The amorphous silicon layer overlaps the gate electrode and the edges of the amorphous silicon layer are substantially encompassed by the edges of the gate electrode. The distance between the edges is at least 2 microns. Accordingly, both the light obliquely incident on the amorphous silicon layer from the outside once the light normally incident on the amorphous silicon layer is blocked by the gate electrode. Insulation layers, which are separated from the amorphous silicon layer and made of an amorphous silicon, are interposed between the edges of the source/drain electrodes and the gate electrode to reinforce the insulation between the gate electrode and the source/drain electrodes and also to absorb the light reflected by the source/drain electrodes and the gate electrode. The source electrode may partially surround the drain electrode in annular shape, to reduce the parasitic capacitance generated between the gate electrode and the drain electrode. The amorphous silicon layer may protrude out the gate electrode near the edges of the gate electrode which encompasses a source electrode and the source/drain electrodes. The amorphous silicon layer covers the edges of the gate electrode which encompasses the source electrode. The source electrode may be curved to prolong the distance between the drain electrode and the portion of the amorphous silicon layer.
|
0. 26. A thin film transistor for a liquid crystal display comprising:
a gate electrode;
an insulator covering the gate electrode;
an amorphous silicon layer formed on the insulator, wherein edges of the amorphous silicon layer are substantially encompassed by edges of the gate electrode;
a source electrode which is formed on the amorphous silicon layer and overlaps the gate electrode;
a drain electrode which is formed on the amorphous silicon layer and opposite and separated from the source electrode, and overlaps the gate electrode; and
a semiconductor layer which is separated from the amorphous silicon layer and disposed between the drain electrode and an edge of the gate electrode.
0. 20. A thin film transistor for a liquid crystal display comprising:
a gate electrode;
an insulator covering the gate electrode;
an amorphous silicon layer formed on the insulator, wherein edges of the amorphous silicon layer are substantially encompassed by edges of the gate electrode;
a source electrode which is formed on the amorphous silicon layer and overlaps the gate electrode;
a drain electrode which is formed on the amorphous silicon layer and opposite and separated from the source electrode, and overlaps the gate electrode; and
a first semiconductor layer which is separated from the amorphous silicon layer and disposed between the source electrode and edges of the gate electrode.
0. 1. A thin film transistor for a liquid crystal display comprising:
a gate electrode;
an insulator covering the gate electrode;
an amorphous silicon layer formed on the insulator, wherein edges of the amorphous silicon layer are substantially encompassed by edges of the gate electrode and the edges of the amorphous silicon layer are spaced apart from the edges of the gate electrode by at least 2 microns;
a source electrode which is formed on the amorphous silicon layer and overlaps the gate electrode; and
a drain electrode which is formed on the amorphous silicon layer and opposite and separated from the source electrode, and overlaps the gate electrode;
wherein the source electrode has an annular shape and wherein the source electrode at least partially surrounds the drain electrode.
0. 2. The thin film transistor as claimed in
0. 3. The thin film transistor as claimed in
0. 4. The thin film transistor as claimed in
0. 5. The thin film transistor as claimed in
0. 6. The thin film transistor as claimed in
0. 7. A thin film transistor for a liquid crystal display, comprising:
a gate electrode;
an insulator covering said gate electrode;
an amorphous silicon layer formed on said insulator;
a drain electrode which is formed on said amorphous silicon layer and overlaps said gate electrode; and
a source electrode which is formed said amorphous silicon layer and opposite and separated from said drain electrode, and overlaps said gate electrode;
wherein said amorphous silicon layer covers an edge of said gate electrode that extends opposite said source electrode;
wherein said source electrode has an annular shape and at least partially surrounds said drain electrode; and
wherein said amorphous silicon layer covers an edge of said gate electrode which extends opposite said drain electrode.
