A teleradiology system provides the capability of rendering and studying of a remotely located volume data without requiring transmission of the entire data to the user's local computer. The system comprises: receiving station (300) under the control of a user (400); transmitting station (100); the connecting network (200); the user interface (32) with functionality of controlling volume data rendering, transmission, and display; and the interface with patient data source (10). The teleradiology system of the invention provides an integrated functionality of data transmission of current teleradiology systems and volume data rendering/visualization of current volume data rendering/visualization systems. The system may be readily used with an intranet, the internet (including the internet2) or via a direct dial-up using a telephone line with a modem, and can serve as an enterprise-wide PACS and may be readily integrated with other PACS and image distribution systems. Software of this system can be centrally installed and managed and can be provided to the user's local computer on an as-needed basis. Furthermore, the software for the user's computer is developed to use with standard web browser. This system provides a secure, cost-effective, widely-accessible solution for data rendering and visualization. It provides a suitable image distribution method for medical image data, for medical data repository, and for the electronic medical record (or the computerized patient record). It allows healthcare providers (e.g., radiologists, other physicians, and supporting staffs) to render and study remotely located patient data at the locations of their choices.
|
19. A method for locally generating a volume data rendering result in accordance with a remote request for processing of previously acquired and locally stored patient information and data, comprising:
locally storing at least one patient volume data set;
locally receiving an identification of at least one specified patient volume data set and at least one request for volume data rendering from a remote user, the request for volume data rendering comprising a volume data rendering method and rendering parameters to be applied on said specified patient volume data set;
locally generating, using a processor-based system, a partial or complete volume data rendering result in real time by processing said specified patient volume data set using said volume data rendering method and rendering parameters received from said remote user; and
locally transmitting said processed result for remotely displaying said requested rendering result and said rendering parameters;
locally receiving new requests for volume data rendering interactively issued by said remote user based on feedback from said displayed requested rendering result and said rendering parameters, said new requests comprising an adjusted volume data rendering method and adjusted rendering parameters;
locally generating, using the processor-based system, an updated partial or complete volume data rendering result in real time by processing said specified patient volume data set using said adjusted volume data rendering method and adjusted rendering parameters; and
repeating said new requests for volume data rendering and said generation of said updated partial or complete volume data rendering result until a desired rendering result is achieved.
1. A post-processing system for remotely accessing patient information and data previously acquired and electronically stored, and for remotely generating a volume data rendering result, comprising:
at least one receiving station controllable by at least one user of said system;
at least one transmitting station physically separated from said receiving station for communicatively coupling to said receiving station through at least one network;
user interface means provided at said receiving station for enabling a user to specify at least one patient volume data set previously acquired and stored in said transmitting station, and to specify at least one request for volume data rendering comprising specifying a volume data rendering method and rendering parameters to be applied on said volume data set;
an image processor at said transmitting station interactively controllable at said receiving station to generate a partial or complete volume data rendering result in real time by processing said volume data set using said volume data rendering method and rendering parameters specified by said user;
a data transmitter provided at said transmitting station for transmitting said processed result to said receiving station; and
display means for displaying the requested rendering result and rendering parameters at said receiving station,
wherein said user interface means comprises means for enabling said user to specify different data rendering requests resulting from different rendering parameters, different rendering methods, and/or different data sets from one or multiple data acquisition methods, and to specify a method to integrate said different data rendering requests into at least one composite rendering result; and
wherein said display means for displaying comprises means for displaying said composite rendering result and a plurality of parameters used for generating said composite rendering result.
2. The system of
security and data management means for preventing an unauthorized user from gaining access to said data set from said system.
3. The system of
said security and data management means further include means for employing firewalls during the data transmission and/or for encrypting demographic of said data set.
4. The system of
Means included in said transmitting station for compressing data to be transmitted;
means for transmitting said compressed data from said transmitting station to said receiving station through said network; and
means included in said receiving station for decompressing said transmitted data.
5. The system of
said compressing means and decompressing means are operable in accordance with each of a plurality of compression/decompression methods, the particular method used being alternatively selected by said user through said user interface, or by an automated computer program.
6. The system of
said receiving station includes means for computing the remaining part of said rendering result.
7. The system of
said system's software is installed, managed and upgraded at one of said stations, the software for the other station being alternatively supplied at each time of use over said network or on a permanent basis.
8. The system of
management and software distribution means included in said system for charging the use of said system alternatively on per license basis or on per use basis.
9. The system of
said system has a plurality of operation modes, the particular operation mode used being alternatively selected by said user through said user interface, or by an automated computer program.
10. The system of
said receiving station is provided with software which is usable with a web browser.
11. The system of
said receiving stations comprises one of multiple receiving stations interconnected by said network so that the input and the display at one of said receiving stations can be viewed by other of said receiving stations.
12. The system of
data transmission means for transmitting images with progressive refinement.
13. The system of
said user interface means includes image processing tools and data editing tools for editing said data set.
14. The system of
the data transmission is controlled by the transmission parameters, said transmission parameters being alternatively selected by said user through said user interface, or by an automated program.
0. 15. The system of
said user interface means comprises means for enabling said user to specify different data rendering requests resulting from different rendering parameters, different rendering methods, and/or different data sets from one or multiple data acquisition methods, and
to specify a method to integrate said different data rendering results into at least one composite rendering result; and
said display means for presenting at said receiving station said composite rendering result and a plurality of parameters used for generating said composite rendering result.
16. The system of
17. The system of
18. The system of
0. 20. The method of
locally receiving new requests for volume data rendering interactively issued by said remote user based on feedback from said displayed requested rendering result and said rendering parameters, said new requests comprising an adjusted volume data rendering method and adjusted rendering parameters;
locally generating an updated partial or complete volume data rendering result in real time by processing said specified patient volume data set using said adjusted volume data rendering method and adjusted rendering parameters; and
repeating said new requests for volume data rendering and said generation of said updated partial or complete volume data rendering result until a desired rendering result is achieved.
|
The present invention generally relates to teleradiology systems, specifically to teleradiology systems with remote volume data rendering and visualization capability.
