Two or more independent and offset fluid transporting fractals allow the scaling and intermingling of two or more fluids separately and simultaneously prior to contacting the fluids with one another. The device provides rapid and homogeneous mixing and/or reaction.

Patent
   RE42882
Priority
May 17 2001
Filed
May 31 2006
Issued
Nov 01 2011
Expiry
May 17 2022
Assg.orig
Entity
Large
11
53
all paid
1. A structure for mixing at least two fluids, said structure comprising: at least two fluid transporting fractals, namely a first fluid transporting fractal and a second fluid transporting fractal, each said fluid transporting fractal having a respective fluid input which bifurcates to a plurality of fluid outputs, said fluid transporting fractals being positioned offset from one another, each said fluid transporting fractal being configured to facilitate a flow therethrough independent from a flow in said other fluid transporting fractal, a first said output of said first fluid transporting fractal being interconnected to a respective second output of said second fluid transporting fractal by a merging channel, said merging channel providing a zone, isolated from fluid flows from outputs other than from said first and second outputs, wherein fluid exiting said first output of said first fluid transporting fractal may mix with fluid exiting said second output of said second fluid transporting fractal in an environment isolated from fluids exiting said outputs other than said first and second outputs.
0. 8. A structure comprising:
at least two fluid transporting fractals, namely a first fluid transporting fractal and a second fluid transporting fractal, each said fluid transporting fractal having a respective inlet, said respective inlets being physically isolated from one another to permit physically distinct fluid flows in each of said fluid transporting fractals, each said fluid transporting fractal bifurcating from said respective inlet thereof into a plurality of fluid passageways and thereafter to a plurality of respective outlets, said at least two fluid transporting fractals being positioned offset from one another, said outlets of said first fluid transporting fractal being positioned in an alternating arrangement with said outlets of said second fluid transporting fractal proximate an exit surface, with at least one of said outlets of said first fluid transporting fractal being positioned proximate a respective said outlet of said second fluid transporting fractal, wherein fluid exiting said at least one outlet of said first fluid transporting fractal may intermingle with fluid exiting said respective outlet of said second fluid transporting fractal.
2. The structure of claim 1 further including a plurality of merging channels, wherein each merging channel interconnects with a respective said output of said first fluid transporting fractal and a respective said output of said second fluid transporting fractal.
3. The structure of claim 2 wherein the said plurality of merging channels are interconnected one to another to define a single exit flow channel.
4. The structure of claim 3 wherein the said interconnection to form a single flow is accomplished by using a fractal arrangement wherein the direction of flow is from the small scale end of the fractal arrangement to the large scale end of the fractal arrangement.
5. The structure of claim 1 further including an enclosure, wherein at least some portion of one or more of said fluid transporting fractals is disposed within said enclosure such that a heat exchange fluid resident within said enclosure can pass over the outside surface of the enclosed fluid transporting fractals.
6. The structure of claim 1 further including an enclosure wherein at least some portion of one or more of said fluid transporting fractals is disposed within said enclosure such that the enclosure can be used for attaching the structure to a support structure.
7. The structure of claim 1 wherein each said merging channel is associated with a contact channel for directing fluid from said merging channel to a single exit outlet of said structure.
0. 9. The structure of claim 8 wherein each said outlet of said first fluid transporting fractal is positioned physically proximate a counterpart said outlet of said second fluid transporting fractal to permit a mixing of a first fluid exiting each said outlet of said first fluid transporting fractal with a second fluid exiting from said counterpart outlet of said second fluid transporting fractal.
0. 10. The structure of claim 8 wherein said passageways of each said fluid transporting fractal are physically isolated from said passageways of said other fluid transporting fractal.
0. 11. The structure of claim 8 further including an enclosure wherein at least some portion of at least one fluid transporting fractal is positioned within said enclosure.
0. 12. The structure of claim 11 wherein said enclosure in constructed to facilitate the passage over said portion of at least one fluid transporting fractal of a heat exchange fluid.
0. 13. The structure of claim 12 wherein said heat exchange fluid is resident in said enclosure.
0. 14. The structure of claim 8 wherein a geometry of said first fluid transporting fractal is identical to a geometry of said second fluid transporting fractal.
0. 15. The structure of claim 8 wherein a geometry of said first fluid transporting fractal is different from a geometry of said second fluid transporting fractal.
0. 16. The structure of claim 8 further including an exit surface positioned proximate said outlets.
0. 17. The structure of claim 16 wherein said exit surface is planar.
0. 18. The structure of claim 16 wherein said exit surface is nonplanar.
0. 19. The structure of claim 18 wherein said exit surface is a curved surface.
0. 20. The structure of claim 18 wherein said exit surface is of irregular shape.
0. 21. The structure of claim 8 wherein at least one of said fluid transporting fractals is bifurcated perpendicular to a direction of flow of a respective inlet thereof.
0. 22. The structure of claim 21 wherein at least one of said fluid transporting fractals is bifurcated perpendicular to a direction of flow of both said respective inlet and at least one outlet thereof.
0. 23. The structure of claim 8 wherein at least one of said fluid transporting fractals is bifurcated at an angle between perpendicular and parallel to a flow direction of said inlet of said at least one of said fluid transporting fractals.
0. 24. The structure of claim 8 wherein said at least one of said fluid transporting fractals is bifurcated at an angle between perpendicular and parallel to a flow direction of said inlet and at least one outlet of said at least one of said fluid transporting fractals.
0. 25. The structure of claim 8 wherein said second fluid transporting fractal is positioned within said first fluid transporting fractal.

