartridge is installed in the desiccator to replace the removed cartridge.

The desiccator cartridge contains a trapping agent for containing the liquids or moisture delivered to the trap under the force of the vacuum. The trapping agent combines with the liquid or moisture to alter its physical features, i.e., from a liquid or vapor to a mixed phase or solid state. Compositions suitable for use as trapping agents in the present invention are selectable by one of ordinary skill in the art in view of the present disclosure and teachings herein. The trapping agent should adsorb, absorb or in some way combine with the liquid or moisture to immobilize and keep it from sloshing in the desiccator cartridge as it is accumulated in the interior chamber. Examples of potentially suitable trapping agents include: a desiccant, an adsorbent and an absorbent. Specific examples include silica gel, sodium polyacrylate, potassium polyacrylamide and related compounds. Such moisture trapping materials are often found in disposable baby diapers and in feminine napkins. The level of moisture in the desiccant chamber is monitored by the moisture sensor circuit. When the amount of moisture trapped in desiccant material approaches saturation, the chamber may either be removed and disposed of or recharged with fresh desiccant material and repositioned in the device (depending on the design of the desiccator cartridge).

The present vacuum desiccator can further comprise a filter for blocking bacteria and/or untrapped moisture from passing into the vacuum pump member or from being vented to atmosphere. The filter may be located proximate the outlet port to protect the pump member and/or proximate the exhaust port to prevent venting bacteria or moisture to atmosphere.

The electric motive means of the vacuum desiccator includes an electric motor. The motor is coupled to the vacuum pump member to drive the pump. The motor may be coupled to the pump head by any of a number of means known to and practicable by the ordinary skilled artisan. For example, the motor shaft may be integrated with the vacuum pump head, it may be mechanically coupled to the vacuum pump so as to be readily separable from the pump head, or it may be magnetically coupled to the pump head so as to, again, be readily separable from the vacuum pump member. A readily separable motive means is particularly useful where the vacuum pump member and the desiccator cartridge are integrated together as a unit.

A purpose of the electrical control circuit is to monitor the condition of the device and to control operation of the motive means. The electrical control circuit includes the electrical power source for the device. The power source comprises an electrical power storage means, such as a battery. A feature of the power source is that the electrical storage means is removable from the electrical control circuit and is replaceable. Additionally, the electric control circuit optionally includes other ancillary circuits for the operation and control of the device. These circuits include: a moisture sensor circuit for detecting the presence of moisture proximate the low pressure port of the vacuum pump member; a timer circuit for intermittently operating the electric motive means; a vacuum pressure sensor circuit for detecting a vacuum pressure in the interior chamber or elsewhere in the device; and a pressure differential sensor circuit for sensing a difference in pressure between the inlet and outlet ports of the desiccator cartridge.

The component parts of the vacuum desiccator device which are in gas/liquid flow communication are replaceable. This allows the components of the device which are exposed to contact with the wound fluids to be separable from the other components of the device to facilitate cleaning or disposal of contaminated components.

The present personally portable vacuum desiccator can further comprise a housing for containing some or all of the component parts of the device. For example, the housing may contain the electric motive means and the electrical control circuit, while the other components are simply attached to the housing, e.g., an integrated pump head/trap combination assembly. Other configurations obviously are possible, such as a housing containing the electric motive means and the electrical control circuit and additionally either or both of the trap (desiccator cartridge) and the vacuum pump member.

Additionally, the present vacuum desiccator device may comprise the battery being housed in a battery compartment attached or integral to the desiccator cartridge of the moisture trap. In this configuration, the battery and the desiccator cartridge are replaceable in the device as a single unit.

It is a feature of the present invention that the personally portable vacuum desiccator can be used as part of a treatment regimen to promote wound healing by drawing excess wound exudate away from the wound site. As an example of using the desiccator for this purpose, an open, full thickness dermal wound is covered with an air tight dressing, such as are commercially available. The input end of the gas/liquid flow delivery tube is positioned under the dressing in flow communication with the wound site. The vacuum desiccator is activated, a low negative pressure is produced at the wound site via the delivery tube and excess fluids excreted by the wound are removed under the force of the low negative pressure.

FIG. 1 is a schematic diagram of the major components of the present vacuum desiccator showing the electric control circuit contained in a housing with the motor coupled to the trap and vacuum pump member.

FIG. 2A is a side elevation and partial cross-sectional view of the desiccator cartridge of the present device, showing the interior chamber containing a trapping agent.

FIG. 2B is a top plan and partial cross-section view of the desiccator cartridge showing the interior chamber containing alternative trapping agents and showing alternative moisture/fluid sensors for detecting fluid in flow path proximate the outlet port of the cartridge. Also shown is a separately mountable outlet microfilter.

FIG. 3 is a partial top plan view of the outlet port portion of the desiccator cartridge showing in phantom a micro-filter integral to the desiccator cartridge flow path, and also a vacuum pressure sensor mountable to the outlet port of the cartridge.

FIG. 4 is a cross-sectional view through a side elevation of a combination of a desiccator cartridge and vacuum pump head as an integral unit.

FIG. 5A is a partial top plan view of the inlet portion of the desiccator cartridge showing the inlet port with a one-way gas/fluid flow valve installed.

FIGS. 5B and 5C are partial cross-sectional views of two types of one-way gas/liquid flow valves.

FIG. 6 is a block diagram of the electric control circuit of the desiccator device indicating its sub-circuits and the interconnect relationship with certain ancillary components.