0. 8. The thin film transistor as claimed in
0. 9. A thin film transistor for a liquid crystal display, comprising:
a gate electrode;
an insulator covering said gate electrode;
an amorphous silicon layer formed on said insulator;
a drain electrode which is formed on said amorphous silicon layer and overlaps said gate electrode; and
a source electrode which is formed on said amorphous silicon layer and opposite and separated from said drain electrode, and overlaps said gate electrode;
wherein said amorphous silicon layer covers an edge of said gate electrode that extends opposite said source electrode and extends along said drain electrode;
wherein said source electrode has an annular shape and at least partially surrounds said drain electrode; and
wherein said amorphous silicon layer that extends along said drain electrode lies within a boundary of said drain electrode.
0. 10. A thin film transistor for a liquid crystal display comprising:
a gate electrode;
an insulator covering the gate electrode;
an amorphous silicon layer formed on the insulator, wherein edges of the amorphous silicon layer are substantially encompassed by edges of the gate electrode and the edges of the amorphous silicon layer are spaced apart from the edges of the gate electrode by at least 2 microns;
a source electrode which is formed on the amorphous silicon layer and overlaps the gate electrode; and
a drain electrode which is formed on the amorphous silicon layer and opposite and separated from the source electrode, and overlaps the gate electrode;
wherein the source electrode has at least one portion that at least partially surrounds the drain electrode.
0. 11. The thin film transistor as claimed in
0. 12. The thin film transistor as claimed in
0. 13. A liquid crystal display device, comprising:
a transparent substrate having a surface thereon; and
a thin-film transistor on said transparent substrate, said transistor comprising:
a gate electrode that extends on the surface,
drain and source electrodes that cross over first and second edges of said gate electrode, respectively, when viewed in a first direction normal to the surface; and
an amorphous silicon active layer that is electrically coupled to said source and drain electrodes, said amorphous silicon active layer having a plurality of edges that extend within a perimeter of said gate electrode when viewed in the first direction and at least one edge that crosses the first edge of said gate electrode so that a first tab portion of said amorphous silicon active layer has a width greater than a width of said drain electrode and is spaced between said drain electrode and the first edge of said gate electrode.
0. 14. The device of
0. 15. The device of
0. 16. The device of
0. 17. A liquid crystal display device, comprising:
a transparent substrate having a surface thereon; and
a thin-film transistor on said transparent substrate, said transistor comprising:
a gate electrode that extends on the surface;
drain and source electrodes that cross over first and second edges of the gate electrode, respectively, when viewed in a first direction normal to the surface;
an amorphous silicon active layer that is electrically coupled to said source and drain electrodes, said amorphous silicon active layer having a plurality of edges that extend within a perimeter of said gate electrode when viewed in the first direction;
a first amorphous silicon spacer that is disposed between the first edge of said gate electrode and said drain electrode and is electrically isolated from said amorphous silicon active layer; and
a second amorphous silicon spacer that is disposed between the second edge of said gate electrode and said source electrode and is electrically isolated from said amorphous silicon active layer.
0. 18. A thin film transistor for a liquid crystal display comprising:
a gate electrode;
an insulator covering the gate electrode;
an amorphous silicon layer formed on the insulator;
a source electrode which is formed on the amorphous silicon layer and overlaps at least a portion of the gate electrode; and
a drain electrode which is formed on the amorphous silicon layer and opposite and separated from the source electrode, and overlaps at least a portion of the gate electrode,
wherein, at least a width of the amorphous silicon layer under the drain electrode is narrower than a width of the drain electrode at an edge of the gate electrode; and
wherein the source electrode has an annular shape and wherein the source electrode at least partially surrounds the drain electrode.
0. 19. The thin film transistor as claimed in
0. 21. The thin film transistor as claimed in claim 20, wherein the source electrode has an annular shape and wherein the source electrode at least partially surrounds the drain electrode.
0. 22. The thin film transistor as claimed in claim 20, wherein the distance between the edge lines of the gate electrode and the amorphous silicon layer is at least 3.5 microns.
0. 23. The thin film transistor as claimed in claim 20, further comprising a second semiconductor layer which is separated from the amorphous silicon layer and disposed between the drain electrode and an edge of the gate electrode.