Teleradiology is a means of electronically transmitting radiographic patient images and consultative text from one location to another. Teleradiology systems have been widely used by healthcare providers to expand the geographic and/or time coverage of their service, thereby achieving efficiency and utilization of healthcare professionals (e.g., radiologists) with specialty and subspecialty training and skills, resulting in improved healthcare service quality, delivery time, and reduced cost.
Existing teleradiology systems have been designed for, and are only capable of, transmitting two-dimensional (2D) images in a predetermined order, similar to a fax machine, faxing page by page in a predetermined order. Prior art includes U.S. Pat. No. 4,748,511 by Nichols et al, U.S. Pat. No. 5,291,401 by Robinson, and many related patents. None of them is optimized for volume data rendering and study.
Data rendering refers to the process of converting data into visual forms so that the information in the data can be understood and interpreted. These visual forms are usually shown on a two-dimensional monitor, film or even paper. Data visualization refers to the process of displaying and studying the rendering results. Two-dimensional data rendering and visualization is straightforward, as a 2D (M×N) data array can be readily presented as a 2D (M×N) image which can be displayed (e.g., on a monitor) or printed (e.g., on a film or paper). However, visualizing data of more than two-dimensions is a much more complex task. We refer to a data set with more than two dimensions as volume data.
Visualizing volume data requires volume data rendering methods. In general, a volume data rendering method reduces or converts an original volume data set into a synthesized data set of different forms, i.e., with reduced dimensions and with different data attributes. For example, one method of 3D volume data rendering is called Multi-Planer Reformation (MPR), which is derived from the data within a slice of the 3D data “cube” by averaging the data along the direction perpendicular to the slice. In this way, MPR reduces 3D data into a 2D image, presenting averaged data values in the slice. As the rendering parameters (e.g., the locations, orientations, and thickness of the slice) change, different 2D images (averaged data values) of the 3D dataset are obtained. With MPR, one can view images of any oblique slice in addition to conventional horizontal slices. Another method of volume data rendering is called Maximum Intensity Projection (MIP), where the intensity of each pixel in the MIP image is the maximum intensity encountered in the 3D dataset along each of the parallel or divergent paths defined by viewpoint. Besides MPR and MIP, volume data rendering methods of medical interest also include surface rendering and volume rendering, as well as many variations and/or combinations of these methods. For technical details of these data rendering methods, reference may be made to the review article, “3D displays for computed tomography”, by Sandy Napel, p. 603-626, in the book entitled “Medical CT and Ultrasound: current technology and applications” published by Advanced Medical Publishing, 1995.
Medical image acquisition techniques include X-ray, Computed Tomography (CT), Magnetic Resonance (MR), UltraSound (US), and Nuclear Medicine. Nuclear Medicine further includes Single Photon Emission Computed Tomography (SPECT) and Position Emission Tomography (PET).
In modem medical diagnosis and treatment planning, acquisition of volume data becomes a rule rather than an exception. Thus, volume data rendering and visualization methods have become essential methods, in addition to the traditional slice-by-slice 2D image studies. For example, the de facto standard for CT angiography image display is MIP, which results in a 2D image highlighting the vascular structures. The volume data rendering result is usually obtained by interactively adjusting the rendering parameters, such as the viewpoint (i.e., the orientation), the spatial region and/or the value range of interest of the volume data.
There are many volume data rendering/visualization systems (including software and hardware). Prior art includes U.S. Pat. 4,737,921 by Goldwasser et al., U.S Pat. No. 5,649,173 by Lentz, and many related patents. In order to improve the graphics performance, the current volume data rendering/visualization systems have been designed as local dedicated systems, rather than as network based systems.
Currently, volume data rendering and visualization can only be done when the data to be rendered as well as the required rendering/visualization software and hardware are resided in the computer which is used to perform this task. If a user wants to obtain the volume data rendering result for a remotely located data set, he/she has to 1) transmit the entire volume data set from the remote location to his local computer via a network; 2) generate the rendering result from the local copy of the data and display the result, using the rendering/visualization software and hardware installed on his local computer. This approach, referred to as the two-step (i.e., transmitting and rendering/visualizing) approach, is often impractical and undesirable for the following reasons:
Though solving above problems has substantial commercial benefits, no satisfactory solution exists that allows healthcare providers to render and study remotely located volume patient data.
Rendering and visualizing data generated by a remotely located scientific instrument or supercomputer has been studied for several years. Prior art includes U.S. Pat No. 5,432,871 by Novik and many related patents. Also reference may be made to “Data and Visualization Corridors: Report on the 1998 DVC Workshop Series” by P. H. Smith & J. van Rosendale, California Institute of Technology Technical Report CACR—164 September 1998. The applications taught hereby distinctly differ from teleradiology applications in the following aspects. 1) The objects to be studied are fundamentally different—patient data versus scientific measurements and computations, requiring different rendering/visualization methods as well as different user interactions/interfaces. 2) Teleradiology applications have unique requirements in regard to real-time interactivity and image fidelity. 3) Teleradiology applications require unique attentions to data security (including patient privacy) and data integrity as well as other medical and legal issues. 4) Teleradiology applications require a unique image distribution solution for medical image data and the electronic medical record that is suitable for large scale (e.g., healthcare enterprise-wide) deployment and that is fully integrated with medical image data source and data management.
This invention provides a method and apparatus that allow healthcare providers (e.g., radiologists, other physicians, and supporting staffs) to render and study remotely located volume patient data at the locations of their choices. The capability of rendering/visualizing remotely located volume data only becomes available by fully integrating data transmission and volume data rendering functionalities currently supported by two types of products, i.e., teleradiology systems and volume data rendering/visualization systems.
An object of the invention is to develop methods and apparatus that allow healthcare providers (e.g., radiologists, other physicians, and supporting staffs) to render and study remotely located patient data at the locations of their choices.
Another object of the invention is to develop methods and apparatus of teleradiology that allows rendering and studying of remotely located patient volume data without transmitting the entire data to the user's local computer.
Another object of the invention is to develop a secure cost-effective healthcare enterprise-wide solution for data rendering and visualization, and for image data distribution.
Another object of the invention is to provide a solution to further integrate (combine) results from different rendering results, from different rendering methods, from different data sets (regardless of whether they are locally or remotely located), and/or, from different image data acquisition methods.
