Methods and an apparatus for enhancement of source coding systems utilizing high frequency reconstruction (HFR) are introduced. The problem of insufficient noise contents is addressed in a reconstructed highband, by using Adaptive noise-floor Addition. New methods are also introduced for enhanced performance by means of limiting unwanted noise, interpolation and smoothing of envelope adjustment amplification factors. The methods and apparatus used are applicable to both speech coding and natural audio coding systems.

Patent
   RE43189
Priority
Jan 27 1999
Filed
Jan 26 2000
Issued
Feb 14 2012
Expiry
Jan 26 2020
Assg.orig
Entity
Large
10
33
all paid
0. 22. Encoding method comprising:
encoding an audio signal to obtain an encoded signal, the encoded signal including the low band portion of the original signal and not including the high band portion of the original signal, comprising:
estimating a level of noise to be added in a high-frequency regeneration process at a decoder; and
extracting a spectral envelope of the original signal to be used for adjusting a reconstructed high-band portion of the original signal.
0. 18. Encoder comprising:
an audio coder for encoding an audio signal to obtain an encoded signal, the encoded signal including the low band portion of the original signal and not including the high band portion of the original signal, comprising:
a noise estimation device for estimating a level of noise to be added in a high-frequency regeneration process at a decoder; and
an envelope extraction unit for extracting a spectral envelope of the original signal to be used for adjusting a reconstructed high-band portion of the original signal.
16. An apparatus for enhancing a source decoder, the source decoder generating a decoded signal by decoding an encoded signal obtained by source encoding of an original signal, the original signal having a low band portion and a high band portion, the encoded signal including the low band portion of the original signal and not including the high band portion of the original signal, wherein the decoded signal is used for high-frequency reconstruction to obtain a high-frequency reconstructed signal including a reconstructed high band portion of the original signal, comprising:
an adjuster for adjusting a spectral envelope of the high-frequency reconstructed signal, the adjuster including a limiter for limiting of envelope adjustment amplification factors.
8. An apparatus for enhancing a source encoder, the source encoder generating an encoded signal by encoding an original signal, the original signal having a low band portion and a high band portion, the encoded signal including the low band portion of the original signal and not including the high band portion of the original signal, comprising:
an estimator for estimating a noise-floor level of the original signal, the noise floor level being a measure for a difference between a first spectral envelope determined by local minimum points of a spectral representation of the original signal and a second spectral envelope determined by local maximum points of a spectral representation of the original signal; and
a multiplexer for multiplexing the encoded signal including the low band portion of the original signal and the noise-floor level of the high band portion of the original signal to obtain an encoder output signal.
1. A method for enhancing a source encoding method, the source encoding method generating an encoded signal by encoding an original signal, the original signal having a low band portion and a high band portion, the encoded signal including the low band portion of the original signal and not including the high band portion of the original signal, comprising the following steps:
estimating a noise-floor level of the high band portion of the original signal, the noise floor level being a measure for a difference between a first spectral envelope determined by local minimum points of a spectral representation of the original signal and a second spectral envelope determined by local maximum points of a spectral representation of the original signal; and
multiplexing the encoded signal including the low band portion of the original signal and the noise-floor level of the high band portion of the original signal to obtain an encoder output signal.
17. An apparatus for enhancing a source decoder, the source decoder generating a decoded signal by decoding an encoded signal obtained by source encoding of an original signal, the original signal having a low band portion and a high band portion, the encoded signal including the low band portion of the original signal and not including the high band portion of the original signal, wherein the decoded signal is used for high-frequency reconstruction to obtain a high-frequency reconstructed signal including a reconstructed high band portion of the original signal, comprising:
a high frequency reconstruction module for generating a signal, the high-frequency reconstruction module having a summer for summing several high-frequency reconstructed signals, originating from different low band frequency ranges of the decoded signal to obtain the signal, and
an analyzer for analyzing the low band portion of the decoded signal and for providing control data to the summer.
11. A method for enhancing a source decoding method, the source decoding method generating a decoded signal by decoding an encoded signal obtained by source encoding of an original signal, the original signal having a low band portion and a high band portion, the encoded signal including the low band portion of the original signal and not including the high band portion of the original signal, wherein the decoded signal is used for high-frequency reconstruction to obtain a high-frequency reconstructed signal including a reconstructed high band portion of the original signal, comprising the following steps:
demultiplexing an input signal including the encoded signal and a noise-floor level of the high band portion of the original signal, the noise floor level being a measure for a difference between a first spectral envelope determined by local minimum points of a spectral representation of the original signal and a second spectral envelope determined by local maximum points of a spectral representation of the original signal;
obtaining a spectral envelope representation of the high band portion of the original signal;