0. 24. The thin film transistor as claimed in claim 23, wherein the first and the second semiconductor layers comprise a material which absorbs incident light.
0. 25. The thin film transistor as claimed in claim 23, wherein the first and the second semiconductor layers are made of amorphous silicon.
0. 27. The thin film transistor as claimed in claim 26, wherein the source electrode has an annular shape and wherein the source electrode at least partially surrounds the drain electrode.
0. 28. The thin film transistor as claimed in claim 26, wherein the distance between the edge lines of the gate electrode and the amorphous silicon layer is at least 3.5 microns.
0. 29. The thin film transistor as claimed in claim 26, wherein the semiconductor layer comprises a material which absorbs incident light.
0. 30. The thin film transistor as claimed in claim 26, wherein the semiconductor layer is made of amorphous silicon.
|
300 30 covers the gate pattern 210 and 20. A hydrogenated amorphous silicon (a-si:H) layer 40 and a doped hydrogenated amorphous silicon layer 5 and 6 with N type impurity are sequentially formed on the portion of the gate insulating layer 30 above the gate electrode 20, and the portions 5 and 6 of the doped amorphous silicon layer are separated from each other and opposite each other with respect to the gate electrode 20. Here, the amorphous silicon layer 40 is used as a channel layer of TFT, and the doped amorphous silicon layer 5 and 6 is used as a contact resistance layer to decrease the contact resistance between the amorphous silicon layer 40 and metal electrodes.
A data line 510 defining a pixel region P along with the gate line 210 is formed on the gate insulating layer 30, a source electrode 50 which is a portion of the data line 510 is formed on the one portion 5 of the doped amorphous silicon layer, and a drain electrode 60 opposite the source electrode 50 with respect to the gate electrode 20 and parallel to the source electrode 50 is formed on the other portion 6 of the doped amorphous silicon layer.
A passivation layer 70 is formed on the data pattern 510, 50 and 60 and portions of the amorphous silicon layer 40 which are not covered by the data pattern 510, 50 and 60. The passivation layer 70 has a contact hole 71 exposing the drain electrode 60.
Finally, a pixel electrode 80 made of transparent conductive material such as ITO (indium tin oxide) and connected to the drain electrode 60 through the contact hole 71 is formed on the passivation layer 70 in the pixel region P.
The edges of the amorphous silicon layer 40 are substantially encompassed by the edges of the gate electrode 20 and the distance between their edges are at least 2 microns. Accordingly, the light obliquely incident on the amorphous silicon layer 40 from the outside as well as the light normally incident on the amorphous silicon layer 40 is blocked by the gate electrode 20. Considering the process margin of 1.5 microns, it is much desirable that the distance between the edges of the gate electrode 20 and of the amorphous silicon layer 40 are at least 3.5 microns.
However, the gate electrode 20 and the source/drain electrodes 50 and 60 may be shorted, since some portions of the gate electrode 20 and the source/drain electrodes 50 and 60 overlap via only the gate insulating layer 30 as shown in
Accordingly, a structure to reduce these problems will be described through the following embodiments.
The structure of only a TFT not overall the pixel will be described in the following embodiments, and the structure of whole pixel may be the similar to that of
The structure of the TFT is similar to that shown in
However, the photo leakage current may be generated in the extended portion of the amorphous silicon layer 40.
The structure to solve this problem is proposed through a third embodiment.
As shown in
However, insulation layers 91 and 92 is separated from the amorphous silicon layer 40 are interposed between the source/drain electrodes 50 and 60 and the edges of the gate electrode 20 in order to reinforce the insulation between the gate electrode 20 and the source/drain electrodes 50 and 60. The insulation layers 91 and 92 are preferably made of insulating materials which absorb the light incident from the outside of the gate electrode 20, such as amorphous silicon. The light reflected by the source/drain electrodes 50 and 60 and the gate electrode 20 is also preferably absorbed by the insulation layers 91 and 92.