FIGS. 7A and 7B show alternative strain-gauge means for monitoring vacuum pressure in the interior chamber of the desiccator cartridge.

FIG. 8 is a partial cross-section of a side elevation of a desiccator cartridge showing the interior components and their layout.

FIG. 9A is an exploded view of a side elevation of a desiccator cartridge showing a cover member incorporating an integral gas flow channel.

FIG. 9B is a bottom plan view of the cover member of FIG. 9A illustrating an example of an integral gas flow channel layout (in phantom) and the perforations by which the integral channel is in gas flow communication with the interior chamber of the desiccator cartridge.

The personally portable vacuum desiccator is a device useful as a source for providing a low vacuum pressure for removing excess wound exudate from dressed dermal wounds. This application of present personally portable vacuum desiccator is useful for promoting wound healing by draining such excess wound exudate from the wound site.

Referring now to the drawings, the details of preferred embodiments of the present invention are graphically and schematically illustrated. Like elements in the drawings are represented by like numbers, and any similar elements are represented by like numbers with a different lower case letter suffix.

As shown in FIG. 1, the present invention is a personally portable vacuum desiccator 10 comprises a trap 12, a vacuum pump member operable to provide a source of low vacuum pressure, an electric motive or drive means 36 for operating the vacuum pump member, and an electrical control circuit, including an electrical power source. The control circuit is electrically connected to the electric motive means to control its operation, i.e., to turn it on and off. The trap 12 includes a desiccator cartridge 14 The desiccator cartridge 14 has an interior chamber 16 containing a trapping agent 54 (see FIG. 2). Additionally, the desiccator cartridge 14 has an inlet port 18 and an outlet port 20 in gas/liquid communication with the interior chamber 16 of the cartridge 14. A vacuum pump head or member 22 serves as a source for a low pressure vacuum of about 250 mm Hg or less. The vacuum pump member 22 is placed after desiccant chamber 14 in the gas/liquid flow pathway to facilitate preventing fluid from entering the vacuum pump member. The vacuum pump head 22 has a low pressure port 24 and an exhaust port 26. The low pressure port 22 is in gas/liquid flow communication with the outlet port 20 of the desiccator cartridge 14. The exhaust port 26 of the vacuum pump head 22 is vented to atmosphere. When operated, the vacuum pump member 22 provides a low vacuum pressure to the interior chamber 16 of the desiccator cartridge. As further shown in FIG. 1., an electric motive means 36 is in communication with the vacuum pump member 22 via a coupling 38. The electric motive means 36 is a low voltage electric motor, which is operable to drive the vacuum pump member 22, thus providing a low vacuum pressure at the pump member's low pressure port 24. The electrical control circuit 40, including an electrical power source 46, is in electrical communication with the electric motive means 36 via an electric motor lead 42. The control circuit 40 controls the operation of the electric motive means.

Optionally, a delivery tube 32 is included with the desiccator device 10 to put the trap 14 in gas/liquid flow communication with a location to which a low negative vacuum pressure is to be applied, such as a wound site covered by an occlusive dressing (not shown). The delivery tube 32 consists of a single passage gas/liquid flow path, having an input end 33 and an output end 24, the output end 34 being connected to the inlet port 18 of the desiccator cartridge 14.

The components of the personally portable vacuum desiccator 10 can further comprise a housing 50 for containing or mounting the component parts of the vacuum desiccator 10. As exemplified in FIG. 1, the housing 50 contains the electric motive means 26 and the electrical control circuit 40. Alternatively, the housing 50 can contain the electric motive means 36, the electrical control circuit 40 and additionally, the desiccator cartridge 14 and/or the vacuum pump member 22.

The trap 12 comprises a desiccator cartridge 14. As shown in FIGS. 2A and 2B, the desiccator cartridge 14 encloses an interior space or chamber 16. The desiccator cartridge 14 is of a design and material construction to withstand the application of an appropriate vacuum without substantial collapse of the interior chamber 16. Some distortion of the cartridge while under vacuum is desirable in some applications, e.g., where buffering of the vacuum pressure of the system is beneficial or distortion of the chamber 16 is used as an index of the vacuum pressure within the interior chamber 16.

A trapping agent 54 is contained within the interior chamber 16 to retain (trap) fluids and moisture that enter the chamber 16. There are a variety of compositions available in the art that are appropriate trapping agents for practice in the present invention. A specific composition or combination of compositions useful as the trapping agent 54 is readily selectable by one of ordinary skill in the art in view of the teaching herein and in consideration of the characteristics of the fluid to be trapped. Examples of classes of such compositions suitable as trapping agents 54 include desiccants, adsorbents, absorbents and the combination of any of these. Specific examples include silica gel, sodium polyacrylate, potassium polyacrylamide and related compounds. Such moisture trapping materials are often found in disposable baby diapers and in feminine napkins. These compositions may be particulate trapping agents 54a or fibrous trapping agents 54b. In a preferred embodiment, the trapping agent 54 was a pillow-like structure (see FIG. 8), which included a fiber matrix material which served to contain and somewhat immobilize the other loose components of the trapping agent, and to act as a wick to distribute the fluid as it entered the interior chamber. The level of moisture in the interior chamber 16 proximate the outlet port 20 is monitored by a moisture sensor 84 (see FIG. 1). When the amount of moisture retained by the trapping agent 54 approaches saturation (as detected by the moisture sensor 84 or indicated by other means), the desiccator cartridge 14 may either be removed and disposed of or recharged with fresh desiccant material and repositioned in the device (depending on the design of the desiccator cartridge). Other means for detecting the degree of saturation of the trapping agent 54 are available. For example, the desiccant cartridge 14 may be constructed in part from a transparent material, allowing the trapping agent 54 to be directly observed. The degree of saturation of the trapping agent 54 maybe indicated by a color change in a component of the trapping agent 54 in response, for example, to a pH change or degree of hydration.