This application claims the benefit of U.S. Provisional Application No. 60/291,769, filed May 17, 2001.

1. Field of the Invention

The instant invention relates to mixing and reactor equipment. More specifically the invention is directed to equipment for mixing and reacting one or more fluids. The invention finds application in single as well as multi-phase environments.

2. State of the Art

Many fluid processes benefit from efficient mixing. Nearly all conventional art mixing equipment, such as blenders, impellers, static mixers, and impinging devices, scale and intermingle the fluids to be mixed while the fluids are in actual contact with one another. This approach can result in the creation of a variety of inhomogenieties within the body of the fluid mixture. Such inhomogenieties may be harmful to the process of mixing and/or the reactions occurring within the body of the fluid. For example, large scale concentration or temperature inhomogenieties may be produced within the body of the fluid mixture by the use of conventional mixing equipment.

Additionally, conventional mixing equipment generally relies upon forcing large scale turbulence upon the fluid mixture. Turbulence, in turn, may lead to the formation of eddies within the fluid body which, in many instances, may be as large as the reaction vessel itself. The presence of eddies within the fluid body may hamper the proper mixing of the fluid and further may disrupt the extent of the reactions occurring within the fluid.

Historically, slight attention has been paid in the art to the use of engineered fractal mixing as a means of processing fluids. U.S. Pat. No. 5,938,333 is one of the few examples of technical efforts in this area. In U.S. Pat. No. 5,938,333 a space filling device, which can be used for low turbulence fluid mixing in a volume, is disclosed. This device can accomplish volume mixing with very little turbulence and with a high level of homogeneity. Unfortunately, because the device of U.S. Pat. No. 5,938,333 is a space filling mixer, it is not always an appropriate processing device for a given processing requirement.

Another recent patent which describes the use of fractals to distribute or collect fluids is U.S. Pat. No. 5,354,460 which discloses a fractal fluid distribution system. PCT/US99/06245 is directed to a fractal fluid transporting device. Neither of these references disclose employing offset fractals to simultaneously and independently scale and intermingle separate fluids for mixing and/or reaction.

The instant invention provides a method and apparatus for mixing or reacting a fluid mixture wherein one or more of the component fluids of the mixture are scaled and intermingled prior to their contacting another component fluid. Central to this method is the use of a structure which includes independent offset fluid transporting fractals. This new structure eliminates large scale eddies by scaling the entire flow of fluids through independent fractals prior to a mixing/reaction of the fluids. Furthermore, the present invention does not mix to a volume and thus the invention provides several new practical industrial opportunities for fractal mixing. This new structure scales and mixes fluid in a manner which is appropriate for flows exiting to or crossing an area (instead of a volume) and is not a space filling fractal configuration. We have discovered a number of useful applications which can use this different approach. An important example is the use of this device via attachment to a flow-through pipe. This allows simple but efficient pipe flow oriented fluid mixing and reaction. Using the structure in this manner is beneficial because it allows easy incorporation into existing processing technology. Another industrially useful application is attaching the device to the side of a vessel so that fluids are mixed homogeneously just prior to entering the vessel. Still another useful application is the provision of a surface of homogeneously mixed gases for subsequent combustion applications.