Another object of the invention is to develop methods and apparatus for data rendering and visualization that efficiently utilizes the high-power computer hardware and/or software at remote locations and alleviates the burden on the network as well as on the user's local computer (hardware and/or software).
Another object of the invention is to develop methods and apparatus that allows software to be centrally installed and managed and to be provided to the user's local computer on an as-needed basis. Furthermore, the software can automatically adjust its configuration based on the user input and/or the configuration of the user's local computer and network.
The teleradiology system of the invention provides a healthcare enterprise-wide solution for rendering and visualization of a remotely located data. It substantially overcomes problems of the prior art as described above. In particular, it is extremely cost-effective, ubiquitously accessible, secure and flexible. The teleradiology system of the invention will improve the accessibility, utilization, and therefore applications, of data (in particular, volume data) rendering and visualization in medicine.
These and further objects and advantages of the invention will become apparent from the ensuing specification, taken together with the accompanying drawings.
With reference to
Receiving station 300 comprises a data receiver 26, a send request 22, a user interface 32, a data decompressor 28, a display system 30, a central processing system 24, and, data security 34. Transmitting station 100 comprises a data transmitter 16, a receive request 20, a data compressor 14, a volume data rendering generator 12, a central processing system 18, and, data security 34.
Receiving station 300 is controlled by a user 400 and is typically located at the healthcare professional's office or home. Transmitting station 100 is usually located proximate to an image data source 10 (e.g., proximate to image database and/or archiving of a Radiology department). In some cases, image data source 10 may be included in transmitting station 100.
In a preferred operation, user 400 via user interface 32 specifies, one at a time, 1) at least one image data set to be visualized; 2) at least one data rendering method to be used, 3) the rendering parameters used by each rendering method, and 4) the data transmission parameters for controlling data transmission over network 200. Central processing system 24 on receiving station 300 takes and validates the user request. Central processing system 24 then issues the request, which is sent via send request 22 to transmitting station 100 through network 200. Central processing system 18 on transmitting station 100 receive the request via receive request 20. Coordinated by central processing system 18, volume data rendering generator 12 accesses from image data source 10 the image data set which the user has specified, and then generates the data rendering result based on the data rendering method and parameters which the user has specified. The rendering result is usually a 2D image, much smaller in size than the original data set. Data compressor 14 further compresses the result and other parameters based on data transmission parameters which the user has specified. Then, data transmitter 16 on transmitting station 100 transmits the compressed data to data receiver 26 on receiving station 300 via network 200 based on data transmission parameters which the user has specified. On receiving station 300 and coordinated by central processing system 24, data decompressor 28 decompresses (or restores) the rendering result. (The central processing system 24 may also perform further image processing and operations.) Display system 30 displays the result (the image) and other parameters on user interface 32. Via user interface 32, user 400 can further modify 1) the image data set to be visualized, 2) the data rendering method to be used, 3) the rendering parameters used, and 4) the data transmission parameters used. This process goes on until a satisfactory rendering and visualization result is obtained.
With a well-designed teleradiology system, the response time from a user request to the display of the required result is very short and can be ignored or tolerated. Thus, the user can interactively control data rendering as well as transmission, and visualize the rendering result in “real-time”. Thus, the user can have virtually the same access to the remotely located volume data that he would have if it were the user's computer.
For comparison,
The teleradiology system of the invention (
Volume data rendering and visualization is a well-established field. There are many volume data rendering/visualization systems for medical applications. The data rendering methods of medical interest include multi-planer reformation, maximum intensity projection, surface rendering, volume rendering, as well as many variations and/or combinations of these methods. The rendering parameters include the viewpoint (i.e., the orientation), the spatial region and the value range (e.g., controlled by thresholds) of the data to be rendered. Volume data rendering in medical applications also relies on image processing tools and data editing tools to select spatial regions of the data set to be rendered (e.g., to exclude the bone structures) and to highlight the structure of interest (e.g., the vascular tree). (For more details on volume data rendering and visualization implementation including software implementation, reference may be made to “The Visualization Toolkit—An Object-Oriented Approach to 3D Graphics”, 2nd edition, by Will Schroeder, Ken Martin, Bill Lorensen, published by Prentice Hall PTR, 1998.)
Volume data rendering generator and display system
The data rendering methods cited above are usually computationally intensive. They are implemented on volume data rendering generator 12 (
User interface
User interface 32A of current teleradiology systems (
With the above descriptions on system components, rendering methods, volume data rendering generator, general/special rendering and display hardware, rendering and visualization software, as well as user interface design and functionality, implementing the volume data rendering and visualization aspects of the teleradiology system of the invention should be clear to one with ordinary skill in the volume data rendering/visualization field.
Data transmission is a well-established field. Transmission of medical image data over networks has been widely utilized in teleradiology. Many teleradiology systems are currently available. Teleradiology systems require careful consideration in data transmission media (concerning 200) and protocol (concerning 16,26,20,22 and 32), data compression (concerning 14, 28 and 32), data security (34 and 32), integration with image data source and data management (concerning 10 and 32).
Transmission media and protocol
For the teleradiology system of the invention, the preferred transmission media (i.e., network 200) may be an intranet, the internet (including the internet2) or via a direct dial-up using a telephone line with a modem. The preferred data transmission protocol (for components 16, 26, 20, 22) is the standard TCP/IP. Furthermore, for some transmission media (e.g., the internet2), user 400 can control certain aspects (e.g., the priority level, the speed) of data transmission by selecting transmission parameters via user interface 32. These should be well known to one with ordinary skill in the network communication field.