In a preferred embodiment of the vacuum desiccator 10, all of the components in gas/liquid flow communication are replaceable. This allows the components of the device that are exposed to contact with the wound fluids to be separable from the other components of the device to facilitate cleaning or disposal of contaminated components. In particular, the desiccator cartridge 14 is removable from the device 10 and separately disposable. A fresh desiccator cartridge 14 is installed in the desiccator 10 to replace the removed cartridge. Alternatively, the cartridge 14 can be constructed to make its interior chamber 16 accessible, e.g., through a lid or by disassembly, whereby the used trapping agent 54 can be replaced with fresh. The refreshed desiccator cartridge may then be reattached to vacuum desiccator 10. This feature may be useful where the desiccator cartridge and vacuum pump head are combined as a single integrated unit (see FIG. 4).

The desiccator cartridge 14 has a single, gas/liquid flow pathway, which is the inlet port 18, as the only inlet path into the trap 12. The flow path at the inlet port 18 is unidirectional, in that gas/liquid flow can enter the trap via the inlet port 18, but not exit or back flow out of the trap 14 via the inlet port 18. Unidirectional flow at the inlet port is accomplished by a one-way valve 30 located proximate the inlet port 18 of the desiccator cartridge 14 (see FIG. 5A). The one-way valve 30 prevents the contents of the desiccator cartridge 14 from back-flowing out of the inlet port 18. The one-way valve 30 maybe separable from the desiccator cartridge 14, as shown in FIG. 5A, or it may be incorporated into the cartridge 14 proximate the inlet port 18 (not shown). One-way gas/liquid flow valves practicable in the present invention are known in the art and selectable by the ordinary skilled artisan for use in the present invention. Examples of such one-way valves include biased and/or unbiased piston-type 30a and ball-stop 30b valves as exemplified in FIGS. 5B and 5C.

A micro-filter 28 useful for blocking bacteria and/or untrapped moisture from passing into the vacuum pump member or from being vented to atmosphere is located in the gas/liquid flow path of the device 10 after the interior chamber 16 of the desiccator cartridge. The micro-filter 28 may be located proximate the outlet port 20 to protect the pump member 22 and/or proximate the exhaust port 26 to prevent venting bacteria (or moisture) to atmosphere. The micro-filter may be an in-line micro-filter 28a separate from the desiccator cartridge as shown in FIG. 2B, or an integral micro-filter 28b incorporated into the cartridge 14 proximate the outlet port 20 as shown in FIG. 3.

As shown in FIG. 1, an electric motive means 36 is coupled to the vacuum pump member 22 of the vacuum desiccator 10. In the preferred embodiment, the motive means 36 is an electric motor. Electric motors practicable in the present invention are known to and selectable by one of ordinary skill in the art in view of the teachings and figures contained herein. For example, a miniature, oil-less diaphragm pump is commercially available from the Gast Manufacturing, Inc. (Michigan): series 3D 1060, model 101-1028. The electric motor 36 communicates with the vacuum pump member 22 via a drive coupling 38 to drive the pump. The drive coupling 38 for connecting the motor 36 to the pump head 22 may be accomplished by any of a number of means known to and practicable by the ordinary skilled artisan. For example, a motor shaft coupling 38 maybe integrated with the vacuum pump head, i.e., the motor 36 and pump member 22 are substantially a single unit. Alternatively, a motor shaft coupling 38 may be mechanically coupled to the vacuum pump head 22 so as to be readily separable from the pump head 22. For instance, as exemplified in FIG. 4, the hub 100 of a rotary-vane pump head 22a has a motor shaft receiver 102 for accepting the end or spindle of a shaft coupling 38 of a motor 36. The shaft receiver 102 has a threaded, keyed or similar interfacing configuration (not shown) complementary to the spindle or end of the shaft coupling 38 of the motor 36. As a further alternative, the motor 36 maybe magnetically coupled (not shown) to the pump head 22 so as to again be readily separable from the vacuum pump member 22. A readily separable motive means 36 is particularly useful where the vacuum pump member 22 and the desiccator cartridge 14 are integrated together as a unit, as shown in FIG. 4.

As shown in FIG. 6, the present vacuum desiccator device 10 includes an electrical control circuit 40 that comprises logic and switching circuits and a number of ancillary circuits and functions, external sensors, electrical connections and a power source. In the preferred embodiment, the purpose of the electrical control circuit 40 is to monitor the condition of the device 10 and to control operation of the motive means 36. The ancillary circuits can be chosen for inclusion in an embodiment of the device 10 to affect one or more of the following functions: device data Input/Output, electrical power, sensor signal processing and motor control (power to the motor). An I/O unit 70 for accomplishing device data input and out put can include data input means such as a power and data entry switches (e.g., a key pad and/or on-off switch), and a readout display and alarms. Such I/O units 70 are well known in the art, and are readily practicable in the present invention by the ordinary skilled artisan. Other ancillary circuits and other sensors 88 may be provided at the user's option, and are similarly accomplishable by the ordinary skilled artisan.