The instant invention is particularly applicable to providing rapid and homogeneous mixing, with or without a reaction occurring between the fluids. The invention can also provide controlled mixing and heat transfer simultaneously, for example in order to control the temperature of a reaction process. Contemplated uses of the invention include the following:

Further environments wherein the invention may find application include the following:

By using the instant invention, two or more fluids can be rapidly mixed in a homogeneous manner without using mechanical mixing equipment. Turbulence inducing mechanical mixing devices, such as impellers, blenders, impinging devices, etc. are not used. Therefore large scale mixing inhomogeneities can be avoided. Large scale eddies in mixing processes can reduce the yield of chemical reactions. This device eliminates large scale eddies from the mixing process. Avoiding mechanical mixing can also reduce the amount of energy used. Ordinary mixing processes most commonly result in energy wasted because the large scale turbulence which is forced on the mixing process must eventually be dissipated as heat. The device in this invention does not form large scale turbulence or eddies so large scale motion is not dissipated as wasted energy.

The distribution of fluid properties can be controlled in a beneficial manner using the invention. For example, for a gas mixing with a liquid, the gas bubble size distribution can be controlled and at the same time the liquid is also scaled, therefore mass transfer characteristics are more controlled. Other fluid property distributions which can be controlled by this device include fluid velocities, temperature, concentration and eddy size.

Because fluid property distributions can be more controlled compared with conventional mixing/reactor equipment, the equipment can be smaller and more efficient. If desired, the mixing can be rapid and homogeneous but with very gentle treatment of the fluids. The various embodiments of the invention can be used as elements in conventional processing. For example, as a rapid mixer in an ordinary pipeline or as an multi-fluid mixer entering a tank or other vessel.

Unlike nearly all fluid reactors, the various components to be mixed and reacted can all be scaled and intermingled with one another prior to contact with one another. This results in a more rapid and homogeneous reaction. Side reactions caused by large scale inhomogenieties can be avoided. Furthermore, mixing and reaction temperature can easily be controlled. Large mixing or reactor tanks can be completely eliminated since all the fluids to be mixed and/or reacted can be scaled and intermingled together in this device.

FIG. 1 is a cross sectional view of an offset fractal structure of the invention;

FIG. 2 is a plan view of two fractal distributors illustrated in an offset orientation;

FIG. 3 is a perspective view of the two fractal distributors of FIG. 2 in association with a collector;

FIG. 4 is a top view of a fractal structure in association with a pipe element;

FIG. 5 is a perspective view of the fractal structure of FIG. 5;

FIG. 6 is a cross sectional view of an alternative embodiment of the fractal structure;

FIG. 7 is a cross sectional view of a further alternative embodiment of the fractal structure;

FIG. 8 is a perspective view of yet another alternative embodiment of the fractal structure wherein the structure is not enclosed within a containment vessel.

(FIG. 11). Just as an example, the initiator could be a symmetric “Y” having one leg longer that than the other two.

Another way to vary the device geometry is by altering the child structures. The child structures need not exhibit scaled-down geometry identical to the initiator. This type of variation can include the geometry or symmetry of the child structures at each iteration, for example by using variable scaling factors for determining child structure dimensions and channel diameters.

We note that the number of generations of child structure can be varied as desired (the number of fractal iterations) to obtain a desired level of scaling prior to mixing/reaction or to meet practical requirements such as the avoidance of device plugging. (FIG. 11)

The offset fractals need not be identical. (FIG. 11) As an example, if three offset fractals are used to mix or react three materials, two of the fractals could of an identical geometry while a third is not, or all three could be of different geometry. The reason for this is that the materials to be treated may have variable characteristics which would suggest to a person skilled in the art to use different geometries. For example, the flow rate through one fractal may be very high compared with a second so that pressure drop may be best controlled by using differing channel cross sectional area or number of fractal iterations through each individual fractal.

FIG. 4 is a top view and FIG. 5 is an isometric view of the pipe element embodiment. While this embodiment is useful when the flow from the mixing or reactor process should be re-collected into a single flow, the device can be used to advantage without the collector. This can be useful, for example, when mixing air and gas for a combustion application or for injecting the mixture into the side of a tank or other vessel. FIG. 6 illustrates an embodiment without re-collection. In this case the fluids from inputs 1 and 2 are scaled and distributed in the same manner as described earlier but the flows are not re-collected into one flow, i.e., output channel 3 and fractal collector 10 have been removed. In this embodiment the large number of contact channels 9 exit the device independently at contact channel exits 12. Because the rest of the device is the same as described earlier, in this example there will be 64 such exits.

It is also possible to eliminate the merging channels 8 and mixing channels 9 so that the scaled and intermingled flows exit the device prior to contact with one another. FIG. 7 illustrates this minimal configuration for the invention and consists of the flow inputs 1 and 2, and the offset fractals 6 and 7. Fractal 7 exits through outlets 13 and fractal 6 exits through outlets 14.