Data compression/decompression
Data compression is a technique for densely packaging the data to be transmitted to efficiently utilize a given bandwidth of network 200 during transmission. This operation is done by data compressor 14 on transmitting station 100. After transmission of compressed data to receiving station 300, data decompressor 28 restores the compressed data in a format ready to be used. The data compressor 14 and decompressor 28 can be implemented either on dedicated processors for improved response speed or on general propose processors for wide applicability. The wavelet compression/decompression—the de facto standard for data compression—is used on the teleradiology system of the invention as a preferred method. (For technical details on data compression in general and wavelet compression in particular, reference may be made to the book “Wavelets and Subband Coding” by Martin Vetterli and Jelena Kovacevic, published by Prentice Hall, 1995.) Specifically, in one embodiment, user 400 can select data compression and transmission parameters via user interface 32. In another embodiment, these selections are done automatically by the teleradiology system based on the system configuration and the data to be transmitted. For example, the compression method selected can be lossless (i.e., the compressed data can be fully restored) or lossy (i.e., the compressed data can only be partially restored). The attainable data compression ratio is about 3:1 for lossless compression and much higher for lossy compression. The data compression ratio represents a tradeoff of preserving image fidelity (with less compression) versus increasing transmission speed (with more compression). Furthermore, transmitted images can also be refined progressively. Due to medical and legal considerations, the teleradiology system of the invention provides lossless and virtually lossless compressions to avoid misdiagnosis. It also provides progressive refinement for improved interactivity. The image compression/decompression techniques used for the teleradiology system of the invention are similar to that for existing teleradiology systems (i.e., 14A, 28A and 32A in
Medical image data source and management
The teleradiology system of the invention may be readily integrated with medical image data source 10. In particular, medical image data are stored in the Digital Imaging COmmunications in Medicine (DICOM) standards. (For details on DICOM, refer to Digital Imaging Communication in Medicine, Version 3.1. Rosslyn, Va.: National Electrical Manufacturers Association (NEMA) Standards Publication No. 300-1997, 1997.) DICOM is a hierarchical approach to the storage and communication of medical image data. The patient is the top level of this hierarchy. A patient makes visits to a medical service provider, who performs studies concerning this patient. Studies concerning a given patient are composed of study components (e.g., physician's notes concerning the patient, patient identification information, administrative data) and series. Series are in turn composed of radiological images and other related diagnostic information concerning these images. With appropriate access privileges and via user interface 32, the teleradiology system of the invention is able to search image data source 10 on the basis of a patient, a study, a series, or some combination thereof. It is able to save the studies on receiving station 300 and/or transmitting station 100 for future viewing. Furthermore, it is able to capture the consultation messages. In terms of integration with image data source and patient data management, the teleradiology system of the invention is similar to existing teleradiology systems.
Data security and management
Another medical and legal concern of a teleradiology system is its ability to protect patient privacy and data security. Data security 34 includes the security measures for authentication (i.e., proof of identity), access control, confidentiality, and data integrity. (For detailed technical descriptions on data security, reference may be made to the International Organization for Standardization (ISO) security architecture defined in section 5 of ISO/IEC 7498-2, 1989.) As a minimum requirement for the teleradiology system of the invention, name and password are required to identify the authorized user 400 via user interface 32. Access privileges to the teleradiology system in general and to transmitting station 100 in particular are user specific. An audit trail of system resource usage, patient information access, etc. is provided. Encryption of demographics is employed. Firewalls are installed for Internet connections. Data security measures for the teleradiology system of the invention are similar to that for current teleradiology systems (refer to 34A and 32A in
With the above descriptions on data compression/decompression, data security measures, integration with data source and data management, transmission media and protocols, implementing the data transmission aspects of the teleradiology system of the invention should be clear to one with ordinary skill in the field.
On-demand rendering/transmission control and Rendering remotely located volume data
The teleradiology system of the invention (
With these new functionalities and capabilities, user 400 can navigate through a remotely located volume data set, interactively define and adjust the rendering method and parameters, control what is to be rendered, transmitted and visualized next, and eventually obtain the final rendering result. Thus, user 400 can render and visualize a remotely located volume data set without transmitting the entire volume data set to the user's local computer.
It is to be noted that though medical volume data sets are typically large in size (e.g., 150 MB for a CT Angiography study), in many cases, the user may want to review intermediate and final rendering results only, which are usually much smaller (e.g., of a order of 1 MB) in size. Thus, compared to the current two-step approach, the teleradiology system of the invention greatly alleviates network speed limitations. Furthermore, it eliminates the long initial delay associated with transmitting a large data set over a network, and therefore rendering and visualization can be started almost immediately. It also avoids the problem of generating multiple copies of the data at different locations, which is often desirable for patient data management. With the teleradiology system of the invention, the healthcare providers can further expand the geographic and/or time coverage of their service, resulting in improved healthcare service quality, delivery time, and patient data management, as well as reduced cost.
Different divisions of the rendering generation task
As a preferred embodiment of the invention, the teleradiology system generates the data rendering result exclusively on transmitting station 100, and then transmits the rendering result to receiving station 300. Thus, the hardware (e.g., memory, storage, and computation) demanding operations (e.g., the volume rendering operation) can be performed exclusively on transmitting station 100. This embodiment allows a full utilization of the computer hardware capability at transmitting station 100, and therefore minimizes the hardware requirements on receiving station 300. As a result, users can perform advanced volume data rendering and visualization even with the most basic local computers as receiving stations 300.
In another embodiment of the invention, transmitting station 100 only does a partial computation (e.g., generating a surface rendering model). Central processing system 24 on receiving station 300 completes the remaining part of the computation based on the partial computation done by transmitting station 100, and displays the final rendering result on user interface 32 via display system 30. This embodiment may sometimes further reduce the network load by performing some computations on the user's local computer.
Client-server Software Structure
The teleradiology system of the invention uses client-server design architecture. (For technical details on client-server systems, refer to Dewire DT. Client/Server Computing. McGraw-Hill, 1993.) As a result, software of this system can be installed, maintained, and upgraded on one station, referred to as the software server, while the other station is referred to as the software client. In a preferred embodiment, transmitting station 100 acts as the software server and receiving station 300 as the software client. The software for the software client can be supplied by the software server via network 200 at each time of use. Alternatively, it can be installed on the software client once and for future use. In the latter case, the software client is notified, via network 200, when a software upgrade is available. The client-server software implementation greatly reduces the cost of licensing as well as installing, maintaining, and upgrading software on each software client. The system of the invention also can charge the use of the system on either per license basis, per use basis, or other basis.