shaping a spectrum of a random noise signal in accordance to the spectral envelope representation of the high band portion of the original signal to obtain a spectrally shaped random noise signal;
adjusting the spectrally shaped random noise signal in accordance to the noise-floor level to obtain an adjusted spectrally shaped random noise signal; and
adding the adjusted spectrally shaped random noise signal to the high-frequency reconstructed signal to obtain an enhanced high-frequency reconstructed signal.
9. An apparatus for enhancing a source decoder, the source decoder generating a decoded signal by decoding an encoded signal obtained by source encoding of an original signal, the original signal having a low band portion and a high band portion, the encoded signal including the low band portion of the original signal and not including the high band portion of the original signal, wherein the decoded signal is used for high-frequency reconstruction to obtain a high-frequency reconstructed signal including a reconstructed high band portion of the original signal, comprising:
a demultiplexer for demultiplexing an input signal including the encoded signal and a noise-floor level of the high band portion of the original signal, the noise floor level being a measure for a difference between a first spectral envelope determined by local minimum points of a spectral representation of the original signal and a second spectral envelope determined by local maximum points of a spectral representation of the original signal;
means for obtaining a spectral envelope representation of the high band portion of the original signal;
a shaper for shaping a spectrum of a random noise signal in accordance to the spectral envelope representation of the high band portion of the original signal to obtain a spectrally shaped random noise signal;
an adjuster for adjusting the spectrally shaped random noise signal in accordance to the noise-floor level to obtain an adjusted spectrally shaped random noise signal; and
an adder for adding the adjusted spectrally shaped random noise signal to the high-frequency reconstructed signal to obtain an enhanced high-frequency reconstructed signal.
2. A method according to claim 1, in which the step of estimating includes the following step:
mapping the noise-floor level to several frequency bands to obtain a noise-floor level for each of the several frequency bands.
3. A method according to claim 2, in which the difference measure is additionally smoothed in time.
4. A method according to claim 2, further comprising the following steps:
providing an additional fine structured spectral representation of the original signal using a resolution which is lower than a resolution used in the step of providing the fine structured spectral representation;
performing the steps of applying a dip following action, applying a peak following action and forming a difference to obtain an additional difference measure; and
choosing between the additional difference measure and the noise-floor level values to obtain a largest noise-floor level estimate.
5. A method according to claim 1, in which the noise-floor level is represented using linear predictive coding, or any other polynomial representation.
6. A method according to claim 1, in which the step of estimating includes the following steps:
providing a fine structured spectral representation of the original signal using a resolution which is sufficient so that formants or single sinusoidals in the spectral representation are visible, the fine structured spectral representation having local minimum points and local maximum points;
applying a dip-following action on the fine structured spectral representation for interpolating along the local minimum points to obtain the first spectral envelope;
applying a peak following action on the fine structured spectral representation of the original signal for interpolating along the maximum points to obtain the second spectral envelope;
forming a difference between the first spectral envelope and the second spectral envelope to obtain a difference measure; and
smoothing the difference measure to obtain noise-floor level values.
7. A method according to claim 1, in which a spectral envelope of the high band portion of the original signal is estimated and additionally multiplexed into the encoder output signal to be used by a decoding method using a high-frequency reconstruction technique.
10. An apparatus according to claim 9, further comprising:
a combiner for combining the enhanced high-frequency reconstructed signal and the decoded signal to generate an output signal having the low band portion of the original signal and a reconstructed high band portion of the original signal.
12. The method in according to claim 11, in which the spectral envelope representation includes an energy measure for an energy of the high-frequency reconstructed signal and the noise-floor, the method further comprising the following step:
adjusting the high-frequency reconstructed signal so that a combined energy of the high-frequency reconstructed signal and the adjusted spectrally shaped random noise signal corresponds to the energy measure of the spectral envelope representation.
13. The method according to claim 11, in which the step of adjusting the spectrally shaped random noise signal includes a step of smoothing a level of the spectrally shaped random noise signal in time and/or frequency.
14. The method according to claim 11, in which a spectral envelope of the high-frequency reconstructed signal is adjusted using interpolation.
15. The method according to claim 11, in which a spectral envelope of the high-frequency reconstructed signal is adjusted using smoothing of envelope adjustment amplification factors.
0. 19. Encoder in accordance with claim 18, in which the noise level is determined such that noise to be added to the reconstructed high-band results in a noise contents in the reconstructed high-band, which is similar to the noise content in the high-band of the original signal.
0. 20. Encoder in accordance with claim 18, in which the noise estimator is operated to perform an analysis by synthesis approach for determining the noise level.
0. 21. Encoder in accordance with claim 18, in which the noise estimator includes a decoder and is operative to assess a correct value of the amount of adaptive noise required.