The curves (a), (b) and (c) in
This results indicates that the TFT in
As shown in
As shown in
As shown in
A source electrode 50 of each TFT according to the fourth to the sixth embodiments partially surrounds the drain electrode in annular shape, which is symmetrical with respect to a drain electrode 60.
Since the source electrode 50 is formed in annular shape in this way and thus the edges of the source electrode 50 facing the drain electrode 60 is long, the size of the drain electrode 60 for obtaining a conduction channel of a limited size may be reduced in comparison with the previous embodiments. Accordingly, the overlapping area between the gate electrode 20 and the drain electrode 60 may be reduced, and the parasitic capacitance generated between the gate electrode 20 and the drain electrode 60 may be also reduced. Furthermore, the variation of the parasitic capacitance due to misalignment is small, as a result, the deviation of flicker become small in display.
Next, the various modifications of the TFTs shown in
As shown in
As shown in
Accordingly, the electrons and holes generated in the portion C1 appear not to contribute to the photo leakage current. If the other end portion 52 of the source electrode 50 is formed in the same manner as in
In the mean time, the amorphous silicon layer 40 extends along the drain electrode 60 to form a portion 43 overlapping only the drain electrode 60 not the gate electrode 20.
The portion 43 in
However, in
As shown in
In addition, because the source and the drain electrodes 50 and 60 extend in the transverse direction, the channels of the TFTs is formed under the drain electrode 60, such that the path which the electrons and holes generated in the portion C2 arrive at the channels is prolonged. Accordingly, the electrons and holes generated in the portion C2 hardly contribute to the photo leakage current, too.
The amorphous silicon layer 40 may have portions C3 and C4 which overlap neither the gate electrode 20 nor the drain electrode 60 near the drain electrode 60 due to the limit of design rule as shown in
As shown in
As shown in
As shown in
Kim, Dong-Gyu, Lee, Joo-Hyung, Huh, Jae-Ho
Patent | Priority | Assignee | Title |
11245015, | Aug 22 2019 | HEFEI XINSHENG OPTOELECTRONICS TECHNOLOGY CO., LTD.; BOE TECHNOLOGY GROUP CO., LTD. | Thin film transistor, method for preparing the same, array substrate, display panel and apparatus |
Patent | Priority | Assignee | Title |
4990981, | Jan 29 1988 | Hitachi, Ltd. | Thin film transistor and a liquid crystal display device using same |
5049952, | Dec 30 1989 | SAMSUNG ELECTRONICS CO , LTD | Thin film transistor for use in a flat plate display |
5055899, | Sep 09 1987 | Casio Computer Co., Ltd. | Thin film transistor |
5877512, | Jul 28 1995 | SAMSUNG DISPLAY CO , LTD | Liquid crystal display device having uniform parasitic capacitance between pixels |
5883437, | Dec 28 1994 | PANASONIC LIQUID CRYSTAL DISPLAY CO , LTD | Method and apparatus for inspection and correction of wiring of electronic circuit and for manufacture thereof |
6274884, | Jul 26 1996 | SAMSUNG DISPLAY CO , LTD | Thin film transistors for liquid crystal displays |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 31 2007 | Samsung Electronics Co., Ltd. | (assignment on the face of the patent) | / | |||
Sep 04 2012 | SAMSUNG ELECTRONICS CO , LTD | SAMSUNG DISPLAY CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028999 | /0876 |
Date | Maintenance Fee Events |
Mar 20 2012 | ASPN: Payor Number Assigned. |
Feb 01 2013 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jan 10 2015 | 4 years fee payment window open |
Jul 10 2015 | 6 months grace period start (w surcharge) |
Jan 10 2016 | patent expiry (for year 4) |
Jan 10 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 10 2019 | 8 years fee payment window open |
Jul 10 2019 | 6 months grace period start (w surcharge) |
Jan 10 2020 | patent expiry (for year 8) |
Jan 10 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 10 2023 | 12 years fee payment window open |
Jul 10 2023 | 6 months grace period start (w surcharge) |
Jan 10 2024 | patent expiry (for year 12) |
Jan 10 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |