Disclosed is a positive active material for a rechargeable lithium battery. The positive active material includes at least one compound represented by formulas 1 to 4 and a metal oxide or composite metal oxide layer formed on the compound.
LixNi1−yMnyF2  (1)
LixNi1−yMnyS2  (2)
LixNi1-−y−2MnyMzO2−aFa  (3)
LixNi1−y−zMnyMzO2−aSa  (4)
(where M is selected from the group consisting of Co, Mg, Fe, Sr, Ti, B, Si, Ga, Al, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Th, Dy, Ho, Er, Tm, Yb, Lu, Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No and Lr, 0.95≦x≦1.1, 0<y≦0.99, 0≦z≦0.5, and 0≦a≦0.5).

Patent
   RE43276
Priority
Mar 13 2000
Filed
Sep 13 2010
Issued
Mar 27 2012
Expiry
Feb 22 2021
Assg.orig
Entity
Large
15
17
all paid
1. A positive active material for a rechargeable lithium battery comprising:
a plurality of active material particles, each particle of the active material particles comprising at least one compound selected from the group consisting of compounds of the formulas 1 to 4 1 and 2;

LixNi1−yMnyF2  (1)

LixNi1−yMnyS2  (2)

LixNi1−y−zMnyMzO2−aFa  (3)

LixNi1−y−zMnyMzO2−aSa  (4)
where M is selected from the group consisting of Co, Mg, Fe, Sr, Ti, B, Si, Ga, Al, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No and Lr, and 0.95≦x≦1.1, and 0<y≦0.99, 0≦z≦0.5, and 0≦a≦0.5; and a metal oxide or composite metal oxide layer generally-spherically coating each of the active material particles.
0. 5. A positive active material for a rechargeable lithium battery comprising:
a plurality of active material particles, each of the active material particles comprising at least one compound selected from the group consisting of compounds of formulas 3 and 4;

LixNi1−y−zMnyMzO2−aFa  (3)

LixNi1−y−zMnyMzO2−aSa  (4)
where M is selected from the group consisting of Co, Mg, Fe, Sr, Ti, B, Si, Ga, Al, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No and Lr, and 0.95≦x≦1.1, 0<y≦0.99, 0≦z≦0.5, and 0≦a≦0.5; and a metal oxide or composite metal oxide layer generally-spherically coating each of the active material particles, and
wherein a thickness of the metal oxide or composite metal oxide layer is 1 to 100 nm, and
wherein the composite metal oxide comprises a metal of a metal alkoxide or a metal salt and a metal of the compound selected from the group consisting of formulas 3 and 4.
2. The positive active material for a the rechargeable lithium battery of claim 1 wherein a metal in the metal oxide or composite metal oxide is selected from the group consisting of Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B and As.
3. The positive active material for a the rechargeable lithium battery of claim 1 wherein a thickness of the layer is 1 to 100 nm.
0. 4. The positive active material for the rechargeable lithium battery of claim 1, wherein the composite metal oxide comprises a metal of a metal alkoxide or a metal salt and a metal of the compound selected from the group consisting of formulas 1 and 2.

This application
LixNi1−yMnyS2  (2)
LixNi1−y−zMnyMzO2−aFa  (3)
LixNi1−y−zMnyMzO2−aSa  (4)
(where M is selected from the group consisting of Co, Mg, Fe, Sr, Ti, 10
LixNi1−yMnyS2  (2)
LixNi1−y−zMnyMzO2−aFa  (3)
LixNi1−y−zMnyMzO2−aSa  (4)
(where M is selected from the group consisting of Co, Mg, Fe, Sr, Ti, B, Si, Ga, Al, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No and Lr, and 0.95≦x≦1.1, 0<y≦0.99, 0≦z≦0.5, and 0≦a≦0.5)

The metal in the metal oxide or composite metal oxide layer is selected from Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B or As. The composite metal oxide is formed by reacting a metal salt or salts with the metal compound represented by formulas 1 to 4.

It is preferable that the thickness of the metal oxide or composite metal oxide layer is 1 to 100 nm, and preferably 1 to 50 nm. If the thickness of the oxide layer is less than 1 nm, the effect obtained by coating metal oxide or composite metal oxide onto the compound is not evident. Whereas, if the thickness thereof is more than 100 nm, the oxide layer becomes undesirably thick so that the movement of lithium ions is hindered significantly.