For these last two embodiments, the enclosure (11) is again optional but can be useful for either heat exchange or for attaching or flanging the device to a vessel.

We note that the area 17 (FIG. 7) that the offset fractals exit into need not be a plane. The fractals can exit to a curved (FIG. 9) or irregular surface (FIG. 10). This can be useful, for example, if the target vessel has a curved or irregular shape. In such a case, it can be useful to match the curved surface of the vessel with a complementary curve on the exit surface of the mixing device.

The figures show the offset fractals bifurcated perpendicular to the large scale inlet and outlet flow direction. It is possible to bifurcate the fractals at any angle from perpendicular to nearly parallel to these flow directions. Configuring at angles which are not perpendicular to the large scale flow can have advantages as well as disadvantages. One advantage of using fractal bifurcations more in-line with the flow direction is that it may be possible to operate the device with less pressure drop since flow momentum will not be forced to make as drastic a change in direction as the bifurcations are-carried out. A disadvantage can be that the device will become longer in the direction of the flow and perhaps less compact. It is therefore a user decision which advantages are most important for a given process and from these considerations chose the appropriate bifurcation angles.

This invention uses two or more offset fractals which independently scale fluids before they contact one another. The method of offset scaling can be different than in the figures. For example, the separate fractals can be contained within one another. (FIGS. 12 and 13) A smaller conduit carrying one fluid can be placed inside a second larger conduit. A second fluid can therefore flow between the inner surface of the larger conduit and the outer surface of the smaller inner conduit. The two conduits can progressively be bifurcated to smaller and smaller scale until a desired exit size is reached. As with the above embodiments, the flows can be merged, in this case by simply ending the inner conduit so that the inner flow contacts the outer flow. The merged flows can also be collected and further merged into a single flow, if desired, as described earlier. Note that we are defining “offset” to include smaller conduit inside of larger conduit since the flows are properly kept offset from one another by this optional method.

This method of offsetting fractal conduits within one another can be extended to any number of separate fluids by adding a separate enclosed conduit for each fluid.

We note that in the event of operation with fluctuating pressures between the independent flows or in the event that a particular flow is temporally shut off it can be useful to have check valves on channels to avoid backflow of one fluid through the distribution fractal of a different fluid.

This invention can be applied over the entire range of fluid processing scales from very small scale applications to very large scale industrial use. The reason for this is that the fractal structures used in this invention provide a continuing scaling function as application scale changes. This wide range of applicability is one of the inherent advantages of this mixer design.

Because this device is used for mixing and/or reaction of fluids, the resulting products can be used as desired in subsequent processing equipment.

It is noted that a particular manufacturing technique is not required to realize this invention. Computer aided machining, stereolithography, photochemical etching, laser cutting, molding, micro-machining, nanotechnology, ion deposition and conduit construction techniques are a few appropriate methods for building these devices.

It is recognized that future manufacturing techniques which may improve the ability to construct small scale structure will also be useful for construction of these devices.

