A process for producing an olefin polymer is provided, in which ethylene and at least one kind or more of monomers selected from α-olefins are polymerized by a high temperature solution polymerization in a temperature range between 120 and 300° C., in the presence of an olefin polymerization catalyst composed of a bridged metallocene compound represented by general formula [I] described below and at least one kind or more compounds (B) selected from (b-1) an organoaluminum oxy-compound, (b-2) a compound capable of forming an ion pair in a reaction with the bridged metallocene compound mentioned above, and (b-3) an organoaluminum compound. According to the high temperature solution polymerization of the present invention, it has become possible to obtain a polymer having a high molecular weight with high polymerization activity that was so far unattainable, and when the polymer is a copolymer, it is a process for producing a high molecular weight olefin polymer with a large comonomer content, a narrow composition distribution, and a narrow molecular weight distribution.

##STR00001##

Patent
   RE42957
Priority
Mar 31 2004
Filed
Mar 30 2005
Issued
Nov 22 2011
Expiry
Mar 30 2025
Assg.orig
Entity
Large
1
8
all paid
1. A process for producing an olefin polymer, comprising:
carrying out solution polymerization of ethylene and one or more kinds of monomers selected from α-olefins at a temperature ranging from 120 to 300° C., in the presence of a catalyst for olefin polymerization, said catalyst comprising:
(A) a bridged metallocene compound represented by the general formula [I] described below,
##STR00009##
wherein R1, R2, R3, R4, R5, R8, R9 and R12 are each a hydrogen atom, a hydrocarbon group, or a silicon-containing group, and may be identical or different, or neighboring groups may be bonded together to form a ring structure;
R6 and R11 are identical and are each a hydrocarbon group or a silicon-containing group, or may be bonded together to form a ring structure;
R7 and R10 are identical to each other and are each a hydrocarbon group or a silicon-containing group, or may be bonded together to form a ring structure;
R6 and R7 may be combined to form a ring structure;
R10 and R11 may be combined to form a ring structure;
R13 and R14 are each an aryl group, and may be identical or different;
M is Ti, Zr or Hf;
Y represents carbon or silicon;
Q represents halogen, a hydrocarbon group, an anionic ligand, or a lone electron pair, and may be selected from an identical or different combination of neutral ligands capable of coordination; and
j is an integer of 1 to 4, and
(B) at least one compound selected from the group consisting of
(b-1) an organoaluminum oxy compound,
(b-2) a compound which reacts with the bridged metallocene compound (A) to form an ion pair, and
(b-3) an organoaluminum compound.
2. The process of claim 1, wherein M represents Zr or Hf.
3. The process of claim 1, wherein Y in the general formula [I] represents carbon.


(In the formula, Ra and Rb may be each identical or different, and refer to hydrocarbon group having 1 to 15 carbon atoms, preferably having 1 to 4 carbon atoms. X refers to halogen atom; m, n, p, and q are integers where m is in the range of 0<m≦3, n is in the range of 0≦n<3, p is in the range of 0≦p<3, and q is in the range of 0≦q<3, and satisfy the condition: m+n+p+q=3.) The compounds represented by general formula [XII] refer to organoaluminum compounds. Specific examples of such compounds include tri(n-alkyl)aluminum such as trimethylaluminum, triethylaluminum, tri(n-butyl)aluminum, trihexylaluminum, trioctylaluminum, and the like; tri(branched chain-alkyl)aluminum such as triisopropylaluminum, triisobutylaluminum, tri(sec-butyl)aluminum, tri(tert-butyl)aluminum, tri(2-methylbutyl)aluminum, tri(3-methylexyl)aluminum, tri(2-ethylexyl)aluminum, and the like; tricycloalkylaluminum such as tricyclohexylaluminum, tricyclooctylaluminum, and the like; triarylaluminum such as triphenylaluminum, tritolylaluminum, and the like; dialkylaluminumhalide such as diisopropylaluminumhalide, diisobutylaluminumhalide, and the like; alkenylaluminum such as isoprenylaluminum etc. represented by general formula (i-C4H9)xAly(C5H10)z (wherein x, y, and z are positive integers, and z is in the range of z≦2×); alkylaluminumalkoxide such as isobutylaluminummethoxide, isobutylaluminumethoxide, and the like; dialkylaluminumalkoxide such as dimethylaluminummethoxide, diethylaluminumethoxide, dibutylaluminumbutoxide, and the like; alkylaluminumsesquialkoxide such as ethylaluminumsesquiethoxide, butylaluminumsesquibutoxide, and the like; partially alkoxylated alkylaluminum having mean compositions represented by general formula Ra2.5Al(ORb)0.5 and the like; alkylaluminumaryloxide such as diethylaluminumphenoxide, diethylaluminum(2,6-di-t-butyl-4-methylphenoxide), and the like; dialkylaluminumhalide such as dimethylaluminumchloride, diethylaluminumchloride, dibutylaluminumchloride, diethylaluminumbromide, diisobutylaluminumchloride, and the like; alkylaluminumsesquihalide such as ethylaluminumsesquichloride, butylaluminumsesquichloride, ethylaluminumsesquibromide, and the like; partially halogenated alkylaluminum such as alkylaluminumdihalide such as ethylaluminumdichloride, and the like; dialkylaluminumhydride such as diethylaluminumhydride, dibutylaluminumhydride, and the like; partially hydrogenated alkylaluminum such as alkylaluminumdihydride such as ethylaluminumdihydride, propylaluminumdihydride, and the like; partially alkoxylated and halogenated alkylaluminum, and the like such as ethylaluminumethoxychloride, butylaluminumbutoxychloride, ethylaluminumethoxybromide, and the like.
M2AlRa4  [XIII]
(In the formula, N represents Li, Na, or K, and Ra represents hydrocarbon group having 1 to 15 carbon atoms, preferably 1 to 4.) The compounds represented by general formula [XIII] refer to complex alkyl compounds containing Group 1 metal element of the periodic table and aluminum. Such compounds are exemplified by LiAl(C2H5)4, LiAl(C7H15)4, and the like.

Further, compounds analogous to those represented by general formula [XII] mentioned above can also be used, and, for example, organoaluminum compounds in which 2 or more aluminum compounds are bonded via nitrogen atom can be cited. Specific examples of such compounds include (C2H5)2AlN(C2H5)Al(C2H5)2, and the like.

From the point of easy availabilities, as the organoaluminum compound (b-3), trimethylaluminum and triisobutylaluminum are used preferably.

In the polymerization, methods of use of each component and the order of addition are chosen arbitrarily, but the following methods are exemplified.

[q1] Method of charging component (A) singly to a polymerization reactor.

[q2] Method of charging component (A) and component (B) in an arbitrary order to the polymerization reactor.

In the method [q2] mentioned above, at least 2 of the catalyst components may be in contact with each other in advance.

When olefin polymerization is carried out by using the catalyst for olefin polymerization mentioned above, component (A) is usually used in the amount of 10−9 to 10−1 mole, preferably 10−8 to 10−2 mole with respect to the reaction volume of 1 liter.