be the scale factors of the original signal at a given time, and
P2=[p21, . . . , p2N]  eq. 8
the corresponding scale factors of the transposed signal, where every element of the two vectors represents sub-band energy normalised in time and frequency. The required amplification factors for the spectral envelope adjustment filterbank is obtained as

G = [ g 1 , , g N ] = [ p 11 p 21 , , p 1 N p 2 N ] . eq . 9

By observing G it is trivial to determine the frequency bands with unwanted noise substitution, since these exhibit much higher amplification factors than the others. The unwanted noise substitution is thus easily avoided by applying a limiter to the amplification factors, i.e. allowing them to vary freely up to a certain limit, gmax. The amplification factors using the noise-limiter is obtained by
Glim=[min(g1,gmax), . . . , min(gN,gmax)]  eq. 10

However, this expression only displays the basic principle of the noise-limiters. Since the spectral envelope of the transposed and the original signal might differ significantly in both level and slope, it is not feasible to use constant values for gmax. Instead, the average gain, defined as

G avg = i P 1 i i P 2 i , eq . 11
is calculated and the amplification factors are allowed to exceed that by a certain amount. In order to take wide-band level variations into account, it is also possible to divide the two vectors P1 and P2 into different sub-vectors, and process them accordingly. In this manner, a very efficient noise limiter is obtained, without interfering with, or confining, the functionality of the level-adjustment of the sub-band signals containing useful information.

It is common in sub-band audio coders to group the channels of the analysis filterbank, when generating scale factors. The scale factors represent an estimate of the spectral density within the frequency band containing the grouped analysis filterbank channels. In order to obtain the lowest possible bit rate it is desirable to minimise the number of scale factors transmitted, which implies the usage of as large groups of filter channels as possible. Usually this is done by grouping the frequency bands according to a Bark-scale, thus exploiting the logarithmic frequency resolution of the human auditory system. It is possible in an SBR-decoder envelope adjustment filterbank, to group the channels identically to the grouping used during the scale factor calculation in the encoder. However, the adjustment filterbank can still operate on a filterbank channel basis, by interpolating values from the received scale factors. The simplest interpolation method is to assign every filterbank channel within the group used for the scale factor calculation, the value of the scale factor. The transposed signal is also analysed and a scale factor per filterbank channel is calculated. These scale factors and the interpolated ones, representing the original spectral envelope, are used to calculate the amplification factors according to the above. There are two major advantages with this frequency domain interpolation scheme. The transposed signal usually has a sparser spectrum than the original. A spectral smoothing is thus beneficial and such is made more efficient when it operates on narrow frequency bands, compared to wide bands. In other words, the generated harmonics can be better isolated and controlled by the envelope adjustment filterbank. Furthermore, the performance of the noise limiter is improved since spectral holes can be better estimated and controlled with higher frequency resolution.