Kearney, Michael M

Patent Priority Assignee Title
10118140, Jan 30 2013 IMPERIAL COLLEGE INNOVATIONS LIMITED Fluid flow modification apparatus using fractal configurations
10199241, May 11 2012 Tokyo Electron Limited Gas supply device and substrate processing apparatus
10366865, May 31 2011 Lam Research Corporation Gas distribution system for ceramic showerhead of plasma etch reactor
11609053, Jul 12 2016 Fractal Heatsink Technologies LLC System and method for maintaining efficiency of a heat sink
11660577, Apr 21 2017 Commonwealth Scientific and Industrial Research Organisation Fractal flow distribution system
11698330, Oct 15 2019 Massachusetts Institute of Technology Systems, devices, and methods for rheological measurement of yield stress fluids using fractal-like fixtures
11913737, Jul 12 2016 Fractal Heatsink Technologies LLC System and method for maintaining efficiency of a heat sink
8511889, Feb 08 2010 AGLIENT TECHNOLOGIES, INC Flow distribution mixer
9138699, Feb 13 2012 Council of Scientific & Industrial Research Fractal impeller for stirring
9245717, May 31 2011 Lam Research Corporation Gas distribution system for ceramic showerhead of plasma etch reactor
9887108, May 11 2012 Tokyo Electron Limited Gas supply device and substrate processing apparatus
Patent Priority Assignee Title
1409259,
2094948,
2734224,
3195865,
3394924,
3404869,
3533594,
3770249,
4019721, Jun 30 1975 Bio/Physics Systems, Inc. Flowing fluid mixing device and method
4198168, Apr 12 1978 LIQUID CONTROL CORPORATION, NORTH CANTON, OHIO A COMPANY OF OHIO Phase blending static mixing process and apparatus
4354932, Oct 15 1980 Perkin Elmer LLC Fluid flow control device
4537217, Dec 09 1982 Research Triangle Institute Fluid distributor
4550681, Oct 07 1982 ZIMMER, JOHANNES Applicator for uniformly distributing a flowable material over a receiving surface
4636315, Dec 09 1982 Research Triangle Institute Fluid separator apparatus and method
4776989, Sep 19 1983 The Dow Chemical Company Method and apparatus for liquid feed to liqiud distributors in fluid-liquid contacting towers
4999102, Dec 16 1988 AMALGAMATED RESEARCH, INC Liquid transfer manifold system for maintaining plug flow
5094788, Dec 21 1990 3M Innovative Properties Company Interfacial surface generator
5289224, May 18 1992 Eastman Kodak Company Processing apparatus
5307830, May 18 1993 Welker Engineering Company; WELKER ENGINEERING CORPORATION Flow distribution method and apparatus reducing downstream turbulence
5354460, Jan 28 1993 AMALGAMATED RESEARCH, INC Fluid transfer system with uniform fluid distributor
5637469, May 01 1992 Trustees of the University of Pennsylvania Methods and apparatus for the detection of an analyte utilizing mesoscale flow systems
5783129, Aug 17 1993 POLYPLASTICS CO , LTD Apparatus, method, and coating die for producing long fiber-reinforced thermoplastic resin composition
5803600, May 09 1994 Forschungszentrum Karlsruhe GmbH Static micromixer with heat exchanger
5938333, Oct 04 1996 Amalgamated Research LLC Fractal cascade as an alternative to inter-fluid turbulence
5992453, Oct 17 1995 Flow-dividing arrangement
6156273, May 27 1997 Purdue Research Foundation Separation columns and methods for manufacturing the improved separation columns
6217208, Jun 23 1998 Bayer Aktiengesellschaft Heatable static mixing device with undulating or zigzag bars
6305834, Feb 01 1997 Forschungszentrum Karlsruhe GmbH; Bayer AG Method and device for producing a dispersed mixture via crossing partial flows
6333019, Apr 29 1999 Method for operating a chemical and/or physical process by means of a hierarchical fluid injection system
6540896, Aug 05 1998 CALIPER TECHNOLOGIES CORP Open-Field serial to parallel converter
6616327, Mar 23 1998 Amalgamated Research LLC Fractal stack for scaling and distribution of fluids
6742924, May 17 2001 AMALGAMATED RESEARCH, INC Fractal device for mixing and reactor applications
6749413, Dec 20 2000 Melt-blowing head for making polymeric material fibrils
7014442, Dec 31 2002 Kimberly-Clark Worldwide, Inc Melt spinning extrusion head system
7021608, Aug 24 2001 Eberhard, Lavemann; Matthias, Peltzer Distributor for micro-quantities of liquid
7040555, Dec 31 2002 Raute OYJ Nozzle unit
7066641, May 28 2001 Yamatake Corporation Micromixer
7390408, Jan 27 2000 Amalgamated Research LLC Shallow bed fluid treatment apparatus
20020196706,
20030039169,
20040145967,
20040213084,
20050000879,
20060280029,
20070007204,
20070297285,
FR2891089,
WO66257,
WO143857,
WO2007031661,
WO2007113335,
WO2092207,
WO9948599,
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
May 31 2006Amalgamated Research, Inc.(assignment on the face of the patent)
Jan 21 2009AMALGAMATED RESEARCH, INC Amalgamated Research LLCCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0292610263 pdf
Date Maintenance Fee Events
Nov 28 2011M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Dec 01 2015M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Nov 01 20144 years fee payment window open
May 01 20156 months grace period start (w surcharge)
Nov 01 2015patent expiry (for year 4)
Nov 01 20172 years to revive unintentionally abandoned end. (for year 4)
Nov 01 20188 years fee payment window open
May 01 20196 months grace period start (w surcharge)
Nov 01 2019patent expiry (for year 8)
Nov 01 20212 years to revive unintentionally abandoned end. (for year 8)
Nov 01 202212 years fee payment window open
May 01 20236 months grace period start (w surcharge)
Nov 01 2023patent expiry (for year 12)
Nov 01 20252 years to revive unintentionally abandoned end. (for year 12)