Component (b-1) is used in the amount at which the molar ratio of component (b-1) to the total transition metal (M) in component (A), that is, [(b-1)/M], is usually in the range between 0.01 and 5,000, preferably between 0.05 and 2,000. Component (b-2) is used in the amount at which the molar ratio of aluminum atoms in component (b-2) to the total transition metal (M) in component (A), that is, [(b-2)/M], is usually in the range between 10 and 5,000, preferably in the range between 20 and 2,000. Component (b-3) is used in the amount at which the molar ratio of component (b-3) to the transition metal (M) in component (A), that is, [(b-3)/M], is usually in the range between 1 and 10,000, preferably in the range between 1 and 5,000.

[3] The Method of High Temperature Solution Polymerization and Olefin Polymers Obtained by the Method

In the following, olefins applicable to the high temperature solution polymerization of the present invention, preferred mode of the method of high temperature solution polymerization, and characteristic properties of the olefin polymers obtained in the method of high temperature solution polymerization of the present invention will be successively explained.

Olefins Applicable to the High Temperature Solution Polymerization of the Present Invention

In the present invention, the olefins applicable to the high temperature solution polymerization are one or more kinds of monomers selected from ethylene and α-olefins. In the high temperature solution polymerization of the present invention, by carrying out (co)polymerization using ethylene as the essential olefin and at least one kind of olefins selected from α-olefins having 3 to 20 carbon atoms as the optional olefin(s), it is possible to produce efficiently an ethylenic polymer which has a high comonomer content, a narrow composition distribution, and a narrow molecular weight distribution. When copolymerization is carried out by using ethylene and at least one kind of the olefins selected from α-olefins having 3 to 20 carbon atoms, the charge mole ratio of ethylene and the α-olefin having 3 to 20 carbon atoms is in the range of ethylene:α-olefin=10:90 to 99.9:0.1, preferably in the range of ethylene:α-olefin=30:70 to 99.9:0.1, and further more preferably in the range of ethylene:α-olefin=50:50 to 99.9:0.1.

Examples of the α-olefins having 3 to 20 carbon atoms include straight-chain or branched chain α-olefins having 3 to 20 carbon atoms, and the following are cited for example: propylene, 1-butene, 2-butenes, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, and the like. The α-olefins applicable in the high temperature solution polymerization of the present invention also include olefins containing polar groups. Specific examples of the olefins containing polar groups include α,β-unsaturated carboxylic acids such as acrylic acid, methacrylic acid, fumaric acid, maleic anhydride, and the like, and metal salts thereof such as sodium salts etc.; α,β-unsaturated carboxylic acid esters such as methyl acrylate, ethyl acrylate, n-propyl acrylate, methyl methacrylate, ethyl methacrylate, and the like; vinyl esters such as vinyl acetate, vinyl propionate, and the like; unsaturated glycidyl esters such as glycidyl acrylate, glycidyl methacrylate, and the like. Further, it is also possible to carry out the high temperature solution polymerization by co-presence, in the reaction system, of the following compounds: vinylcyclohexane, dienes or polyenes; aromatic vinyl compounds such as styrenes like styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o,p-dimethylstyrene, methoxystyrene, vinylvenzoic acid, methyl vinylbenzoate, vinylbenzyl acetate, hydroxystyrene, p-chlorostyrene, divinylbenzene, and the like; and 3-phenylpropylene, 4-phenylpropylene, α-methylstyrene, and the like. Among the α-olefins described above, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, and 1-octene are used preferably. Also, in the high temperature solution polymerization of the present invention, cyclic olefins having 3 to 30 carbon atoms, preferably 3 to 20 carbon atoms, such as cyclopentene, cycloheptene, norbornene, 5-methyl-2-norbornene, and tetracyclodecene may also be co-present.

Preferred Mode of the Method of High Temperature Solution Polymerization

The “the solution polymerization” of the present invention refers to a general name of the method of carrying out polymerization under the conditions in which a polymer is dissolved in an inert hydrocarbon solvent described below at the temperature higher than the melting point of the polymer. The polymerization temperature in the solution polymerization of the present invention is usually in the range between 120- and 300° C., preferably between 130 and 250° C., and more preferably between 130 and 200° C. (As described above, this solution polymerization is called “the high temperature solution polymerization” throughout the present specification.) In the high temperature solution polymerization of the present invention, when the polymerization temperature is below 120° C., the polymerization activity decreases extremely and hence it is not practical from the point of productivity. Also, in the region where the polymerization temperature is 120° C. or more, as the temperature increases, the viscosity of the solution during polymerization decreases and removing of polymerization heat becomes easy, and thus it is possible to achieve higher polymerization of the obtained olefin polymer. However, when the polymerization temperature exceeds 300° C., deterioration of the obtained polymer may occur and hence it is not preferable. Further, from the viewpoint of properties of the ethylenic polymer produced preferably in the high temperature solution polymerization of the present invention, in the polymerization temperature range between 120 and 200° C., the ethylenic polymer used favorably in many industrial sectors such as films, etc. can be efficiently produced as described below. Polymerization is performed under the polymerization pressure usually in the range between the normal pressure and 10 MPa gauge, and preferably between the normal pressure and 8 MPa gauge. The polymerization can be carried out by using any of batch, semi-continuous, and continuous methods. Also, the polymerization can be carried out by dividing the process into two or more steps that are different in the polymerization conditions. The molecular weight of the obtained olefin polymer can also be controlled by changing the hydrogen concentration in the polymerization system and the polymerization temperature, within the range of the present invention. Further, the molecular weight can be controlled by the amount of component (B) used. When hydrogen is added, the amount is usually in the range between 0.001 and 5,000 NL per 1 kg the produced olefin polymer.

Solvents used in the high temperature solution polymerization of the present invention are usually inert hydrocarbon solvents, and are preferably saturated hydrocarbons having boiling points in the range between 50 and 200° C. Specific examples include aliphatic hydrocarbons such as pentane, hexane, heptane, octane, decane, dodecane, kerosene, and the like; and alicyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclopentane, and the like. In addition, aromatic hydrocarbons such as benzene, toluene, xylenes, and the like, and halogenated hydrocarbons such as ethylene chloride, chlorobenzene, dichloromethane, and the like are also included as “the inert hydrocarbon solvents” of the high temperature solution polymerization of the present invention, and the use thereof is not limited.

As described above, in the high temperature solution polymerization of the present invention, not only organoaluminum oxy-compounds of the type soluble in aromatic hydrocarbons, that were frequently used, but also modified methylaluminoxanes soluble in aliphatic hydrocarbons and alicyclic hydrocarbons, such as MMAO, can be used. As a result, when aliphatic hydrocarbons and alicyclic hydrocarbons are employed as the solvent for the solution polymerization, it has become possible to completely eliminate the possibility that an aromatic hydrocarbon is mixed into the polymerization system or the produced olefin polymer. That is, the method of the high temperature solution polymerization of the present invention has also characteristics of reducing the environmental load and minimizing the health effect to humans.