A method of preparing a positive active material will be illustrated in more detail.

A nickel salt and a manganese salt are co-precipitated to produce a nickel manganese salt. Alternatively, a fluorine salt or a sulfur salt may be co-precipitated together with the nickel and manganese salts. Any nickel, manganese, fluorine and sulfur salts may be employed as long as the resultant compound is capable of intercalating and deintercalating lithium ions. However, one exemplary embodiment of the nickel salt may be nickel hydroxide, nickel nitrate or nickel acetate, and of the manganese salt may be manganese acetate or manganese dioxide. The fluorine salt may be manganese fluoride or lithium fluoride, and the sulfur salt may be manganese sulfide or lithium sulfide.

The nickel manganese salt is mixed with a lithium salt. The lithium salt may be lithium nitrate, lithium acetate or lithium hydroxide, but it is not limited thereto. Alternatively, an additional metal salt may be added to the mixture. The metal may be Co, Mg, Fe, Sr, Ti, B, Si, Ga, Al, Sc, Y, or a metal from the lanthanide or actinide series. The lanthanide series includes La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, and the actinide series includes Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No and Lw Lr. One exemplary form of the metal salt may be an oxide, a nitrate, an acetate or a hydroxide of the metal. The mixing step may be a dry mixing process, or a wet mixing process using an organic solvent as the mixing medium. The organic solvent may be an alcohol such as ethanol, or acetone.

In the above preparation, a compound represented by one of formulas 1 to 4 is obtained.

The mixture is heat-treated (first heat-treatment) in a stream of air to prepare a compound represented by one of formulas 1 to 4. The heat-treating step is performed at 200 to 900° C. for 1 to 20 hours in the presence of oxygen. If the heat-treating step is performed at less than 200° C., the lithium salts do not react completely with the metal salts. If the heat-treating step is performed above 900° C., Li is partially evaporated resulting in the formation of a lithium-deficient compound. If the heat-treating it is performed for less than 1 hour, the desired crystalline material is not formed. If the heat-treating is performed for a period longer than 20 hours, an overly crystallized product is obtained or Li is partially evaporated thereby causing an unstable structure.

Subsequently, the resulting compounds are coated with a metal alkoxide solution, an organic solution of metal salt, or an aqueous solution of metal salt. The coating process may be performed by a sputtering method, a chemical vapor deposition (CVD) method, an impregnation method such as dip coating, or by using any other general-purpose coating technique. Any other coating techniques, if available and applicable, may be as effective as the methods described herein. A common method of coating is dip coating the powder in the solution.

The metal in the metal alkoxide solution, the organic solution of metal salt, or an aqueous solution of metal salt may be any metal that is capable of dissolving in alcohol, organic solvents or water. One exemplary embodiment of the metal may be Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B or As. A preferable metal is Al.

The metal alkoxide solution is prepared by the reaction of an alcohol with metal of 0.1 to 20% by weight, and preferably 0.1 to 10% by weight of the alcohol. Alternatively, the metal-alkoxide is prepared by dissolving metal alkoxide. The alcohol may be methanol, ethanol, or isopropanol. The organic solution of metal salt is prepared by mixing organic solvent with metal salt of 0.1 to 20% by weight, and preferably 0.1 to 10% by weight of the organic solvent. Useful organic solvent is hexane, chloroform, tetrahydrofuran, ether, methylene chloride or acetone. The metal aqueous solution is prepared by mixing water with metal or metal oxide of 0.1 to to 20% by weight, and preferably 0.1 to 10% by weight of water.

One exemplary embodiment of the metal alkoxide solution is tetraorthosilicate purchased from Aldrich, Co., or tetraethylorthosilicate obtained from a mixture of silicate and ethanol. One exemplary embodiment of the metal aqueous solution is vanadium oxide or ammonium vanadate.

When the metal is less than 0.1% by weight of alcohol, organic solvent or water, the effect obtained by coating the solution onto the powder is not evident. In contrast, when metal is more than 20% by weight of water or alcohol, the resultant coating layer becomes undesirably thick.

The coated compound is dried under ambient atmosphere followed by a heat-treatment (second heat-treatment). The heat-treating step is carried out at 100 to 800° C. for 5 to 20 hours. If the heat-treating temperature is lower than 100° C., an oxide layer is not formed on the surface, whereas, if the heat-treating temperature is above 800° C., the metal oxide or metal salt is diffused into the crystalline structure. If the heat-treating step is carried out for more than 20 hours, similar problems may occur.