Web browser based client software
As a preferred embodiment, the software to be run at receiving station 300 is developed based on standard Web browsers (e.g., Microsoft Explorer or Netscape Navigator). Specifically, the software for receiving station 300 can be a “plug-in” of the Web browser, which is installed once and is an integral part of the Web browser on receiving station 300. Alternatively, the software for receiving station 300 can be a Java applet, which is a program sent from transmitting station 100 each time the program is used. (For technical details on Java applet, refer to Horstmann C S, Cornell G. Core Java, Vol 1: Fundamentals. Sun Microsystems, 1998.) Using Web browser based software makes volume data rendering/visualization software available to any authorized user with a networked computer. Using Java based software makes it work on commonly used operation platforms (e.g., Unix and PC).
The client-server implementation and Web browser based implementation make the proposed system very accessible. Any authorized user can perform advanced volume data rendering and visualization tasks from the user's preferred location using a networked computer. As an example, a user can perform advanced volume data rendering and visualization tasks even with the most basic local computers (e.g., the user's desktop computer) and even without the current volume data rendering/visualization software installed on the user's computer.
Interconnection of multiple receiving/transmitting stations
Though only one receiving station 300 and one transmitting station 100 are shown in
Healthcare enterprise-wide image distribution solution for images, information/data repository, and the electronic medical record
Because it is extremely cost-effective, ubiquitously accessible, provides acceptable data security protection and data management, and significantly relaxes requirements on network as well as the user's local computer (software and hardware), the teleradiology system of the invention is well suited as a healthcare enterprise-wide image distribution solution. Furthermore, it can serve as an enterprise-wide PACS (Picture Archiving Communication System) and can be readily integrated with other PACS and image distribution systems.
By greatly reducing the cost and drastically improving the accessibility of image distribution, the teleradiology system of the invention is a preferred image distribution method for medical image data, for medical information/data repository, and for the electronic medical record (or computerized patient record). Thus, it may be used in settings where the patient data contains not only image data but also other data (e.g ECG) and information (e.g., notes on patient medical history).
Integration and display of multiple rendering results
The teleradiology system of the invention can be used for rendering and visualizing multiple images resulted from different rendering methods and parameters, from different data sets (regardless of whether they are locally or remotely located), and/or different image data acquisition methods (e.g. CT, MR, US). The rendering methods include volume data rendering as well as conventional 2D image rendering. The multiple displays may be updated individually or simultaneously. For example, images of axial, sagittal and coronal multiplaner reformation containing cursor position may be displayed and updated simultaneously as the cursor moves. Furthermore, maximum intensity projection, volume rendering, and/or, surface rendering results may be individually or simultaneously displayed and/or updated with axial, sagittal and/or coronal images. In addition, results from different studies, be it from one or multiple image data acquisition method, can be individually or simultaneously displayed and/or updated for comparison. The different rendering results from different rendering methods, different rendering parameters, different data sets, and/or different image data acquisition methods can be further combined to form one or multiple composite images.
Operation modes and their selections
The system may have many different operation modes. Examples of different operation modes that have been discussed in previous sections include the different divisions of the rendering generation task between receiving station 300 and transmitting station 100, different data compression/decompression operations with different data compression ratios, different data transmission modes for network 200. In general, the different operation modes also require different software configurations. As exemplified in previous discussions, the different operation modes may be selected either by user 400 via user interface 32, or by one or more automated computer program. Using software configurations as an example, the selection of software configurations can be accomplished with user intervention. Alternatively, software can automatically adjust its configuration based on, for example, the configuration of the teleradiology system (network and transmitting/receiving stations) as well as the data rendering task. For example, if the software detects that receiving station 300 has very basic hardware resources (in terms of memory, storage, and/or computation power) for the data rendering task, it automatically uses the software that performs data rendering exclusively on transmitting station 100.
Other embodiments
Although in a preferred embodiment image data source 10 is accessed via transmitting station 100 and transmitting station 100 also acts as the software server, this invention also includes other embodiments. For example, in one embodiment image data source 10 is accessed via transmitting station 100, but receiving station 300 acts as the software server instead. In this case, transmitting station 100 will use the volume data rendering software provided by receiving station 300 via network 200 to generate the rendering result, partially or completely, on transmitting station 100. In another embodiment, transmitting station 100 acts as the software server, but image data source 10 is located proximate to, and accessed via, receiving station 300 instead. In this case, receiving station 300 will use the volume data rendering/visualization software provided by transmitting station 100 via network 200 to generate, completely on receiving station 300, the rendering result.
Obviously, many other modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the disclosed concept, the invention may be practiced otherwise than as specifically described.
Patent | Priority | Assignee | Title |