It is advantageous, after obtaining the appropriate amplification factors, to apply smoothing in time and frequency, in order to avoid aliasing and ringing in the adjusting filterbank as well as ripple in the amplification factors. FIG. 6 displays the amplification factors to be multiplied with the corresponding subband samples. The figure displays two high-resolution blocks followed by three low-resolution blocks and one high resolution block. It also shows the decreasing frequency resolution at higher frequencies. The sharpness of FIG. 6 is eliminated in FIG. 7 by filtering of the amplification factors in both time and frequency, for example by employing a weighted moving average. It is important however, to maintain the transient structure for the short blocks in time in order not to reduce the transient response of the replicated frequency range. Similarly, it is important not to filter the amplification factors for the high-resolution blocks excessively in order to maintain the formant structure of the replicated frequency range. In FIG. 9b the filtering is intentionally exaggerated for better visibility.

The present invention can be implemented in both hardware chips and DSPs, for various kinds of systems, for storage or transmission of signals, analogue or digital, using arbitrary codecs. FIG. 8 and FIG. 9 shows a possible implementation of the present invention. Here the high-band reconstruction is done by means of Spectral Band Replication, SBR. In FIG. 8 the encoder side is displayed. The analogue input signal is fed to the A/D converter 801, and to an arbitrary audio coder, 802, as well as the noise-floor level estimation unit 803, and an envelope extraction unit 804. The coded information is multiplexed into a serial bitstream, 805, and transmitted or stored. In FIG. 9a typical decoder implementation is displayed. The serial bitstream is de-multiplexed, 901, and the envelope data is decoded, 902, i.e. the spectral envelope of the high-band and the noise-floor level. The de-multiplexed source coded signal is decoded using an arbitrary audio decoder, 903, and up-sampled 904. In the present implementation SBR-transposition is applied in unit 905. In this unit the different harmonics are amplified using the feedback information from the analysis filterbank, 908, according to the present invention. The noise-floor level data is sent to the Adaptive Noise-floor Addition unit, 906, where a noise-floor is generated. The spectral envelope data is interpolated, 907, the amplification factors are limited 909, and smoothed 910, according to the present invention. The reconstructed high-band is adjusted 911 and the adaptive noise is added. Finally, the signal is re-synthesised 912 and added to the delayed 913 low-band. The digital output is converted back to an analogue waveform 914.