As a result of the heat-treatment, the metal alkoxide solution, metal salt organic solution, or metal salt aqueous solution is converted into metal oxide or composite metal oxide. In this way, a metal oxide or composite metal oxide-coated active material is prepared. The metal oxide formed on the surface of the compound may be derived from a single metal alkoxide solution, metal salt organic solution or metal salt aqueous solution, while the composite metal oxide formed on the surface of the compound may be derived from a composite material including cobalt, nickel, nickel-manganese or manganese salt and metal alkoxide solution, metal salt organic solution or metal salt aqueous solution. For example, LiCoO2 can be coated with aluminum alkoxide sol and then this alkoxide-coated LiCoO2 can be heat-treated to produce a positive active material coated with a composite metal oxide of cobalt and aluminum (Co—Al—O) and/or aluminum oxide (Al2O3). The heating step is preferably performed under dry air or oxygen to obtain a uniform crystalline active material. The positive active material of the present invention obtained from the above procedure has a spherical form, and exhibits a comparable or greater discharge capacity than LiCoO2. Furthermore, the cost for producing LiCoO2 is high because expensive Co3O4 is used for a starting material (the cost of Co3O4 accounts for 70% or more of the production cost of LiCoO2), but the positive active material of the present invention is produced with low cost nickel salt and manganese salt so that the production cost is significantly reduced. The positive active material of the present invention has a metal oxide or composite metal oxide layer, which results in the prevention of voltage fading near the ends of discharge. Accordingly, the positive active material of the present invention has a significant cost merit over the popular LiCoO2 for a rechargeable lithium battery without sacrificing the high capacity of LiCoO2.

The following examples further illustrate the present invention.

Nickel hydroxide and manganese hydroxide were co-precipitated in a 9:1 mole ratio to prepare a nickel-manganese oxyhydroxide. LiOH was mixed with the nickel-manganese oxyhydrbxide oxyhydroxide and they were mixed in a mortar.

The mixture was heat-treated (first heat-treatment) at 700° C. for 20 hours while dry air was blowing on it to prepare LiNi0.9Mn0.1O2 powder. The size and shape of particles of LiNi0.9Mn0.9O2 were confirmed by SEM and the structure thereof was confirmed by XRD.

The LiNi0.9Mn0.9O2 powder was dipped into a 5% Al-isopropoxide solution and shaken for about 10 minutes to coat uniformly on the LiNi0.9Mn0.1O2 powder with the Al-isopropoxide solution. The coated powder was dried for about 2 hours under ambient atmosphere.

The dried LiNi0.9Mn0.1O2powder was heat-treated (second heat-treatment) at 300° C. for 10 hours while dry air was blown on it. The resultant positive active material was Al2O3-coated LiNi0.9Mn0.1O2.

A positive active material was prepared by the same procedure as in Example 1 except that nickel hydroxide was mixed with manganese hydroxide in a mole ratio of 7:3, a 10% Al-isopropoxide solution was used, the first heat-treating step was performed at 750° C. for 12 hours and the second heat-treating step was performed at 500° C. for 10 hours.

A positive active material was prepared by the same procedure as in Example 1 except that nickel hydroxide was mixed with manganese hydroxide in the mole ratio of 7:3, a 10% Al-isopropoxide solution was used, the first heat-treating step was performed at 700° C. for 12 hours and the second heat-treating step was performed at 500° C. for 10 hours.

A positive active material was prepared by the same procedure as in Example 1 except that nickel hydroxide was mixed with manganese hydroxide in the mole ratio of 5:5, a 1.0% Al-isopropoxide solution was used, the first heat-treating step was performed at 650° C. for 12 hours and the second heat-treating step was performed at 700° C. for 10 hours.

A positive active material was prepared by the same procedure as in Example 1 except that nickel hydroxide was mixed with manganese hydroxide in the mole ratio of 1:9, a 1.0% Al-isopropoxide solution was used, and the first heat-treating step was performed at 750° C. for 20 hours.

A positive active material was prepared by the same procedure as in Example 1 except that nickel hydroxide was mixed with manganese hydroxide in the mole ratio of 5:5, a 5.0% Al-isopropoxide solution was used, the first heat-treating step was performed at 650° C. for 12 hours, and the second heat-treating step was performed at 700° C. for 10 hours.