In the preferred embodiment exemplified in FIG. 1, the power source 46 for storing and providing electrical energy for the device 10 is a battery 60. In the preferred embodiment, the power source 46 is removable from the electrical control circuit 40 and is easily replaceable. The POLAROID® P100 Polapulse™battery is an example of an appropriate battery 60 useful as a power source 46 in the present vacuum desiccator device 10 in a preferred embodiment because of its planar configuration and low profile. See FIGS. 7A and 7B.

It is intended that the electrical control circuit have sensory capabilities to detect certain physical conditions of the device 10, and to utilize the conditions to control operation of the motor 36, and other appropriate functions of the control circuit 40. These ancillary sensory circuits include: a moisture sensor 84 and circuit, for detecting the presence of moisture proximate the outlet port 20 of the desiccant cartridge 14; at least one vacuum pressure sensor 76 and circuit, for detecting a vacuum pressure in the interior chamber or elsewhere in the device; and a pressure differential sensor circuit, for sensing a difference in pressure between two sections of the gas/liquid flow pathway of the device 10, e.g., between the inlet and outlet ports 18 & 20 of the desiccator cartridge 14. The sensors are interconnected to the control circuit 40 via electrical leads 44. Sensors appropriate for accomplishing the various sensory functions of an electrical control circuit are known in the art and are readily adaptable for practice in the present invention by the ordinary skilled artisan. For example, a vacuum pressure sensor 76 (MPL model 500, diaphragm-type pressure differential sensor) suitable for practice in the present device is commercially available from Micro Pneumatic Logic, Inc. (Florida) from a line of pressure sensors. Other types of sensors are adaptable for use in the present invention for detecting or sensing pressure, such as surface strain gauges mounted on the surface of the desiccator cartridge 14, and optical displacement gauges mounted to transmit light through the surfaces of desiccator cartridge 14. For example, an optical fiber strain gauge 77 is commercially available from FISO Technologies (Quebec, model FOS “C” or “N”) from a line of optical strain gauges. This sensor can be used to monitor and indicate the presence of a vacuum in the desiccator cartridge by displacement (bending) of the cartridge surface under the force of a vacuum in the interior chamber 16. Optical displacement/strain gauges 78 are also commercially, including for the detection of fluid intrusion into a section of tubing. These gauges typically comprise a combination light source/detector 78a and a mirror 78b. Distortion of the surface of the desiccator cartridge 14 on which the mirror 78b is mounted alters the reflection path of the emitted light as it passes through the cartridge to return to the detector, which alteration is detectable. Of course, this requires the walls of the cartridge 14 proximate the optical displacement gauge 78 to be transparent to the light. The use of more than one pressure sensor 76 can allow sensing and/or measurement of the pressure differential between two different points in the gas/liquid flow pathway, such as between the inlet and outlet ports 18 & 20 of the desiccator cartridge 14.

The vacuum pressure sensor 76 is used to monitor the vacuum pressure in the interior chamber 16 of the desiccator cartridge 14. When the vacuum pressure detected in the chamber 16 by the pressure sensor 76 is sufficient, the electric control circuit 40 may switch off the motor 36, thereby conserving electrical power. When the vacuum pressure detected in the chamber 16 by the pressure sensor 76 is no longer sufficient the control circuit 40 may switch on the motor 36 to reestablish an appropriate vacuum pressure in the interior chamber 16 of the desiccator cartridge 14. Also, the electrical control circuit 40 can include a clock/timer circuit for intermittently operating the electric motive means 36, as another way of conserving electrical power. The I/O unit 70 can be utilized to set the time interval for the control circuit's intermittent operation of the motor 36.

In an alternative preferred embodiment of the vacuum desiccator 10, the battery 60 of the power source 46 is integral with the desiccator cartridge 14a. As exemplified in FIG. 8, the battery 60 is contained in a battery compartment 110, which is integral to the structure of the desiccator cartridge 14a. Battery leads 112 connect the battery 60 to electrical battery contacts 114 on the exterior surface 120 of the desiccator cartridge 14a. In this embodiment, the desiccator cartridge 14a and battery 60 are replaceable as a unit.

FIG. 8 also illustrates another preferred feature of a desiccator cartridge 14, in which a gas flow channel is disposed inside the interior chamber 16 of the cartridge 14a. In the embodiment illustrated, the flow channel 120 is a tube connected to the outlet port 20 and having a length sufficient to allow it to be coiled or snaked about the interior chamber 16 (also see FIG. 9B). The flow channel tube 120 has perforations 122 along its length, or is otherwise constructed, to allow gas flow from the interior chamber 16 into the lumen of the flow channel tube 120 under the force of the vacuum pressure from the pump member 22. Further shown in FIG. 8, is trapping agent 54c having a pillow-like structure. The flow channel tube 120 is laid out on one side of the pillow trapping agent 54c. In the preferred embodiment, the pillow trapping agent 54c was constructed using 10 grams of sodium polyacrylate distributed between two layers of an elastic mesh material (nylon stocking). In addition to elastic mesh material, other fabrics are suitable for practice with the moisture trapping pillow 54c, including knitted fabric mesh materials like gauze and similar fabrics. To maintain even distribution of the sodium polyacrylate, the two layers of elastic mesh material were sewn together to form compartments. The volume of the interior chamber 16 of the desiccator cartridge 14 was sufficient to hold the pillow and about 50 cc of trapped moisture.

A flow channel may be accomplished by means other than a tube. For example, a flow channel may be integrated into the desiccator cartridge 14 and be in gas flow communication with the interior chamber 16. This embodiment of a desiccator cartridge 14 can be accomplished as shown in FIGS. 9A and 9B, wherein the cartridge 14b has a cover member 124 and a body member 126 (FIG. 9A). The cartridge cover member 124 has a gas flow channel 120a integrated into it. The integral flow channel 120a has perforations 122a along its length, or is otherwise constructed, to allow gas flow from the interior chamber into the lumen of the integral channel 120a under the force of the vacuum pressure from the pump member 22.

While the above description contains many specifics, these should not be construed as limitations on the scope of the invention, but rather as exemplifications of one or another preferred embodiment thereof. Many other variations are possible, which would be obvious to one skilled in the art. Accordingly, the scope of the invention should be determined by the scope of the appended claims and their equivalents, and not just by the embodiments.

Watson, Richard

Patent Priority Assignee Title
10980924, Sep 13 2011 SOLVENTUM INTELLECTUAL PROPERTIES COMPANY Reduced-pressure canisters having hydrophobic pores
11173236, Dec 23 2009 SOLVENTUM INTELLECTUAL PROPERTIES COMPANY Reduced-pressure, multi-orientation, liquid-collection canister
8344314, Jul 12 2007 ABB Research LTD Pressure sensor
8986269, Nov 11 2010 ULCERX MEDICAL INC Wound leakage vacuum collection device
9327063, Sep 13 2011 SOLVENTUM INTELLECTUAL PROPERTIES COMPANY Reduced-pressure canisters having hydrophobic pores
9814806, Dec 23 2009 SOLVENTUM INTELLECTUAL PROPERTIES COMPANY Reduced-pressure, multi-orientation, liquid-collection canister
Patent Priority Assignee Title
1355846,
2547758,
2632443,
2682873,
2910763,
2969057,
3026874,
3066672,
3089492,
3142298,
3367332,
3472230,
3520300,
3568675,
3648692,
3682180,
3826254,
4080970, Nov 17 1976 Post-operative combination dressing and internal drain tube with external shield and tube connector
4096853, Jun 21 1975 Hoechst Aktiengesellschaft Device for the introduction of contrast medium into an anus praeter
4139004, Feb 17 1977 Bandage apparatus for treating burns
4165748, Nov 07 1977 Catheter tube holder
4184510, Mar 15 1977 Fibra-Sonics, Inc. Valued device for controlling vacuum in surgery
4233969, Nov 11 1976 ANSONIA NOMINEES LIMITED, 1 LOVE LANE, LONDON, EC2; ENGLISH ASSOCIATION OF AMERICAN THE, BOND AND SHARE HOLDERS LIMITED, 4 FORE STREET, LONDON EC2; FOSTER AND BRAITHWAITE, 22 AUSTIN FRIARS, LONDON, EC2; JESSEL GROUP THE, 30 REIGATE HILL, REIGATE, SURREY RH2 OAR; STRABUL NOMINEES LIMITED, 3 MOORGATE PLACE, LONDON, EC2; LLOYDS BANK BRANCHES NOMINEES LIMITED, 111 OLD BROAD STREET, LONDON, EC2 Wound dressing materials
4245630, Oct 08 1976 T. J. Smith & Nephew, Ltd. Tearable composite strip of materials
4256109, Jul 10 1978 Allegiance Corporation Shut off valve for medical suction apparatus
4261360, Aug 10 1979 Urethral Devices Research, Inc. Transurethral irrigation pressure controller
4261363, Nov 09 1979 C R BARD, INC , A CORP OF NJ Retention clips for body fluid drains
4275721, Nov 28 1978 Procter & Gamble Hygien Aktiebolag Vein catheter bandage
4284079, Jun 28 1979 Method for applying a male incontinence device
4297995, Jun 03 1980 KEY PHARMACEUTICALS, INC Bandage containing attachment post
4333468, Aug 18 1980 Mesentery tube holder apparatus
4373519, Jun 26 1981 Minnesota Mining and Manufacturing Company Composite wound dressing
4382441, Dec 06 1978 Device for treating tissues, for example skin
4392853, Mar 16 1981 Sterile assembly for protecting and fastening an indwelling device
4392858, Jul 16 1981 Sherwood Services AG; TYCO GROUP S A R L Wound drainage device
4409974, Jun 29 1981 Bone-fixating surgical implant device
4419097, Jul 31 1981 Rexar Industries, Inc. Attachment for catheter tube
4421583, Apr 18 1979 Courtaulds Limited Man-made filaments and method of making wound dressings containing them
4444545, Apr 08 1982 Pump control system
4464172, Jun 29 1971 Computer-control medical care system
4465485,
4468219, Dec 20 1983 Gambro, Inc Pump flow rate compensation system
4475909, May 06 1982 Male urinary device and method for applying the device
4480638, Mar 11 1980 Cushion for holding an element of grafted skin
4525166, Nov 21 1981 B BRAUN-SSC AG Rolled flexible medical suction drainage device
4525374, Feb 27 1984 MANRESA, INC Treating hydrophobic filters to render them hydrophilic
4533352, Mar 07 1983 PMT Inc. Microsurgical flexible suction mat
4536217, Jul 30 1980 Ceskoslovenska akademie ved of Praha; Akademie der Wissenschaften der DDR Absorbing cover for wounds and the method for manufacturing thereof