10361002, | Sep 25 2013 | Samsung Electronics Co., Ltd. | Method and apparatus for setting imaging environment by using signals transmitted by plurality of clients |
10426350, | Mar 07 2012 | ZITEO, INC. | Methods and systems for tracking and guiding sensors and instruments |
10617401, | Nov 14 2014 | ZITEO, INC | Systems for localization of targets inside a body |
11439358, | Apr 09 2019 | ZITEO, INC, | Methods and systems for high performance and versatile molecular imaging |
11464503, | Nov 14 2014 | ZITEO, INC. | Methods and systems for localization of targets inside a body |
11678804, | Mar 07 2012 | ZITEO, INC. | Methods and systems for tracking and guiding sensors and instruments |
11883214, | Apr 09 2019 | ZITEO, INC. | Methods and systems for high performance and versatile molecular imaging |
9561019, | Mar 07 2012 | ZITEO, INC | Methods and systems for tracking and guiding sensors and instruments |
9904767, | Sep 25 2013 | Samsung Electronics Co., Ltd. | Method and apparatus for setting imaging environment by using signals transmitted by plurality of clients |
RE44336, | Nov 05 1999 | Vital Images, Inc. | Teleradiology systems for rendering and visualizing remotely-located volume data sets |
Patent | Priority | Assignee | Title |
4222076, | Sep 15 1978 | Bell Telephone Laboratories, Incorporated | Progressive image transmission |
4475104, | Jan 17 1983 | ADAGE, INC , A MASSACHUSETTS CORP | Three-dimensional display system |
4625289, | Jan 09 1985 | EVANS & SUTHERLAND COMPUTER CORP , A CORP OF UTAH | Computer graphics system of general surface rendering by exhaustive sampling |
4737921, | Jun 03 1985 | PICKER INTERNATIONAL, INC | Three dimensional medical image display system |
4748511, | Jun 07 1984 | RAYTEL MEDICAL IMAGING, INC | Teleradiology system |
4910609, | Jun 07 1984 | Raytel Systems Corporation | Teleradiology system |
4961425, | Aug 14 1987 | GENERAL HOSPITAL CORPORATION, THE, A MA CORP | Morphometric analysis of anatomical tomographic data |
4985856, | Nov 10 1988 | The Research Foundation of State University of New York; Research Foundation of State University of New York, The | Method and apparatus for storing, accessing, and processing voxel-based data |
4987554, | Aug 24 1988 | Research Foundation of State University of New York, The | Method of converting continuous three-dimensional geometrical representations of polygonal objects into discrete three-dimensional voxel-based representations thereof within a three-dimensional voxel-based system |
5005126, | Apr 09 1987 | Prevail, Inc. | System and method for remote presentation of diagnostic image information |
5027110, | Dec 05 1988 | BELL TELEPHONE LABORATORIES, INCORPORATED, A NY CORP ; AMERICAN TELEPHONE AND TELEGRAPH COMPANY, A NY CORP | Arrangement for simultaneously displaying on one or more display terminals a series of images |
5038302, | Jul 26 1988 | The Research Foundation of State University of New York; RESEARCH FOUNDATION OF STATE UNIVERSITY OF NEW YORK, THE, P O BOX 9, ALBANY, NEW YORK 12201-0009 | Method of converting continuous three-dimensional geometrical representations into discrete three-dimensional voxel-based representations within a three-dimensional voxel-based system |
5101475, | Apr 17 1989 | RESEARCH FOUNDATION OF STATE UNIVERSITY OF, THE, ALBANY | Method and apparatus for generating arbitrary projections of three-dimensional voxel-based data |
5235510, | Nov 22 1990 | Kabushiki Kaisha Toshiba | Computer-aided diagnosis system for medical use |
5291401, | Nov 15 1991 | INTERNAL REVENUE SERVICE | Teleradiology system |
5297034, | Apr 30 1987 | APOLLO PACS, INC | Telepathology diagnostic network |
5321520, | Jul 20 1992 | Automated Medical Access Corporation | Automated high definition/resolution image storage, retrieval and transmission system |
5339812, | Mar 28 1990 | Medical Instrumentation and Diagnostic Corporation; Tyrone L., Hardy | Three-dimensional computer graphics simulation and computerized numerical optimization for dose delivery and treatment planning |
5360971, | Mar 31 1992 | The Research Foundation State University of New York; RESEARCH FOUNDATION STATE UNIVERSITY OF NEW YORK, THE | Apparatus and method for eye tracking interface |
5408249, | Nov 24 1993 | Cambridge Animation Systems Limited; CAMBRIDGE ANIMATION SYSTEMS LIMITED, A CORP OF GREAT BRITAIN | Bit extension adapter for computer graphics |
5432871, | Aug 04 1993 | UNIVERSAL SYSTEMS & TECHNOLOGY, INC | Systems and methods for interactive image data acquisition and compression |
5441047, | Mar 25 1992 | Ambulatory patient health monitoring techniques utilizing interactive visual communication | |
5442733, | Mar 20 1992 | RESEARCH FOUNDATION OF STATE UNIVERSITY OF NY, THE | Method and apparatus for generating realistic images using a discrete representation |
5448686, | Jan 02 1992 | International Business Machines Corporation; INTERNATIONAL BUSINESS MACHINES CORPORATION A CORPORATION OF NEW YORK | Multi-resolution graphic representation employing at least one simplified model for interactive visualization applications |
5469353, | Nov 26 1993 | EMED Technologies Corporation | Radiological image interpretation apparatus and method |
5482043, | May 11 1994 | Method and apparatus for telefluoroscopy | |
5490221, | Oct 02 1990 | The United States of America as represented by the Administrator of the | Digital data registration and differencing compression system |
5497435, | Feb 07 1993 | Intellectual Ventures I LLC | Apparatus and method for encoding and decoding digital signals |
5513101, | Nov 26 1993 | MERGE HEALTHCARE SOLUTIONS INC | Radiological image interpretation apparatus and method |
5517021, | Jan 19 1993 | The Research Foundation State University of New York | Apparatus and method for eye tracking interface |
5544283, | Jul 26 1993 | Research Foundation of State University of New York, The | Method and apparatus for real-time volume rendering from an arbitrary viewing direction |
5590271, | May 21 1993 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Interactive visualization environment with improved visual programming interface |
5594842, | Sep 06 1994 | Research Foundation of State University of New York, The | Apparatus and method for real-time volume visualization |
5594935, | Feb 23 1995 | Intellectual Ventures I LLC | Interactive image display system of wide angle images comprising an accounting system |
5596994, | Aug 30 1993 | Automated and interactive behavioral and medical guidance system | |
5600574, | May 13 1994 | Eastman Kodak Company | Automated image quality control |
5603323, | Feb 27 1996 | Advanced Technology Laboratories, Inc. | Medical ultrasonic diagnostic system with upgradeable transducer probes and other features |
5644645, | Aug 20 1993 | NEC Corporation | Fingerprint image transmission system utilizing reversible and non-reversible data compression coding techniques |
5649173, | Mar 06 1995 | SAMSUNG ELECTRONICS CO , LTD | Hardware architecture for image generation and manipulation |
5655084, | Nov 26 1993 | EMED Technologies Corporation | Radiological image interpretation apparatus and method |
5660176, | Dec 29 1993 | Clinical Decision Support, LLC | Computerized medical diagnostic and treatment advice system |
5682328, | Sep 11 1996 | Raytheon BBN Technologies Corp | Centralized computer event data logging system |
5715823, | Feb 27 1996 | ATL ULTRASOUND, INC | Ultrasonic diagnostic imaging system with universal access to diagnostic information and images |
5730146, | Aug 01 1991 | Transmitting, analyzing and reporting EEG data | |
5740267, | May 29 1992 | GUIBOR, INC | Radiographic image enhancement comparison and storage requirement reduction system |
5755577, | Mar 29 1995 | Apparatus and method for recording data of a surgical procedure | |
5760781, | Sep 06 1994 | The Research Foundation of State University of New York | Apparatus and method for real-time volume visualization |
5791908, | Mar 29 1995 | Apparatus and method for telesurgery | |
5805118, | Dec 22 1995 | OFFICE OF NEW YORK STATE | Display protocol specification with session configuration and multiple monitors |
5836877, | Feb 24 1997 | CALIBER IMAGING & DIAGNOSTICS, INC | System for facilitating pathological examination of a lesion in tissue |
5838906, | Oct 17 1994 | EOLAS TECHNOLOGIES INC | Distributed hypermedia method for automatically invoking external application providing interaction and display of embedded objects within a hypermedia document |
5847711, | Sep 06 1994 | Research Foundation of State University of New York, The | Apparatus and method for parallel and perspective real-time volume visualization |
5882206, | Mar 29 1995 | PRINCETON DIGITAL IMAGE CORPORATION | Virtual surgery system |
5883976, | Dec 28 1994 | Canon Kabushiki Kaisha | Selectively utilizing multiple encoding methods |
5903775, | Jun 06 1996 | International Business Machines Corporation | Method for the sequential transmission of compressed video information at varying data rates |
5917929, | Jul 23 1996 | Hologic, Inc | User interface for computer aided diagnosis system |
5941945, | Jun 18 1997 | International Business Machines Corporation | Interest-based collaborative framework |
5971767, | Sep 16 1996 | The Research Foundation of State University of New York | System and method for performing a three-dimensional virtual examination |
5974446, | Oct 24 1996 | Academy of Applied Science | Internet based distance learning system for communicating between server and clients wherein clients communicate with each other or with teacher using different communication techniques via common user interface |
5986662, | Oct 16 1996 | VITAL IMAGES, INC | Advanced diagnostic viewer employing automated protocol selection for volume-rendered imaging |
5987345, | Nov 29 1996 | Arch Development Corporation | Method and system for displaying medical images |
6008813, | Aug 01 1997 | Terarecon, INC | Real-time PC based volume rendering system |
6028608, | Dec 20 1996 | HANGER SOLUTIONS, LLC | System and method of perception-based image generation and encoding |
6070195, | Jan 31 1997 | Canon Kabushiki Kaisha | Image display device and method, and image communication apparatus and method |
6088702, | Feb 25 1998 | EMEDICINE COM, INC | Group publishing system |
6105055, | Mar 13 1998 | Siemens Corporation | Method and apparatus for asynchronous multimedia collaboration |
6166732, | Feb 24 1998 | Microsoft Technology Licensing, LLC | Distributed object oriented multi-user domain with multimedia presentations |
6195340, | Jan 06 1997 | Kabushiki Kaisha Toshiba | Wireless network system and wireless communication apparatus of the same |
6211884, | Nov 12 1998 | Terarecon, INC | Incrementally calculated cut-plane region for viewing a portion of a volume data set in real-time |
6219061, | Aug 01 1997 | Terarecon, INC | Method for rendering mini blocks of a volume data set |
6222551, | Jan 13 1999 | ACTIVISION PUBLISHING, INC | Methods and apparatus for providing 3D viewpoint selection in a server/client arrangement |
6230162, | Jun 20 1998 | International Business Machines Corporation | Progressive interleaved delivery of interactive descriptions and renderers for electronic publishing of merchandise |
6243098, | Aug 01 1997 | Terarecon, INC | Volume rendering pipelines |
6253228, | Mar 31 1997 | Apple Inc | Method and apparatus for updating and synchronizing information between a client and a server |
6260021, | Jun 12 1998 | Philips Electronics North America Corporation | Computer-based medical image distribution system and method |
6262740, | Aug 01 1997 | Terarecon, INC | Method for rendering sections of a volume data set |
6266733, | Nov 12 1998 | Terarecon, INC | Two-level mini-block storage system for volume data sets |
6272470, | Sep 03 1996 | Kabushiki Kaisha Toshiba | Electronic clinical recording system |
6283322, | Oct 18 1995 | Telepharmacy Solutions, Inc. | Method for controlling a drug dispensing system |
6283761, | Sep 08 1992 | GTJ VENTURES, LLC | Apparatus and method for processing and/or for providing healthcare information and/or healthcare-related information |
6289115, | Feb 20 1998 | FUJIFILM Corporation | Medical network system |
6293842, | Mar 09 1999 | BRP US INC | Cantilever jet drive package having mounting adapter with exhaust passage |
6297799, | Nov 12 1998 | Terarecon, INC | Three-dimensional cursor for a real-time volume rendering system |
6310620, | Dec 22 1998 | Terarecon, INC | Method and apparatus for volume rendering with multiple depth buffers |
6313841, | Apr 13 1998 | Terarecon, INC | Parallel volume rendering system with a resampling module for parallel and perspective projections |
6331116, | Sep 16 1996 | Research Foundation of State University of New York, The | System and method for performing a three-dimensional virtual segmentation and examination |
6342885, | Nov 12 1998 | Terarecon, INC | Method and apparatus for illuminating volume data in a rendering pipeline |
6343936, | Sep 16 1996 | The Research Foundation of State University of New York | System and method for performing a three-dimensional virtual examination, navigation and visualization |
6344861, | Mar 24 1993 | Sun Microsystems, Inc. | Graphical user interface for displaying and manipulating objects |
6356265, | Nov 12 1998 | Terarecon, INC | Method and apparatus for modulating lighting with gradient magnitudes of volume data in a rendering pipeline |