A positive active material was prepared by the same procedure as in Example 1 except that nickel hydroxide was mixed with manganese hydroxide in the mole ratio of 7:3, a 5.0% Mg-methoxide solution was used, the first heat-treating step was performed at 750° C. for 12 hours, and the second heat-treating step was performed at 750° C. for 10 hours.

A positive active material was prepared by the same procedure as in Example 2 except that the coating with the Al-isopropoxide solution was not carried out.

Each of the positive active materials according to Examples 1 to 7 and Comparative Example 1 were individually mixed with a Super P conductive carbon powder, and a polyvinylidene fluoride binder (94/3/3 weight ratio) in N-methyl pyrrolidone to prepare a slurry. The slurry was coated on an Al-foil current collector to produce a positive electrode. Using the positive electrode and a lithium metal reference/counter electrode, a 2016-type coin cell was fabricated. A 1M LiPF6 solution of ethylene carbonate and dimethyl carbonate (1/1 volume ratio) was used for an electrolyte. A microporous polyethylene film was used for a separator.

The SEM photograph of the positive active material according to Example 2 is shown in FIG. 1a. FIG. 1b is a view of FIG. 1a expanded 10 8 times. As shown in FIGS. 1a and 1b, the positive active material according to Example 2 has a substantially spherical form and uniform shape with various particle sizes giving an increased packing density of the positive active material in the positive electrode, thereby giving improved capacity.

To evaluate the effects of the metal oxide layer on the charge and discharge characteristics, initial charge characteristics of the cells according to Example 2 and Comparative Example 1 were evaluated. The initial charge and discharge characteristics were measured at a 0.1C rate between 4.3V and 2.75V. The results are presented in FIG. 2. As shown in FIG. 2, the discharge potential and discharge capacity of the cell of Example 2(a) are higher than those of Comparative Example 1(b). These improvements are deemed to be owing to the modification of the surface structure, i.e., the metal oxide layer on the surface of the positive active material. In addition, the total area under the voltage curve for the discharge (total usable energy) of the cell of Example 1 in FIG. 2 is larger than that of Comparative Example 1, showing higher available energy for the cell of Example 1 than that of Comparative Example 1.

In order to show the advantageous effect of the metal oxide layer on the first discharge potential clearly, the discharge potentials shown in FIG. 2 are re-plotted against relative (percentage) specific discharge capacity in FIG. 3. It is evident from FIG. 3 that the discharge potentials at approximately 93 to 98% specific discharge capacity of Example 2(a) is significantly higher than those of Comparative Example 1(b), and as large as about 0.1V (about 3%) at a certain point.

The cycle life characteristics of the cells according to Example 2 and Comparative Example 1 are presented in FIG. 4. As shown in FIG. 4, the cycle life characteristics of the cell according to Example 2(a) is slightly better than that of Comparative Example 1(b).

The structural characteristic of the positive active material according to Example 3 was confirmed by XRD and the result is shown in FIG. 5.

The effect of the metal oxide layer on the thermal stability was confirmed by DSC (differential scanning calorimetry). After cells according to Example 2, Comparative Example 1 and LiNi0.9Co0.1Sr0.002O2 (Honjo, Co.) were charged to 4.3V, DSC measurements were carried out and the results are presented in FIG. 6 (Example 2: a; Comparative Example 1: b; LiNi0.9Co0.1Sr0.002O2: c). FIG. 6 demonstrates that the cell of Example 2(a) showed smallest exothermic peak, whereas those of Comparative Example 1(b) and LiNi0.9Co0.1Sr0.002O2 (c) each showed a larger exothermic peak than that of Example 2. When the cell is charged, the manganese active material is converted into unstable Li1−xNiMn2O4. The bond between metal and oxygen (MnO) of this compound is easily broken releasing oxygen. The released oxygen reacts with other cell components such as the electrolyte at elevated temperature producing heat, and the produced heat causes the exothermic DSC peak. A smaller exothermic peak area means that the reactivity of the positive active material with the electrolyte is smaller. The observation that the active material according to Example 2 shows a small exothermic peak means that it has an excellent stability.