4540412, Jul 14 1983 The Kendall Company Device for moist heat therapy
4543100, Nov 01 1983 Catheter and drain tube retainer
4548202, Jun 20 1983 Ethicon, Inc. Mesh tissue fasteners
4551139, Feb 08 1982 Marion Laboratories, Inc. Method and apparatus for burn wound treatment
4569348, Feb 22 1980 VELCRO INDUSTRIES B V Catheter tube holder strap
4605399, Dec 04 1984 Complex, Inc. Transdermal infusion device
4608041, Oct 14 1981 Device for treatment of wounds in body tissue of patients by exposure to jets of gas
4640688, Aug 23 1985 Mentor Corporation Urine collection catheter
4655754, Nov 09 1984 Stryker Corporation Vacuum wound drainage system and lipids baffle therefor
4664662, Aug 02 1984 Smith and Nephew Associated Companies plc Wound dressing
4710165, Sep 16 1985 SURGIDYNE, INC Wearable, variable rate suction/collection device
4733659, Jan 17 1986 Seton Company Foam bandage
4743232, Oct 06 1986 The Clinipad Corporation Package assembly for plastic film bandage
4753230, Jun 12 1985 J. R. Crompton P.L.C. Wound dressing
4758220, Sep 26 1985 ALCON MANUFACTURING, LTD Surgical cassette proximity sensing and latching apparatus
4787888, Jun 01 1987 University of Connecticut Disposable piezoelectric polymer bandage for percutaneous delivery of drugs and method for such percutaneous delivery (a)
4820291, Jun 06 1983 Nippon Medical Supply Corporation Urinary applicance
4826494, Nov 09 1984 Stryker Corporation Vacuum wound drainage system
4838883, Mar 07 1986 Nissho Corporation Urine-collecting device
4840187, Sep 11 1986 BARD LIMITED, PENNYWELL INDUSTRIAL ESTATE, SUNDERLAND SR4 9EW, ENGLAND Sheath applicator
4848364, Oct 23 1986 BOSMAN, C Covering sheet which can be made form-retaining
4863449, Jul 06 1987 Hollister Incorporated Adhesive-lined elastic condom cathether
4872450, Aug 17 1984 Wound dressing and method of forming same
4878901, Dec 07 1987 Condom catheter, a urethral catheter for the prevention of ascending infections
4897081, May 25 1984 TMCA FOUNDATION INC Percutaneous access device
4906233, May 29 1986 Terumo Kabushiki Kaisha Method of securing a catheter body to a human skin surface
4906240, Feb 01 1988 Innovative Technologies Limited Adhesive-faced porous absorbent sheet and method of making same
4919654, Aug 03 1988 KALT MEDICAL CORPORATION, A CORP OF FLORIDA IV clamp with membrane
4930997, Aug 19 1987 Portable medical suction device
4941882, Mar 14 1987 Smith and Nephew Associated Companies, p.l.c. Adhesive dressing for retaining a cannula on the skin
4953565, Nov 26 1986 Shunro Tachibana Endermic application kits for external medicines
4957484, Jul 26 1988 Automedix Sciences, Inc. Lymph access catheters and methods of administration
4969880, Apr 03 1989 KCI Licensing, Inc Wound dressing and treatment method
4985019, Mar 11 1988 Warsaw Orthopedic, Inc X-ray marker
4996128, Mar 12 1990 ECOTALITY, INC Rechargeable battery
5002541, Jun 19 1984 MARTIN AND ASSOCIATES, INC , A CORP OF KANSAS Method and device for removing and collecting urine
5037397, Dec 27 1985 Medical Distributors, Inc. Universal clamp
5073172, Jan 20 1987 MEDINORM AKTIENGESELLSCHAFT Device for aspirating wound fluids
5086170, Jan 16 1989 Roussel Uclaf Process for the preparation of azabicyclo compounds
5092858, Mar 20 1990 Becton, Dickinson and Company Liquid gelling agent distributor device
5100396, Apr 03 1989 KCI Licensing, Inc Fluidic connection system and method
5134994, Feb 12 1990 SAY, SAMUEL L AND BETTY JANE SAY, TRUSTEES OF THE SAY FAMILY TRUST DATED DECEMBER 2, 1995 Field aspirator in a soft pack with externally mounted container
5149331, May 03 1991 Ariel, Ferdman Method and device for wound closure
5167613, Mar 23 1992 The Kendall Company Composite vented wound dressing
5176663, Dec 02 1987 Principal AB; PHARMARK INNOVATIONS, LTD ; INNOVATIVE THERAPIES, INC Dressing having pad with compressibility limiting elements
5180375, May 02 1991 Woven Surgical drain and woven surgical sponge
5211639, May 30 1990 Evacuator assembly
5215522, Jul 23 1984 CITIBANK, N A Single use medical aspirating device and method
5232453, Jul 14 1989 CONVATEC TECHNOLOGIES INC Catheter holder
5254084, Mar 26 1993 Peritoneal catheter device for dialysis
5261893, Apr 03 1989 KCI Licensing, Inc Fastening system and method
5278100, Nov 08 1991 Micron Technology, Inc. Chemical vapor deposition technique for depositing titanium silicide on semiconductor wafers
5279550, Dec 19 1991 Gish Biomedical, Inc. Orthopedic autotransfusion system
5279602, Mar 30 1989 HOSPIRA, INC Suction drainage infection control system
5298015, Jul 11 1989 Nippon Zeon Co., Ltd. Wound dressing having a porous structure
5342376, May 03 1993 Ethicon, Inc Inserting device for a barbed tissue connector