Kjoerling, Kristofer, Ekstrand, Per, Liljeryd, Lars G., Henn, Frederik

Patent Priority Assignee Title
10199049, Aug 27 2007 Telefonaktiebolaget LM Ericsson Adaptive transition frequency between noise fill and bandwidth extension
10878829, Aug 27 2007 Telefonaktiebolaget LM Ericsson (publ) Adaptive transition frequency between noise fill and bandwidth extension
8417515, May 14 2004 Panasonic Intellectual Property Corporation of America Encoding device, decoding device, and method thereof
8532999, Apr 15 2005 Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung E.V.; DOLBY INTERNATIONAL AB; Koninklijke Philips Electronics N.V. Apparatus and method for generating a multi-channel synthesizer control signal, multi-channel synthesizer, method of generating an output signal from an input signal and machine-readable storage medium
8543385, Jan 27 1999 DOLBY INTERNATIONAL AB Enhancing perceptual performance of SBR and related HFR coding methods by adaptive noise-floor addition and noise substitution limiting
8938387, Jan 04 2008 Dolby Laboratories Licensing Corporation Audio encoder and decoder
9245533, Jan 27 1999 DOLBY INTERNATIONAL AB Enhancing performance of spectral band replication and related high frequency reconstruction coding
9269372, Aug 27 2007 TELEFONAKTIEBOLAGET L M ERICSSON PUBL Adaptive transition frequency between noise fill and bandwidth extension
9575715, May 16 2008 Adobe Inc Leveling audio signals
9711154, Aug 27 2007 Telefonaktiebolaget LM Ericsson (publ) Adaptive transition frequency between noise fill and bandwidth extension
Patent Priority Assignee Title
4538297, Aug 08 1983 Aurally sensitized flat frequency response noise reduction compansion system
4667340, Apr 13 1983 Texas Instruments Incorporated Voice messaging system with pitch-congruent baseband coding
5127054, Apr 29 1988 Motorola, Inc. Speech quality improvement for voice coders and synthesizers
5226000, Nov 08 1988 TRUEWAVE, L L C Method and system for time domain interpolation of digital audio signals
5664055, Jun 07 1995 Research In Motion Limited CS-ACELP speech compression system with adaptive pitch prediction filter gain based on a measure of periodicity
5734755, Mar 11 1994 TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK, THE JPEG/MPEG decoder-compatible optimized thresholding for image and video signal compression
5774842, Apr 20 1995 Sony Corporation Noise reduction method and apparatus utilizing filtering of a dithered signal
5956674, Dec 01 1995 DTS, INC Multi-channel predictive subband audio coder using psychoacoustic adaptive bit allocation in frequency, time and over the multiple channels
5974380, Dec 01 1995 DTS, INC Multi-channel audio decoder
5974387, Jun 19 1996 Yamaha Corporation Audio recompression from higher rates for karaoke, video games, and other applications
5983172, Nov 30 1995 Hitachi, Ltd. Method for coding/decoding, coding/decoding device, and videoconferencing apparatus using such device
5990738, Jun 19 1998 MAXLINEAR ASIA SINGAPORE PTE LTD Compensation system and methods for a linear power amplifier
6226616, Jun 21 1999 DTS, INC Sound quality of established low bit-rate audio coding systems without loss of decoder compatibility
6324505, Jul 19 1999 Qualcomm Incorporated Amplitude quantization scheme for low-bit-rate speech coders
6385573, Aug 24 1998 SAMSUNG ELECTRONICS CO , LTD Adaptive tilt compensation for synthesized speech residual
6449596, Feb 08 1996 Matsushita Electric Industrial Co., Ltd. Wideband audio signal encoding apparatus that divides wide band audio data into a number of sub-bands of numbers of bits for quantization based on noise floor information
6708145, Jan 27 1999 DOLBY INTERNATIONAL AB Enhancing perceptual performance of sbr and related hfr coding methods by adaptive noise-floor addition and noise substitution limiting
6826526, Jul 01 1996 Matsushita Electric Industrial Co., Ltd. AUDIO SIGNAL CODING METHOD, DECODING METHOD, AUDIO SIGNAL CODING APPARATUS, AND DECODING APPARATUS WHERE FIRST VECTOR QUANTIZATION IS PERFORMED ON A SIGNAL AND SECOND VECTOR QUANTIZATION IS PERFORMED ON AN ERROR COMPONENT RESULTING FROM THE FIRST VECTOR QUANTIZATION
EP706299,
EP10756267,
EP20843301,
JP10276095,
JP55102982,
JP7500683,
JP8123495,
JP8305396,
JP9046233,
JP9101798,
JP9214346,
WO19936906,
WO29857436,
WO2052545,
WO9857436,
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jan 26 2000DOLBY INTERNATIONAL AB(assignment on the face of the patent)
Mar 24 2011Coding Technologies Sweden ABDOLBY INTERNATIONAL ABCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0279440743 pdf
Date Maintenance Fee Events
Sep 16 2015M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Feb 14 20154 years fee payment window open
Aug 14 20156 months grace period start (w surcharge)
Feb 14 2016patent expiry (for year 4)
Feb 14 20182 years to revive unintentionally abandoned end. (for year 4)
Feb 14 20198 years fee payment window open
Aug 14 20196 months grace period start (w surcharge)
Feb 14 2020patent expiry (for year 8)
Feb 14 20222 years to revive unintentionally abandoned end. (for year 8)
Feb 14 202312 years fee payment window open
Aug 14 20236 months grace period start (w surcharge)
Feb 14 2024patent expiry (for year 12)
Feb 14 20262 years to revive unintentionally abandoned end. (for year 12)