Finally, the effect of the metal oxide layer on the high rate (1C) charge and discharge characteristics were evaluated by measuring the charge and discharge voltage curves at the first cycle and the fiftieth cycles of the cells according to Example 2 and Comparative Example 1, respectively. The results are presented in. FIGS. 7 and 8. In FIGS. 7 and 8, “a” denotes Example 2 and “b” denotes Comparative example 1. It is evident from FIGS. 7 and 8 that the charge and discharge potentials at the first as well as fiftieth cycles of the cell of Example 1 are higher than those of Comparative Example 1.

The positive active material of the present invention have much reduced raw material cost and therefore can be produced at a reduced cost in comparison with popular LiCoO2 while it exhibits good electrochemical properties. Therefore, a high cost LiCoO2 may be replace by the positive active materials of the present invention. It is also expected that a battery using the positive active material of the present invention will exhibit improved energy (Wh), cycle life, and thermal stability which is closely related to the battery safety.

While the present invention has been described in detail with reference to the preferred embodiments, those skilled in the art will appreciate that various modifications and substitutions can be made thereto without departing from the spirit and scope of the present invention as set forth in the appended claims.

Kim, Geun-Bae, Kweon, Ho-Jin, Park, Yong-Chul, Jung, Hyun-Sook

Patent Priority Assignee Title
10236537, Apr 21 2014 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery
10347950, Feb 23 2012 Toyota Jidosha Kabushiki Kaisha Sealed nonaqueous electrolyte secondary battery
10741828, Jul 05 2016 SEMICONDUCTOR ENERGY LABORATORY CO , LTD Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide
11043660, Jul 05 2016 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide
11094927, Oct 12 2016 SEMICONDUCTOR ENERGY LABORATORY CO , LTD Positive electrode active material particle and manufacturing method of positive electrode active material particle
11444274, May 12 2017 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle
11489151, May 12 2017 SEMICONDUCTOR ENERGY LABORATORY CO , LTD Positive electrode active material particle
11616231, May 19 2017 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
11664488, Jul 05 2016 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material including coating composite oxide of lithium, cobalt, magnesium, and fluorine with titanium-containing material
11670770, Jun 26 2017 SEMICONDUCTOR ENERGY LABORATORY CO , LTD Method for manufacturing positive electrode active material, and secondary battery
11728478, Nov 18 2016 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material including impurity elements in a crystal defect or a cavity
11777089, May 19 2017 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
11799080, May 19 2017 SEMICONDUCTOR ENERGY LABORATORY CO , LTD Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
11843113, Oct 12 2016 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle and manufacturing method of positive electrode active material particle
11901548, Jun 22 2018 SEMICONDUCTOR ENERGY LABORATORY CO , LTD Positive electrode active material, positive electrode, secondary battery, and method for manufacturing positive electrode
Patent Priority Assignee Title
5616437, Jun 14 1996 Valence Technology, Inc. Conductive metal oxide coated current collector for improved adhesion to composite electrode
6103421, Sep 27 1996 Sharp Kabushiki Kaisha Process of producing a positive electrode active material and nonaqueous secondary battery using the same
6372385, Feb 10 1998 Samsung Display Devices Co., Ltd. Active material for positive electrode used in lithium secondary battery and method of manufacturing same
6783890, Feb 10 1998 Samsung Display Devices Co., Ltd. Positive active material for rechargeable lithium battery and method of preparing same
20020114993,
20020132168,
JP10134811,
JP1116566,
JP11317230,
JP11345615,
JP1171114,
JP2000306577,
JP8236114,
JP950810,
KR100277796,
WO70694,
WO9829915,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 13 2010Samsung SDI Co., Ltd.(assignment on the face of the patent)
Date Maintenance Fee Events
Jun 19 2012ASPN: Payor Number Assigned.
Nov 04 2015M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Mar 27 20154 years fee payment window open
Sep 27 20156 months grace period start (w surcharge)
Mar 27 2016patent expiry (for year 4)
Mar 27 20182 years to revive unintentionally abandoned end. (for year 4)
Mar 27 20198 years fee payment window open
Sep 27 20196 months grace period start (w surcharge)
Mar 27 2020patent expiry (for year 8)
Mar 27 20222 years to revive unintentionally abandoned end. (for year 8)
Mar 27 202312 years fee payment window open
Sep 27 20236 months grace period start (w surcharge)
Mar 27 2024patent expiry (for year 12)
Mar 27 20262 years to revive unintentionally abandoned end. (for year 12)