5344415, Jun 15 1993 DeRoyal Industries, Inc. Sterile system for dressing vascular access site
5356386, Jun 05 1987 Uresil, LLC Apparatus for locating body cavities
5358494, Jul 11 1989 Principal AB; PHARMARK INNOVATIONS, LTD Irrigation dressing
5419769, Oct 23 1992 SMITHS MEDICAL ASD, INC Suction systems
5429601, Feb 12 1992 American Cyanamid Company Aspiration control system
5437622, Apr 29 1992 Laboratoire Hydrex (SA) Transparent adhesive dressing with reinforced starter cuts
5437651, Sep 01 1993 Edwards Lifesciences Corporation Medical suction apparatus
5449347, Jul 05 1994 AIR FORCE, DEPARTMENT OF, UNITED STATES OF AMERICA, THE Patient transport, plural power source suction apparatus
5458582, Jun 15 1992 Ethicon, Inc Postoperative anesthetic delivery device and associated method for the postoperative treatment of pain
5466229, Aug 06 1993 KUNTZ, DAVID H Fluid collection system
5522808, Mar 16 1992 EnviroSurgical, Inc. Surgery plume filter device and method of filtering
5527293, May 14 1901 KCI Licensing, Inc Fastening system and method
5549584, Feb 14 1994 Smith & Nephew, Inc Apparatus for removing fluid from a wound
5549585, Jul 01 1993 AMSINO MEDICAL GROUP HOLDINGS CO , LTD Gelling treatment for suction drainage system
5556375, Jun 16 1994 Hercules Incorporated Wound dressing having a fenestrated base layer
5565210, Mar 22 1993 Johnson & Johnson Medical, Inc. Bioabsorbable wound implant materials
5599292, Jul 24 1990 Multifunctional devices for use in endoscopic surgical procedures and methods therefor
5607388, Jun 16 1994 Hercules Incorporated Multi-purpose wound dressing
5628735, Jan 11 1996 Surgical device for wicking and removing fluid
5634893, Apr 24 1995 Haemonetics Corporation Autotransfusion apparatus
5636643, Nov 14 1991 WAKE FOREST UNIVERSITY HEALTH SCIENCES Wound treatment employing reduced pressure
5645081, Nov 14 1991 WAKE FOREST UNIVERSITY HEALTH SCIENCES Method of treating tissue damage and apparatus for same
5678564, Aug 07 1992 CONVATEC TECHNOLOGIES INC Liquid removal system
5679371, Dec 08 1994 Kuraray Co., Ltd. Wound dressing
5681579, Mar 22 1993 CONVATEC TECHNOLOGIES INC Polymeric support wound dressing
5700477, Mar 25 1992 Johnson & Johnson Medical, Inc. Bioabsorbable wound implant materials
5733337, Apr 07 1995 Organogenesis, Inc Tissue repair fabric
5741237, Apr 10 1995 System for disposal of fluids
5759830, Nov 20 1986 Massachusetts Institute of Technology; Children's Medical Center Corporation Three-dimensional fibrous scaffold containing attached cells for producing vascularized tissue in vivo
5776119, Sep 30 1996 Portable suction unit
5827246, Feb 28 1996 Kimberly-Clark Worldwide, Inc Vacuum pad for collecting potentially hazardous fluids
5836970, Aug 02 1996 The Kendall Company Hemostatic wound dressing
5885237, Oct 05 1993 CONVATEC TECHNOLOGIES INC Trimmable wound dressing
5891111, Apr 14 1997 COLOPLAST A S Flexible surgical drain with a plurality of individual ducts
5928174, Nov 14 1997 CITIBANK, N A Wound dressing device
5944703, Oct 11 1994 Research Medical Pty Ltd. Wound drainage system
5945004, Feb 01 1996 Daiken Iki Co., Ltd. Method and apparatus for treating waste liquids containing body fluids
5974344, Mar 02 1998 Wound care electrode
5977428, Dec 20 1996 ProCyte Corporation Absorbent hydrogel particles and use thereof in wound dressings
5981822, Apr 28 1998 KCI USA, INC Absorbent wound dressings
6024731, Oct 18 1995 Summit Medical Limited Wound drainage system
6071267, Feb 06 1998 KCI Licensing, Inc Medical patient fluid management interface system and method
6077526, May 17 1995 Texon UK Limited Wound dressing
6095998, Jul 29 1998 Procter & Gamble Company, The Expandable bag tampon and spreading tampon applicator therefor
6126675, Jan 11 1999 Ethicon, Inc. Bioabsorbable device and method for sealing vascular punctures
6135116, Jul 28 1997 KCI Licensing, Inc Therapeutic method for treating ulcers
6142982, Nov 14 1995 KCI Licensing, Inc Portable wound treatment apparatus
6152902, Jun 03 1997 Ethicon, Inc Method and apparatus for collecting surgical fluids
6175053, Jun 18 1997 National Institute of Agrobiological Sciences Wound dressing material containing silk fibroin and sericin as main component and method for preparing same
6179804, Aug 18 1999 BUICE-SATTERFIELD, ELAINE Treatment apparatus for wounds
6210360, May 26 1999 Fluid displacement pumps
6235009, Jan 11 1996 Surgical wicking and fluid removal platform
6241747, May 03 1993 Ethicon, Inc Barbed Bodily tissue connector
6245961, Dec 03 1997 SCA Hygiene Products AB Absorbent article
6248112, Sep 30 1998 C R BARD, INC Implant delivery system
6287316, Mar 26 1999 Ethicon, Inc Knitted surgical mesh
6334064, Aug 26 1988 Instrumentarium Corp. Remote sensing tonometric catheter apparatus and method
6345623, Sep 12 1997 KCI Licensing, Inc Surgical drape and suction head for wound treatment
6352525, Sep 22 1999 MEDELA HOLDING AG Portable modular chest drainage system
6356782, Dec 24 1998 DEVICOR MEDICAL PRODUCTS, INC Subcutaneous cavity marking device and method
6365149, Jun 30 1999 ENDO-SURGERY, INC Porous tissue scaffoldings for the repair or regeneration of tissue
6398767, May 27 1997 KCI Medical Resources Process and device for application of active substances to a wound surface area
6411853, Jul 25 1997 SOCIETE DE DEVELOPPEMENT ET DE RECHERCHE INDUSTRIELLE Device for therapeutic treatment of wounds
6488643, Oct 08 1998 Huntleigh Technology Limited Wound healing foot wrap
6493568, Jul 19 1994 Huntleigh Technology Limited Patient interface system
6503450, Dec 30 1998 ARG MEDICAL SOLUTIONS LLC Integrated blood oxygenator and pump system
6514515, Mar 04 1999 TEPHA, INC Bioabsorbable, biocompatible polymers for tissue engineering
6530472, Feb 25 2000 Technicor, Inc. Shipping container with anti-leak material
6536291, Jul 02 1999 CiDRA Corporate Services, Inc Optical flow rate measurement using unsteady pressures
6548569, Mar 25 1999 TEPHA, INC Medical devices and applications of polyhydroxyalkanoate polymers
6553998, Sep 12 1997 KCI Licensing, Inc Surgical drape and suction head for wound treatment
6557704, Sep 08 1999 Huntleigh Technology Limited Arrangement for portable pumping unit
6566575, Feb 15 2000 3M Innovative Properties Company Patterned absorbent article for wound dressing
6648862, Nov 20 2001 KCI Licensing, Inc Personally portable vacuum desiccator
6685681, Nov 29 2000 KCI Licensing, Inc Vacuum therapy and cleansing dressing for wounds
6693180, Apr 04 2002 Taiwan Textile Research Institute Composite sponge wound dressing made of β-Chitin and Chitosan and method for producing the same
6695823, Apr 09 1999 KCI Licensing, Inc Wound therapy device
6752794, Nov 29 2000 KCI Licensing, Inc Vacuum therapy and cleansing dressing for wounds
6755807, Nov 29 1999 KCI Licensing, Inc Wound treatment apparatus
6764462, Nov 29 2000 KCI Licensing, Inc Wound treatment apparatus
6767334, Dec 23 1998 KCI Licensing, Inc Method and apparatus for wound treatment
6800074, Nov 29 1999 KCI Licensing, Inc Wound treatment apparatus
6814079, Sep 12 1997 KCI Licensing, Inc Surgical drape and suction head for wound treatment
6840960, Sep 27 2002 Porous implant system and treatment method
6855153, May 01 2001 Embolic balloon
6856821, May 26 2000 KCI Licensing, Inc System for combined transcutaneous blood gas monitoring and vacuum assisted wound closure
6860873, Mar 12 1999 Integ, Inc. Methods for collecting body fluid
6994702, Apr 06 1999 MORGAN STANLEY & CO , INCORPORATED Vacuum assisted closure pad with adaptation for phototherapy
7070584, Feb 16 2001 KCI Licensing, Inc Biocompatible wound dressing
7182758, Nov 17 2003 Apparatus and method for drainage
7361184, Sep 08 2003 Microlin, LLC Device and method for wound therapy
7790945, Apr 05 2004 SOLVENTUM INTELLECTUAL PROPERTIES COMPANY Wound dressing with absorption and suction capabilities
20010001835,
20020077661,
20020095218,
20020115951,
20020120185,
20020143286,
20020150604,
20020161346,
20020165581,
20030015203,
20030040809,
20030072784,
20030109855,
20030158577,
20030208149,
20030212357,
20030225347,
20040030304,
20040073151,
20040230179,
20050065484,
20050261780,
20070185426,
AU550575,
AU745271,
AU755496,
CA2005436,
DE2640413,
DE29504378,
DE4037931,
DE4306478,
EP100148,
EP117632,
EP161865,
EP358302,
EP1018967,
GB2195255,
GB2197789,
GB2220357,
GB2235877,
GB2307180,
GB2329127,
GB2333965,
GB2336546,
GB692578,
JP4129536,
SG71559,
WO2092783,
WO3028786,
WO2004047649,
WO8002182,
WO8704626,
WO9010424,
WO9309727,
WO9420041,
WO9605873,
WO9718007,
WO9913793,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Oct 16 2009KCI Licensing Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
Nov 16 2011ASPN: Payor Number Assigned.
Jun 26 2015REM: Maintenance Fee Reminder Mailed.
Nov 18 2015EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Oct 11 20144 years fee payment window open
Apr 11 20156 months grace period start (w surcharge)
Oct 11 2015patent expiry (for year 4)
Oct 11 20172 years to revive unintentionally abandoned end. (for year 4)
Oct 11 20188 years fee payment window open
Apr 11 20196 months grace period start (w surcharge)
Oct 11 2019patent expiry (for year 8)
Oct 11 20212 years to revive unintentionally abandoned end. (for year 8)
Oct 11 202212 years fee payment window open
Apr 11 20236 months grace period start (w surcharge)
Oct 11 2023patent expiry (for year 12)
Oct 11 20252 years to revive unintentionally abandoned end. (for year 12)