The Olefin Polymer Obtained by the Method of High Temperature Solution Polymerization

In the present invention, properties of the olefin polymer produced in the high temperature solution polymerization of the present invention are not specifically limited. However, the olefin polymer having extremely high industrial usefulness obtained by the high temperature solution polymerization of the present invention is an ethylenic polymer. In the following, preferable properties of the ethylenic polymer will be explained. The density of the ethylenic polymer obtained by the high temperature solution polymerization of the present invention is usually in the range between 0.85 and 0.95 g/cm3, and preferably between 0.86 and 0.95 g/cm3.

The melt flow rate MFR2, (ASTM D-1238, 190° C., 2.16 kg load), of the ethylenic polymer obtained by the high temperature solution polymerization of the present invention is usually in the range between 0.01 and 200 g/10 min, and preferably between 0.05 and 100 g/10 min. Also, the value obtained by dividing MFR10 (ASTM D-1238, 190° C., 10.0 kg load) by MFR2, (=MFR10/MFR2) is usually in the range between 5.0 and 8.0, preferably between 5.5 and 7.8, and more preferably between 6.0 and 7.5.

The molecular weight distribution, (Mw/Mn, calculated as converted to polystyrene, where Mw: weight average molecular weight, and Mn: number average molecular weight) of the ethylenic polymer, obtained by the high temperature solution polymerization of the present invention, determined by GPC is in the range between 1.0 and 4.0, preferably between 1.2 and 3.0, and more preferably between 1.5 and 2.5.

The ethylene content of the ethylenic polymer obtained by the high temperature solution polymerization of the present invention is contained in the range between 100 and 50 mole %, preferably between 99.9 and 65 mole %, and more preferably between 99.7 and 70 mole %.

The ethylenic polymer satisfying the properties described above can also be produced by a method known in the art which uses a Ziegler-Natta catalyst, or by slurry polymerization and vapor-phase polymerization known in the art which use polymerization catalysts containing certain metallocene compounds. However, by employing the method of high temperature solution polymerization of the present invention, that is, by carrying out the olefin polymerization by using an inert hydrocarbon solvent in the presence of a polymerization catalyst containing the specific bridged metallocene compounds described above in the temperature range between 120 and 300° C., it is possible to achieve high polymerization activity efficiently, without using, for example, a large scale and expensive vapor-phase polymerization apparatus, further to maintain high molecular weight even when the comonomer content is large in the case of a copolymer, and furthermore to produce an olefin polymer having both a narrow molecular weight distribution and a narrow composition distribution that are properties unique to the polymer produced by using a metallocene-based polymerization catalyst. Therefore, the impact of the high temperature solution polymerization of the present invention on the development of the industry is extremely large.

In the following, methods of measurement of various properties used in the present invention will be explained.

[Density]

By using an oil-hydraulic hot press made by Shinto Metal Industries, Ltd. maintained at 190° C., first, a sheet with a thickness of 0.5 mm was formed at the pressure of 100 kg/cm2 (9 pieces of 45×45×0.5 mm specimen taken out of a spacer in the form of 240×240×0.5 mm thickness). Then, using a separate oil-hydraulic hot press machine made by Shinto Metal Industries, Ltd. maintained at 20° C., measurement samples were prepared by pressing at the pressure of 100 kg/cm2 while cooling. A SUS plate with a thickness of 5 mm was used as a hot plate.

The pressed sheet was processed at 120° C. for 1 hour, and after cooling it linearly to room temperature in 1 hour, measurement was performed by using a density gradient tube.

[Melt Flow Rate; MFR2]

This is a value determined under the load of 2.16 kg at 190° C. according to a standard method of ASTM D-1238.

[Melt Flow Rate; MFR10]

This is a value determined under the load of 10 kg at 190° C. according to a standard method of ASTM D-1238.

[Weight Average Molecular Weight (Mw) and Number Average Molecular Weight (Mn)]

Measurement was made by using GPC (gel permeation chromatography) by using o-dichlorobenzene as the solvent at 140° C.

In the following, the present invention will be further specifically explained by Examples. However, the present invention is by no means limited to these examples. Further, in Examples described below, in an experiment of the high temperature solution polymerization in which the organoaluminum oxy-compound (b-1) was sued as component (B), triisobutylaluminum as the organoaluminum compound (b-2) was added in order to completely remove impurities such as oxygen, moisture etc., and is not an essential component in the high temperature solution polymerization of the present invention as long as the absence of these impurities in the polymerization system can be confirmed.

In a stainless-steel autoclave of 2-liter volume fully flushed with nitrogen, 800 milliliter of hexane and 200 milliliter of 1-octene were charged into the autoclave. After increasing the temperature of the autoclave content to 145° C., the total pressure was set at 3 MPa-G by charging 500 milliliter of hydrogen and feeding ethylene. Next, 0.3 millimole of triisobutylaluminum, 0.001 millimole of di(p-tolyl)methylene(cyclopentadienyl)(octamethyloctahydrodibenzofluorenyl)zirconiumdichloride, and 0.01 millimole of N,N-dimethylaniliniumtetrakis(pentafluorophenyl)borate were pressed into the autoclave with nitrogen pressure, and polymerization was started by setting the rotation of a stirrer at 400 rpm. Thereafter, the total pressure was maintained at 3 MPa-G by continuously feeding ethylene only, and polymerization was performed at 150° C. for 30 minutes. After stopping the polymerization by adding a small amount of ethanol to the reaction system, unreacted ethylene was purged. The obtained polymer solution was poured into a large excess of methanol and a polymer was precipitated. After recovering the polymer by filtration, it was dried at 135° C. overnight under reduced pressure.

As a result, an ethylene-1-octene copolymer was obtained with a yield of 59.7 g. The obtained polymer had the density of 898 (kg/m3), MFR2=1.03 (g/10 min), MFR10=7.62 (g/10 min), MFR10/MFR2=7.4, and Mw/Mn=2.12.

[Preparation of a Catalyst Solution]

In a glass flask flushed fully with nitrogen, 0.00025 millimole of di(p-tolyl)methylene(cyclopentadienyl)(octamethyloctahydrodibenzofluorenyl)zirconiumdichloride was charged, and a catalyst solution was prepared by adding a toluene solution containing MAO made by Albemarle Corporation in the amount of 0.0625 millimole equivalent of Al to the flask.

[Polymerization]

In a stainless-steel autoclave of 2-liter volume fully flushed with nitrogen, 800 milliliter of hexane and 200 milliliter of 1-octene were charged into the autoclave. After increasing the temperature of the autoclave content to 145° C., the total pressure was set at 3 MPa-G by charging 1,500 milliliter of hydrogen and feeding ethylene. Next, 1.0 millimole of triisobutylaluminum and the catalyst solution prepared as above were pressed into the autoclave by nitrogen pressure, and polymerization was started by setting the rotation of a stirrer at 400 rpm. Thereafter, polymerization was performed at 150° C. for 10 minutes by keeping the total pressure at 3 MPa-G by continuously feeding ethylene only. After stopping the polymerization by adding a small amount of ethanol to the reaction system, unreacted ethylene was purged. By pouring the obtained polymer solution into a large excess of methanol, a polymer was precipitated. After recovering the polymer by filtration, it was dried at 135° C. overnight under reduced pressure.

As a result, an ethylene-1-octene copolymer was obtained with a yield of 110.7 g. The obtained polymer had the density of 904 (kg/m3), MFR2=5.37 (g/10 min), MFR10=36.0(g/10 min), MFR10/MFR2=6.7, and Mw/Mn=2.07.

[Preparation of a Catalyst Solution]

In a glass flask flushed fully with nitrogen, 0.001 millimole of di(p-tolyl)methylene(cyclopentadienyl)(octamethyloctahydrodibenzofluorenyl)zirconiumdichloride was charged, and a catalyst solution was prepared by adding a toluene solution containing MAO made by Albemarle Corporation in the amount of 0.25 millimole equivalent of Al to the flask.

[Polymerization]

In a stainless-steel autoclave of 2-liter volume fully flushed with nitrogen, 800 milliliter of hexane and 200 milliliter of 1-octene were charged into the autoclave. After increasing the temperature of the autoclave content to 175° C., the total pressure was set at 3 MPa-G by charging 1,000 milliliter of hydrogen and feeding ethylene. Next, 1.0 millimole of triisobutylaluminum and the catalyst solution prepared as above were pressed into the autoclave by nitrogen pressure, and polymerization was started by setting the rotation of a stirrer at 400 rpm. Thereafter, polymerization was performed at 180° C. for 30 minutes by keeping the total pressure at 3 MPa-G by continuously feeding ethylene only. After stopping the polymerization by adding a small amount of ethanol to the reaction system, unreacted ethylene was purged. By pouring the obtained polymer solution into a large excess of methanol, a polymer was precipitated. After recovering the polymer by filtration, it was dried at 135° C. overnight under reduced pressure.

As a result, an ethylene-1-octene copolymer was obtained with a yield of 88.6 g. The obtained polymer had the density of 904 (kg/m3), MFR2=6.52 (g/10 min), MFR10=47.6 (g/10 min), MFR10/MFR2=7.3, and Mw/Mn=2.06.

[Preparation of a Catalyst Solution]

In a glass flask flushed fully with nitrogen, 0.0005 millimole of di(p-tolyl)methylene(cyclopentadienyl)(octamethyloctahydrodibenzofluorenyl)zirconiumdichloride was charged, and a catalyst solution was prepared by adding a hexane solution containing MMAO made by Tosoh Finechem Corporation in the amount of 0.125 millimole equivalent of Al to the flask.

[Polymerization]

By using the catalyst solution prepared as above, polymerization was performed in the manner similar to Example 2, except for changing the polymerization time to 30 minutes.

As a result, an ethylene-1-octene copolymer was obtained with a yield of 79.6 g. The obtained polymer had the density of 905 (kg/m3), MFR2=1.66 (g/10 min), MFR10=10.8 (g/10 min), MFR10/MFR2=6.5, and Mw/Mn=2.15.

[Preparation of a Catalyst Solution]

In a glass flask flushed fully with nitrogen, 0.00025 millimole of di(p-tolyl)methylene(cyclopentadienyl)(octamethyloctahydrodibenzofluorenyl)zirconiumdichloride was charged, and a catalyst solution was prepared by adding a hexane solution containing TMAO-341 made by Tosoh Finechem Corporation in the amount of 0.0625 millimole equivalent of Al to the flask.

[Polymerization]

Polymerization was performed in the manner similar to Example 2 except for using the catalyst solution mentioned above.

As a result, an ethylene-1-octene copolymer was obtained with a yield of 80.3 g. The obtained polymer had the density of 904 (kg/m3), MFR2=4.31 (g/10 min), MFR10=27.2 (g/10 min), MFR10/MFR2=6.3, and Mw/Mn=2.11.

Preparation of a catalyst solution and polymerization were performed in the manner similar to Example 3, except for changing the polymerization temperature to 200° C. and the amount of hydrogen charge to 700 milliliter.

As a result, an ethylene-1-octene copolymer was obtained with a yield of 35.0 g. The obtained polymer had the density of 905 (kg/m3), and MFR2=7.23 (g/10 min).

[Preparation of a Catalyst Solution]

In a glass flask flushed fully with nitrogen, 0.0005 millimole of di(p-tolyl)methylene(cyclopentadienyl)(octamethyloctahydrodibenzofluorenyl)zirconiumdichloride was charged, and a catalyst solution was prepared by adding a hexane solution containing MMAO made by Tosoh Finechem Corporation in the amount of 0.125 millimole equivalent of Al to the flask.

[Polymerization]

In a stainless-steel autoclave of 2-liter volume fully flushed with nitrogen, 600 milliliter of hexane and 400 milliliter of 1-octene were charged into the autoclave. After increasing the temperature of the autoclave content to 145° C., the total pressure was set at 3 MPa-G by charging 1,500 milliliter of hydrogen and feeding ethylene. Next, 0.1 millimole of triisobutylaluminum, and the catalyst solution prepared as above were pressed into the autoclave with nitrogen pressure, and polymerization was started by setting the rotation of a stirrer at 400 rpm. Thereafter, the total pressure was maintained at 3 MPa-G by continuously feeding ethylene only, and polymerization was performed at 150° C. for 8 minutes. After stopping the polymerization by adding a small amount of ethanol to the reaction system, unreacted ethylene was purged. The obtained polymer solution was poured into a large excess of methanol and a polymer was precipitated. After recovering the polymer by filtration, it was dried at 135° C. overnight under reduced pressure.

As a result, an ethylene-1-octene copolymer was obtained with a yield of 65.8 g. The obtained polymer had the density of 874 (kg/m3), and MFR2=2.80 (g/10 min)

Preparation of a catalyst solution and polymerization were performed in the manner similar to Example 7, except for changing the polymerization temperature to 140° C. and the polymerization time to 10 minutes.

As a result, an ethylene-1-octene copolymer was obtained with a yield of 85.0 g. The obtained polymer had the density of 865 (kg/m3), and MFR2=0.79 (g/10 min) [Example 9]

[Preparation of a Catalyst Solution]

In a glass flask flushed fully with nitrogen, 0.001 millimole of di(p-tolyl)methylene(cyclopentadienyl)(octamethyloctahydrodibenzofluorenyl)zirconiumdichloride was charged, and a catalyst solution was prepared by adding a hexane solution containing MMAO made by Tosoh Finechem Corporation in the amount of 0.25 millimole equivalent of Al to the flask.

[Polymerization]

By using the catalyst solution prepared as above and charging 950 milliliter of hexane and 50 milliliter of 1-octene, polymerization was performed in the manner similar to Example 7, except for changing the polymerization time to 10 minutes.

As a result, an ethylene-1-octene copolymer was obtained with a yield of 35.0 g. The obtained polymer had the density of 938 (kg/m3) and MFR2=3.23 (g/10 min)

By preparing a catalyst solution in the manner similar to Example 9, polymerization was performed in the manner similar to Example 9, except for charging 970 milliliter of hexane, 30 milliliter of 1-octene, and 2000 milliliter of hydrogen.

As a result, an ethylene-1-octene copolymer was obtained with a yield of 13.9 g. The obtained polymer had the density of 947 (kg/m3) and MFR2=13.9 (g/10 min)

Polymerization was performed in the manner similar to Example 1, except for replacing di(p-tolyl)methylene(cyclopentadienyl)(octamethyloctahydrodibenzofluorenyl)zirconiumdichloride with 0.002 millimole of di(1-naphthyl)methylene(cyclopentadienyl)(octamethyloctahydrodibenzofluorenyl)zirconiumdichloride, changing the amount of N,N-dimethylaniliniumtetrakis(pentafluorophenyl)borate to 0.02 millimole, and cutting off the charge of hydrogen.

As a result, an ethylene-1-octene copolymer was obtained with a yield of 59.8 g. The obtained polymer had the density of 895 (kg/m3), MFR2=1.04 (g/10 min), MFR10=9.26 (g/10 min), MFR10/MFR2=8.9, and Mw/Mn=2.11.

In a glass flask flushed fully with nitrogen, 0.001 millimole of di(1-naphthyl)methylene(cyclopentadienyl)(octamethyloctahydrodibenzofluorenyl)zirconiumdichloride was charged. A catalyst solution was prepared by adding a toluene solution containing MAO made by Albemarle Corporation in the amount of 0.25 millimole equivalent of Al to the flask.

[Polymerization]

In a stainless-steel autoclave of 2-liter volume fully flushed with nitrogen, 800 milliliter of hexane and 200 milliliter of 1-octene were charged into the autoclave. After increasing the temperature of the autoclave content to 145° C., the total pressure was set at 3 MPa-G by feeding ethylene. Next, 1.0 millimole of triisobutylaluminum and the catalyst solution prepared as above were pressed into the autoclave by nitrogen pressure, and polymerization was started by setting the rotation of a stirrer at 400 rpm. Thereafter, polymerization was performed at 150° C. for 10 minutes by keeping the total pressure at 3 MPa-G by continuously feeding ethylene only. After stopping the polymerization by adding a small amount of ethanol to the reaction system, unreacted ethylene was purged. By pouring the obtained polymer solution into a large excess of methanol, a polymer was precipitated. After recovering the polymer by filtration, it was dried at 135° C. overnight under reduced pressure.

As a result, an ethylene-1-octene copolymer was obtained with a yield of 119.5 g. The obtained polymer had the density of 899 (kg/m3) and MFR2=0.42 (g/10 min)

[Preparation of a Catalyst Solution]

In a glass flask flushed fully with nitrogen, 0.0005 millimole of di(1-naphthyl)methylene(cyclopentadienyl)(octamethyloctahydrodibenzofluorenyl)zirconiumdichloride was charged. A catalyst solution was prepared by adding a toluene solution containing MAO made by Albemarle Corporation in the amount of 0.125 millimole equivalent of Al to the flask.

[Polymerization]

In a stainless-steel autoclave of 2-liter volume fully flushed with nitrogen, 800 milliliter of hexane and 200 milliliter of 1-octene were charged into the autoclave. After increasing the temperature of the autoclave content to 145° C., the total pressure was set at 3 MPa-G by charging 1,500 milliliter of hydrogen and feeding ethylene. Next, 1.0 millimole of triisobutylaluminum, and the catalyst solution prepared as above were pressed into the autoclave with nitrogen pressure, and polymerization was started by setting the rotation of a stirrer at 400 rpm. Thereafter, the total pressure was maintained at 3 MPa-G by continuously feeding ethylene only, and polymerization was performed at 150° C. for 30 minutes. After stopping the polymerization by adding a small amount of ethanol to the reaction system, unreacted ethylene was purged. The obtained polymer solution was poured into a large excess of methanol and a polymer was precipitated. After recovering the polymer by filtration, it was dried at 135° C. overnight under reduced pressure.

As a result, an ethylene-1-octene copolymer was obtained with a yield of 69.8 g. The obtained polymer had the density of 902 (kg/m3), MFR2=1.18 (g/10 min), MFR10=7.55 (g/10 min), MFR10/MFR2=6.4, and Mw/Mn=2.19.

Preparation of a catalyst solution and polymerization were performed in the manner similar to Example 13, except for replacing di(1-naphthyl)methylene(cyclopentadienyl)(octamethyloctahydrodibenzofluorenyl)zirconiumdichloride with diphenylmethylene(cyclopentadienyl) (octamethyloctahydrodibenzofluorenyl)zirconiumdichloride and changing the amount of hydrogen charge to 1,000 milliliter.

As a result, an ethylene-1-octene copolymer was obtained with a yield of 50.6 g. The obtained polymer had the density of 904 (kg/m3) and MFR2=2.01 (g/10 min).

Preparation of a catalyst solution and polymerization were performed in the manner similar to Example 13, except for replacing di(1-naphthyl)methylene(cyclopentadienyl) (octamethyloctahydrodibenzofluorenyl)zirconiumdichloride with di(p-tert-butyl-phenyl)methylene(cyclopentadienyl)(octamethyloctahydrodibenzofluorenyl)zirconiumdichloride.

As a result, an ethylene-1-octene copolymer was obtained with a yield of 70.4 g. The obtained polymer had the density of 903 (kg/m3), MFR2=1.80 (g/10 min), MFR10=12.60(g/10 min), MFR10/MFR2=7.0, and Mw/Mn=2.15.

Preparation of a catalyst solution and polymerization were performed in the manner similar to Example 13, except for replacing di(1-naphthyl)methylene(cyclopentadienyl) (octamethyloctahydrodibenzofluorenyl)zirconiumdichloride with di(m-trifluoromethyl-phenyl)methylene(cyclopentadienyl) (octamethyloctahydrodibenzofluorenyl)zirconiumdichloride.

As a result, an ethylene-1-octene copolymer was obtained with a yield of 75.9 g. The obtained polymer had the density of 902 (kg/m3), MFR2=1.09 (g/10 min), MFR10=7.4 (g/10 min), MFR10/MFR2=6.8, and Mw/Mn=2.08.

Preparation of a catalyst solution and polymerization were performed in the manner similar to Example 13, except for replacing di(1-naphthyl)methylene(cyclopentadienyl) (octamethyloctahydrodibenzofluorenyl)zirconiumdichloride with di(p-chloro-phenyl)methylene(cyclopentadienyl)(octamethyloctahydrodibenzofluorenyl)zirconiumdichloride.

As a result, an ethylene-1-octene copolymer was obtained with a yield of 44.8 g. The obtained polymer had the density of 902 (kg/m3) and MFR2=4.90 (g/10 min).

Preparation of a catalyst solution and polymerization were performed in the manner similar to Example 13, except for replacing di(1-naphthyl)methylene(cyclopentadienyl) (octamethyloctahydrodibenzofluorenyl)zirconiumdichloride with di(p-biphenyl)methylene(cyclopentadienyl)(octamethyloctahydrodibenzofluorenyl)zirconiumdichloride.

As a result, an ethylene-1-octene copolymer was obtained with a yield of 48.4 g. The obtained polymer had the density of 904 (kg/m3) and MFR2=2.79 (g/10 min).

Preparation of a catalyst solution and polymerization were performed in the manner similar to Example 13, except for replacing di(1-naphthyl)methylene(cyclopentadienyl) (octamethyloctahydrodibenzofluorenyl)zirconiumdichloride with di(p-trifluoromethyl-phenyl)methylene(cyclopentadienyl)(octamethyloctahydrodibenzofluorenyl)zirconiumdichloride.

As a result, an ethylene-1-octene copolymer was obtained with a yield of 33.0 g. The obtained polymer had the density of 903 (kg/m3) and MFR2=1.82 (g/10 min)

Preparation of a catalyst solution and polymerization were performed in the manner similar to Example 13, except for replacing di(1-naphthyl)methylene(cyclopentadienyl) (octamethyloctahydrodibenzofluorenyl)zirconiumdichloride with di(p-tolyl)methylene(cyclopentadienyl)(2,7-dimethyl-3,6-di-tert-butylfluorenyl)zirconiumdichloride.

As a result, an ethylene-1-octene copolymer was obtained with a yield of 62.4 g. The obtained polymer had MFR2=3.22 (g/10 min)

Preparation of a catalyst solution and polymerization were performed in the manner similar to Example 13, except for replacing di(1-naphthyl)methylene(cyclopentadienyl) (octamethyloctahydrodibenzofluorenyl)zirconiumdichloride with di(p-tolyl)methylene (cyclopentadienyl)(1,1′,3,6,8,8′-hexamethyl-2,7-dihydrodicyclopentafluorenyl)zirconiumdichloride.

As a result, an ethylene-1-octene copolymer was obtained with a yield of 67.9 g. The obtained polymer had MFR2=2.15 (g/10 min).

Preparation of a catalyst solution and polymerization were performed in the manner similar to Example 13, except for replacing di(1-naphthyl)methylene(cyclopentadienyl) (octamethyloctahydrodibenzofluorenyl)zirconiumdichloride with di(p-tolyl)methylene(cyclopentadienyl)(2,7-di-tert-butylfluorenyl)zirconiumdichloride, and changing the amount of hydrogen charge to 1,200 milliliter.

As a result, an ethylene-1-octene copolymer was obtained with a yield of 32.5 g. The obtained polymer had the density of 904 (kg/m3) and MFR2=1.21 (g/10 min)

In a glass flask flushed fully with nitrogen, 0.001 millimole of diphenylsilylene(cyclopentadienyl)(2,7-di-tert-butylfluorenyl)zirconiumdichloride was charged. A catalyst solution was prepared by adding a toluene solution containing MAO made by Albemarle Corporation in the amount of 0.25 millimole equivalent of Al to the flask.

[Polymerization]

In a stainless-steel autoclave of 2-liter volume fully flushed with nitrogen, 850 milliliter of hexane and 150 milliliter of 1-octene were charged into the autoclave. After increasing the temperature of the autoclave content to 135° C., the total pressure was set at 3 MPa-G by charging 200 milliliter of hydrogen and feeding ethylene. Next, 1.0 millimole of triisobutylaluminum, and the catalyst solution prepared as above were pressed into the autoclave with nitrogen pressure, and polymerization was started by setting the rotation of a stirrer at 400 rpm. Thereafter, the total pressure was maintained at 3 MPa-G by continuously feeding ethylene only, and polymerization was performed at 140° C. for 30 minutes. After stopping the polymerization by adding a small amount of ethanol to the reaction system, unreacted ethylene was purged. The obtained polymer solution was poured into a large excess of methanol and a polymer was precipitated. After recovering the polymer by filtration, it was dried at 135° C. overnight under reduced pressure. As a result, an ethylene-1-octene copolymer was obtained with a yield of 64.9 g. The obtained polymer had MFR2=1.80 (g/10 min).

Preparation of a catalyst solution and polymerization were performed in the manner similar to Example 23, except for replacing diphenylsilylene(cyclopentadienyl) (2,7-di-tert-butylfluorenyl)zirconiumdichloride with diphenylsilylene(cyclopentadienyl) (octamethyloctahydrodibenzofluorenyl)zirconiumdichloride.

As a result, an ethylene-1-octene copolymer was obtained with a yield of 80.9 g. The obtained polymer had MFR2=1.40 (g/10 min).

Preparation of a catalyst solution and polymerization were performed in the manner similar to Example 13, except for replacing di(1-naphthyl)methylene(cyclopentadienyl)(octamethyloctahydrodibenzofluorenyl)zirconiumdichloride with 0.001 millimole of di(p-tolyl)methylene(cyclopentadienyl)(2,7-diphenyl-3,6-di-tert-butylfluorenyl)zirconiumdichloride, and changing the toluene solution containing MAO made by Albemarle Corporation to contain 0.25 millimole equivalent of Al.

As a result, an ethylene-1-octene copolymer was obtained with a yield of 74.2 g. The obtained polymer had MFR2=2.50 (g/10 min).

Preparation of a catalyst solution and polymerization were performed in the manner similar to Example 12, except for replacing di(1-naphthyl)methylene(cyclopentadienyl)(octamethyloctahydrodibenzofluorenyl)zirconiumdichloride with 0.002 millimole of di(m-trifluoromethyl-phenyl)methylene(3-methyl-5-tert-butylcyclopentadienyl) (2,7-di-tert-butylfluorenyl)zirconiumdichloride, changing the toluene solution containing MAO made by Albemarle Corporation to contain 0.5 millimole from 0.25 millimole equivalent of Al, and changing the polymerization time to 30 minutes.

As a result, an ethylene-1-octene copolymer was obtained with a yield of 75.9 g. The obtained polymer had the density of 905 (kg/m3), MFR2=9.10 (g/10 min), MFR10=66.0 (g/10 min), MFR10/MFR2=7.2, and Mw/Mn=2.19.

Preparation of a catalyst solution and polymerization were performed in the manner similar to Example 12, except for replacing di(1-naphthyl)methylene(cyclopentadienyl)(octamethyloctahydrodibenzofluorenyl)zirconiumdichloride with diphenylmethylene(3-ethyl-5-tert-butylcyclopentadienyl)(2,7-di-tert-butylfluorenyl)zirconiumdichloride, and changing the polymerization time to 30 minutes.

As a result, an ethylene-1-octene copolymer was obtained with a yield of 30.9 g. The obtained polymer had MFR2=3.29 (g/10 min).

In a stainless-steel autoclave of 2-liter volume fully flushed with nitrogen, 800 milliliter of hexane and 200 milliliter of 1-octene were charged into the autoclave. After increasing the temperature of the autoclave content to 145° C., the total pressure was set at 3 MPa-G by feeding ethylene. Next, 0.3 millimole of triisobutylaluminum, 0.004 millimole of diphenylmethylene(3-methyl-5-tert-butylcyclopentadienyl)(2,7-di-tert-butylfluorenyl)zirconiumdichloride, and 0.04 millimole of triphenylcarbeniumtetrakis(pentafluorophenyl)borate were pressed into the autoclave with nitrogen pressure, and polymerization was started by setting the rotation of a stirrer at 400 rpm. Thereafter, polymerization was performed at 150° C. for 30 minutes by keeping the total pressure at 3 MPa-G by continuously feeding ethylene only. After stopping the polymerization by adding a small amount of ethanol to the reaction system, unreacted ethylene was purged. By pouring the obtained polymer solution into a large excess of methanol, a polymer was precipitated. After recovering the polymer by filtration, it was dried at 135° C. overnight under reduced pressure.

As a result, an ethylene1-octene copolymer was obtained with a yield of 18.9 g. The obtained polymer had the density of 905 (kg/m3), MFR2=14.9 (g/10 min), MFR10=100 (g/10 min), MFR10/MFR2=6.7, and Mw/Mn=2.08.

Preparation of a catalyst solution and polymerization were performed in the manner similar to Example 12, except for replacing di(1-naphthyl)methylene(cyclopentadienyl)(octamethyloctahydrodibenzofluorenyl)zirconiumdichloride with 0.002 millimole of diphenylmethylene(3-methyl-5-tert-butylcyclopentadienyl)(2,7-di-tert-butylfluorenyl)zirconiumdichloride, changing the toluene solution containing MAO made by Albemarle Corporation to contain 0.5 millimole from 0.25 millimole equivalent of Al, and changing the polymerization time to 30 minutes.

As a result, an ethylene-1-octene copolymer was obtained with a yield of 97.5 g. The obtained polymer had the density of 908 (kg/m3), MFR2=7.84 (g/10 min), MFR10=56.5 (g/10 min), MFR10/MFR2=7.2, and Mw/Mn=2.15.

Preparation of a catalyst solution and polymerization were performed in the manner similar to Example 23, except for replacing diphenylsilylene(cyclopentadienyl)(2,7-di-tert-butylfluorenyl)zirconiumdichloride with 0.002 millimole of dimethylmethylene(cyclopentadienyl)(fluorenyl)zirconiumdichloride, changing the toluene solution containing MAO made by Albemarle Corporation to contain 0.4 millimole from 0.25 millimole equivalent of Al, and cutting off the charging of hydrogen during polymerization.

As a result, an ethylene-1-octene copolymer was obtained with a yield of 11.2 g. The obtained polymer had the density of 927 (kg/m3) and MFR2=19.3 (g/10 min).

Preparation of a catalyst solution and polymerization were performed in the manner similar to Comparative example 1, except for replacing dimethylmethylene(cyclopentadienyl) (fluorenyl)zirconiumdichloride with dimethylsilylene(cyclopentadienyl)(fluorenyl)zirconiumdichloride.

As a result, an ethylene-1-octene copolymer was obtained with a yield of 35.0 g. The obtained polymer had the density of 917 (kg/m3) and MFR2=0.26 (g/10 min).

Preparation of a catalyst solution and polymerization were performed in the manner similar to Comparative example 1, except for replacing dimethylmethylene(cyclopentadienyl) (fluorenyl)zirconiumdichloride with dimethylsilylene(indenyl)(fluorenyl)zirconiumdichloride.

As a result, an ethylene-1-octene copolymer was obtained with a yield of 17.7 g. The obtained polymer had the density of 920 (kg/m3) and MFR2=15.9 (g/10 min).

In a stainless-steel autoclave of 2-liter volume fully flushed with nitrogen, 950 milliliter of hexane and 50 milliliter of 1-octene were charged into the autoclave. After increasing the temperature of the autoclave content to 145° C., the total pressure was set at 3 MPa-G by feeding ethylene. Next, 0.3 millimole of triisobutylaluminum, 0.002-millimole of (tert-butylamide)(dimethyl)(tetramethyl-η5-cyclopentadienyl)silanedichlorotitanium, and 0.01 millimole of triphenylcarbeniumtetrakis(pentafluorophenyl)borate were pressed into the autoclave with nitrogen pressure, and polymerization was started by setting the rotation of a stirrer at 400 rpm. Thereafter, polymerization was performed at 150° C. for 30 minutes by keeping the total pressure at 3 MPa-G by continuously feeding ethylene only. After stopping the polymerization by adding a small amount of ethanol to the reaction system, unreacted ethylene was purged. By pouring the obtained polymer solution into a large excess of methanol, a polymer was precipitated. After recovering the polymer by filtration, it was dried at 135° C. overnight under reduced pressure.

As a result, an ethylene-1-octene copolymer was obtained with a yield of 27.9 g. The obtained polymer had the density of 899 (kg/m3), MFR2=1.24 (g/10 min), MFR10=11.0 (g/10 min), MFR10/MFR2=8.9, and Mw/Mn=2.67.

TABLE 1
Component (B)
Component (A) (b1) or (b2) (b3) C8
Compounds Compounds note 1) note 4) H2 Temp
note 2) mmol note 3) mmol mmol mL mL ° C.
Example 1 a 0.001 A 0.01 0.3 200  500 150
Example 2 0.00025 B 0.625 1 200 1500 150
Example 3 0.001 B 0.25 1 200 1000 180
Example 4 0.0005 C 0.125 1 200 1500 150
Example 5 0.00025 D 0.0625 1 200 1500 150
Example 6 0.001 B 0.25 1 200  700 200
Example 7 0.0005 C 0.125 1 400 1500 150
Example 8 0.0005 C 0.125 1 400 1500 140
Example 9 0.001 C 0.25 1 50 1000 150
Example 0.001 C 0.25 1 30 2000 150
10
Example b 0.002 A 0.02 0.3 200 150
11
Example 0.001 B 0.25 1 200 150
12
Example 0.0005 B 0.125 1 200 1500 150
13
Example c 0.0005 B 0.125 1 200 1000 150
14
Example d 0.0005 B 0.125 1 200 1500 150
15
Example e 0.0005 B 0.125 1 200 1500 150
16
Example f 0.0005 B 0.125 1 200 1500 150
17
Example g 0.0005 B 0.125 1 200 1500 150
18
Example h 0.0005 B 0.125 1 200 1500 150
19
Example i 0.0005 B 0.125 1 200 1500 150
20
Example j 0.0005 B 0.125 1 200 1500 150
21
Example k 0.0005 B 0.125 1 200 1200 150
22
Example l 0.001 B 0.25 1 150  200 140
23
Example m 0.001 B 0.25 1 150  200 140
24
Example n 0.001 B 0.25 1 200 1500 150
25
Example o 0.002 B 0.5 1 200 150
26
Example p 0.001 B 0.25 1 200 150
27
Example q 0.004 E 0.04 0.3 200 150
28
Example 0.002 B 0.5 1 200 150
29
Time Yield Mileage MFR2 MFR10 d
min g kg/mmol-Zr g/10 min g/10 min MFR10/MFR2 kg/m3 Mw/Mn
Example 1 30 59.7 59.7 1.03 7.62 7.4 898 2.12
Example 2 10 110.7 442.8 5.37 36.00 6.7 904 2.07
Example 3 30 88.6 88.6 6.52 47.60 7.3 904 2.06
Example 4 30 79.6 159.2 1.66 10.80 6.5 905 2.15
Example 5 10 80.3 321.2 4.31 27.20 6.3 904 2.11
Example 6 30 35 35.0 7.23 905
Example 7  8 65.8 131.6 2.80 874
Example 8 10 85 170.0 0.79 865
Example 9 10 35 35.0 3.23 938
Example 10 13.9 13.9 13.90 947
10
Example 30 59.8 29.9 1.04 9.26 8.9 895 2.11
11
Example 10 119.5 119.5 0.42 899
12
Example 30 69.8 139.6 1.18 7.55 6.4 902 2.19
13
Example 30 50.6 101.2 2.01 904
14
Example 30 70.4 140.8 1.80 12.60 7 903 2.15
15
Example 30 75.9 151.8 1.09 7.40 6.8 902 2.08
16
Example 30 44.8 89.6 4.90 902
17
Example 30 48.4 96.8 2.79 904
18
Example 30 33 66.0 1.82 903
19
Example 30 62.4 124.8 3.22
20
Example 30 67.9 135.8 2.15
21
Example 30 32.5 65.0 1.21 904
22
Example 30 64.9 64.9 1.80
23
Example 30 80.9 80.9 1.40
24
Example 30 74.2 74.2 2.50
25
Example 30 75.9 38.0 9.10 66.00 7.2 905 2.19
26
Example 30 30.9 30.9 3.29
27
Example 30 18.9 4.7 14.90 100.00 6.7 905 2.08
28
Example 30 97.5 48.8 7.84 56.50 7.2 908 2.15
29
note 1) As component (b3), triisobutylaluminum was used.
note 2) As component (a), the following metallocene compounds were used.
a: di(p-tolyl)methylene(cyclopentadienyl)(octamethyloctahydrodibenzofluorenyl) zirconiumdichloride
b: di(1-naphthyl)methylene(cyclopentadienyl)(octamethyloctahydrodibenzofluorenyl) zirconiumdichloride
c: diphenylmethylene(cyclopentadienyl)(octamethyloctahydrodibenzofluorenyl) zirconiumdichloride
d: di(p-tert-butyl-phenyl)methylene(cyclopentadienyl) (octamethyloctahydrodibenzofluorenyl)zirconiumdichloride
e: di(m-trifluoromethyl-phenyl)methylene(cyclopentadienyl) (octamethyloctahydrodibenzofluorenyl)zirconiumdichloride
f: di(p-chloro-phenyl)methylene(cyclopentadienyl)(octamethyloctahydrodibenzofluorenyl)zirconiumdichloride
g: di(p-biphenyl)methylene(cyclopentadienyl)(octamethyloctahydrodibenzofluorenyl) zirconiumdichloride
h: di(p-trifluoromethyl-phenyl)methylene(cyclopentadienyl) (octamethyloctahydrodibenzofluorenyl)zirconiumdichloride
i: di(p-tolyl)methylene(cyclopentadienyl)(2,7-dimethy1-3,6-di-tert-butylfluorenyl) zirconiumdichloride
j: di(p-tolyl)methylene(cyclopentadienyl)(1,1′,3,6,8,8′-hexamethyl-2,7-dihydrodicyclopentafluorenyl)zirconiumdichloride
k: di(p-tolyl)methylene(cyclopentadienyl)(2,7-di-tert-butylfluorenyl)zirconiumdichloride
l: diphenylsilylene(cyclopentadienyl)(2,7-di-tert-butylfluorenyl)zirconiumdichloride
m: diphenylsilylene(cyclopentadienyl)(octamethyloctahydrodibenzofluorenyl)zirconiumdichloride
n: di(p-tolyl)methylene(cyclopentadienyl)(2,7-diphenyl-3,6-di-tert-butylfluorenyl) zirconiumdichloride
o: di(m-trifluoromethyl-phenyl)methylene(3-methyl-5-tert-butylcyclopentadienyl) (2,7-di-tert-butylfluorenyl)zirconiumdichloride
p: diphenylmethylene(3-ethyl-5-tert-butylcyclopentadienyl)(2,7-di-tert-butylfluorenyl) zirconiumdichloride
q: diphenylmethylene(3-methyl-5-tert-butylcyclopentadienyl)(2,7-di-tert-butylfluorenyl) zirconiumdichloride
r: dimethylmethylene(cyclopentadienyl)(fluorenyl)zirconiumdichloride
s: dimethylsilylene(cyclopentadienyl)(fluorenyl)zirconiumdichloride
t: dimethylsilylene(indenyl)(fluorenyl)zirconiumdichloride
u: (tert-butylamide)(dimethyl)(tetramethyl-η5-cyclopentadienyl)silanedichlorotitanium
note 3) As component (b2) or component (b3), the following compounds were used.
A: N,N-dimethylaniliniumtetrakis(pentafluorophenyl)borate
B: MAO made by Albermarle Corporation
C: MMAO made by Tosoh Finechem Corporation
D: TMAO-341 made by Tosoh Finechem Corporation
E: Triphenylcarbeniuimtetrakis(pentafluorophenyl)borate
note 4) 1-Octene

An olefin polymer having a high comonomer content, a narrow composition distribution, and a narrow molecular weight distribution in a copolymer can be produced efficiently with high polymerization activity under the conditions of high temperature in the range between 120 and 300° C. by the method of high temperature solution polymerization of the present invention. The olefin polymer produced is a raw material resin that is useful in the field of various forming materials, and the impact of the method of high temperature solution polymerization of the present invention on the industry is immense.

Tsutsui, Toshiyuki, Sugimura, Kenji, Tohi, Yasushi

Patent Priority Assignee Title
11905348, Mar 20 2018 Mitsui Chemicals, Inc Ethylene/alpha-olefin/non-conjugated polyene copolymer, method for producing the same, and use thereof
Patent Priority Assignee Title
5084534, Jun 04 1987 Exxon Chemical Patents, Inc. High pressure, high temperature polymerization of ethylene
6207774, Feb 22 1993 Tosoh Corporation Process for producing ethylene/α-olefin copolymer
6469188, Jan 20 1999 California Institute of Technology Catalyst system for the polymerization of alkenes to polyolefins
20060161013,
JP1503788,
JP200451676,
JP5320246,
JP7157508,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Mar 30 2005Mitsui Chemicals, Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
Oct 03 2012ASPN: Payor Number Assigned.
Nov 20 2013M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Dec 12 2017M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Dec 15 2021M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Nov 22 20144 years fee payment window open
May 22 20156 months grace period start (w surcharge)
Nov 22 2015patent expiry (for year 4)
Nov 22 20172 years to revive unintentionally abandoned end. (for year 4)
Nov 22 20188 years fee payment window open
May 22 20196 months grace period start (w surcharge)
Nov 22 2019patent expiry (for year 8)
Nov 22 20212 years to revive unintentionally abandoned end. (for year 8)
Nov 22 202212 years fee payment window open
May 22 20236 months grace period start (w surcharge)
Nov 22 2023patent expiry (for year 12)
Nov 22 20252 years to revive unintentionally abandoned end. (for year 12)