6362620, | Nov 25 1998 | GE Medical Systems Global Technology Company, LLC | MR imaging system with interactive image contrast control over a network |
6369812, | Nov 26 1997 | Philips Medical Systems, (Cleveland), Inc. | Inter-active viewing system for generating virtual endoscopy studies of medical diagnostic data with a continuous sequence of spherical panoramic views and viewing the studies over networks |
6369816, | Nov 12 1998 | Terarecon, INC | Method for modulating volume samples using gradient magnitudes and complex functions over a range of values |
6381029, | Dec 23 1998 | International Business Machines Corporation | Systems and methods for remote viewing of patient images |
6404429, | Nov 12 1998 | Terarecon, INC | Method for modulating volume samples with gradient magnitude vectors and step functions |
6407737, | May 20 1999 | Terarecon, INC | Rendering a shear-warped partitioned volume data set |
6407743, | Oct 20 1998 | Microsoft Technology Licensing, LLC | System and method for morphing based on multiple weighted parameters |
6411296, | Nov 12 1998 | Terarecon, INC | Method and apparatus for applying modulated lighting to volume data in a rendering pipeline |
6421057, | Jul 15 1999 | Terarecon, INC | Configurable volume rendering pipeline |
6424346, | Jul 15 1999 | Terarecon, INC | Method and apparatus for mapping samples in a rendering pipeline |
6426749, | Nov 12 1998 | Terarecon, INC | Method and apparatus for mapping reflectance while illuminating volume data in a rendering pipeline |
6430625, | Jun 28 1996 | DISTRIBUTED MEDIA SOLUTIONS, LLC | System and corresponding method for providing redundant storage of a data file over a computer network |
6434572, | Nov 25 1998 | General Electric Company | Medical diagnostic system management method and apparatus |
6476810, | Jul 15 1999 | Terarecon, INC | Method and apparatus for generating a histogram of a volume data set |
6483507, | Nov 12 1998 | TeraRecon, Inc. | Super-sampling and gradient estimation in a ray-casting volume rendering system |
6512517, | Nov 12 1998 | Terarecon, INC | Volume rendering integrated circuit |
6514082, | Sep 16 1996 | The Research Foundation of State University of New York | System and method for performing a three-dimensional examination with collapse correction |
6532017, | Nov 12 1998 | TeraRecon, Inc.; MITSUBISHI ELECTRIC INFORMATION TECHNOLOGY CENTER AMERICA, INC | Volume rendering pipeline |
6614447, | Oct 04 2000 | Terarecon, INC | Method and apparatus for correcting opacity values in a rendering pipeline |
6615264, | Apr 09 1999 | Oracle America, Inc | Method and apparatus for remotely administered authentication and access control |
6618751, | Aug 20 1999 | ACTIVISION PUBLISHING, INC | Systems and methods for publishing data with expiration times |
6621918, | Nov 05 1999 | VITAL IMAGES, INC | Teleradiology systems for rendering and visualizing remotely-located volume data sets |
6654012, | Oct 01 1999 | Terarecon, INC | Early ray termination in a parallel pipelined volume rendering system |
6654785, | Mar 02 1998 | HEWLETT-PACKARD DEVELOPMENT COMPANY L P | System for providing a synchronized display of information slides on a plurality of computer workstations over a computer network |
6674430, | Jul 16 1998 | RESEARCH FOUNDATION OF STATE UNIVERSITY OF NY, THE | Apparatus and method for real-time volume processing and universal 3D rendering |
6680735, | Oct 04 2000 | Terarecon, INC | Method for correcting gradients of irregular spaced graphic data |
6683933, | May 02 2001 | Terarecon, INC | Three-dimensional image display device in network |
6704024, | Aug 07 2000 | DIGIMEDIA TECH, LLC | Visual content browsing using rasterized representations |
6760755, | Sep 22 2000 | GE Medical Systems Global Technology Company, LLC | Imaging system with user-selectable prestored files for configuring communication with remote devices |
6807558, | Jun 12 1995 | Meta Platforms, Inc | Utilization of information "push" technology |
6826297, | May 18 2001 | Terarecon, INC | Displaying three-dimensional medical images |
6826669, | May 08 2001 | Lewiz Communications | Multi-protocol memory lookup system and method |
6847365, | Jan 03 2000 | AIDO LLC | Systems and methods for efficient processing of multimedia data |
6847462, | Apr 24 1996 | Leica Geosystems AG | Integrated system for quickly and accurately imaging and modeling three-dimensional objects |
6879996, | Sep 13 2000 | PINEAPPLE34, LLC | Method and apparatus for displaying personal digital assistant synchronization data using primary and subordinate data fields |
6952741, | Jun 30 1999 | Computer Sciences Corporation | System and method for synchronizing copies of data in a computer system |
7039723, | Aug 31 2001 | Canon Medical Systems Corporation | On-line image processing and communication system |
7062714, | Jul 28 2000 | GE Medical Systems Global Technology Company, LLC | Imaging system having preset processing parameters adapted to user preferences |
20010013128, | |||
20010037402, | |||
20020005850, | |||
20020065939, | |||
20020069400, | |||
20030055896, | |||
20030086595, | |||
20030156745, | |||
EP903694, | |||
EP1001369, | |||
EP1001375, | |||
EP1001377, | |||
EP1001379, | |||
EP1001380, | |||
EP1054347, | |||
EP1054348, | |||
EP1054349, | |||
EP1054351, | |||
EP1054353, | |||
EP1054355, | |||
EP1054356, | |||
EP1054357, | |||
EP1054358, | |||
EP1054359, | |||
EP1054383, | |||
EP1054384, | |||
EP1054385, | |||
EP1069528, | |||
EP1069530, | |||
EP1069532, | |||
EP1071041, | |||
EP1081651, | |||
EP1081652, | |||
EP1081653, | |||
EP1089225, | |||
EP1089234, | |||
EP1089235, | |||
EP1093085, | |||
EP1195717, | |||
EP1195718, | |||
EP1195719, | |||
EP1195720, | |||
EP1209618, | |||
EP1209629, | |||
JP11239165, | |||
JP2002183746, | |||
JP2002183747, | |||
WO3041001, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 16 2005 | Vital Images, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Sep 29 2011 | ASPN: Payor Number Assigned. |
Dec 11 2013 | M1461: Payment of Filing Fees under 1.28(c). |
Date | Maintenance Schedule |
Nov 22 2014 | 4 years fee payment window open |
May 22 2015 | 6 months grace period start (w surcharge) |
Nov 22 2015 | patent expiry (for year 4) |
Nov 22 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 22 2018 | 8 years fee payment window open |
May 22 2019 | 6 months grace period start (w surcharge) |
Nov 22 2019 | patent expiry (for year 8) |
Nov 22 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 22 2022 | 12 years fee payment window open |
May 22 2023 | 6 months grace period start (w surcharge) |
Nov 22 2023 | patent expiry (for year 12) |
Nov 22 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |