Apparatus and methods for performing surgery within an organ or vessel are provided. A catheter is provided having a longitudinal axis and an end region carrying an end effector, the end region movable to a series of positions along the longitudinal axis and with an selectable orientation relative to the longitudinal axis. The catheter includes elements for stabilizing the end region of the apparatus within an organ or vessel, and for counteracting reaction forces developed during actuation of the end effector.
|
8. Apparatus for treating an organ or vessel comprising:
an outer sheath;
a guide member extending from the outer sheath, the guide member including carrying an end effector formed separately from the guide member for treating an interior region of an the organ or vessel, an end region of the guide catheter movable to dispose the end effector at a selected orientation and position relative to the a longitudinal axis of a catheter shaft; and
a stabilization assembly, which is formed separately from the outer sheath, comprising a plurality of bands extending from within the outer sheath, each one of the plurality of bands terminating in a spool that contacts is adapted to be in contact with an interior wall of the organ or vessel, the stabilization assembly stabilizing the guide member during actuation of the end effector.
0. 24. An apparatus for performing transmyocardial revascularization, the apparatus comprising:
a catheter shaft adapted for insertion into a patient's left ventricle;
a guide member carrying an end effector formed separately from the catheter shaft to treat an interior wall of the left ventricle, the end effector disposed for selective translation relative to a longitudinal axis of the catheter shaft; and
a stabilization assembly, formed separately from the catheter shaft and disposed in a distal region of the catheter shaft, to alternate between a retracted position and an expanded position, that stabilizes the catheter shaft within the left ventricle during actuation of the end effector, wherein the stabilization assembly comprises a wire movable from a first position, wherein the wire is partially retracted within a lumen of the catheter shaft, to a second position, wherein the wire forms a plurality of sinusoidal bends that contact and support the catheter shaft.
0. 23. An apparatus for performing transmyocardial revascularization, the apparatus comprising:
a catheter shaft adapted for insertion into a patient's left ventricle;
a guide member carrying an end effector formed separately from the catheter shaft to treat an interior wall of the left ventricle, the end effector disposed for selective translation relative to a longitudinal axis of the catheter shaft; and
a stabilization assembly, formed separately from the catheter shaft and disposed in a distal region of the catheter shaft to alternate between a retracted position and an expanded position, that stabilizes the catheter shaft within the left ventricle during actuation of the end effector, wherein the stabilization assembly comprises a band movable from a first position, wherein the band is disposed adjacent to an exterior surface of the catheter shaft, to a second position, wherein the band forms a plurality of loops extending from the exterior surface of the catheter shaft.
0. 26. An apparatus for improving ischemic cardiac tissue, the apparatus comprising:
a catheter shaft adapted for insertion into a patient's left ventricle;
a member carrying an end effector formed separately from the catheter shaft, wherein the end effector comprises a needle, to treat an interior wall of the left ventricle, the end effector disposed for selective translation relative to a longitudinal axis of the catheter shaft; and
a stabilization assembly, formed separately from the catheter shaft and disposed in a distal region of the catheter shaft, to alternate between a retracted position and an expanded position, that stabilizes the catheter shaft and member within the left ventricle during actuation of the end effector, wherein the stabilization assembly comprises a wire movable from a first position, wherein the wire is partially retracted within a lumen of the catheter shaft, to a second position, wherein the wire forms a plurality of sinusoidal bends that contact and support the catheter shaft.
0. 25. An apparatus for improving ischemic cardiac tissue, the apparatus comprising:
a catheter shaft adapted for insertion into a patient's left ventricle;
a member carrying an end effector formed separately from the catheter shaft, wherein the end effector comprises a needle, to treat an interior wall of the left ventricle, the end effector disposed for selective translation relative to a longitudinal axis of the catheter shaft; and
a stabilization assembly, formed separately from the catheter shaft and disposed in a distal region of the catheter shaft, to alternate between a retracted position and an expanded position, that stabilizes the catheter shaft and member within the left ventricle during actuation of the end effector, wherein the stabilization assembly comprises a band movable from a first position, wherein the band is disposed adjacent to an exterior surface of the catheter shaft, to a second position, wherein the band forms a plurality of loops extending from the exterior surface of the catheter shaft.
0. 27. An apparatus for improving ischemic cardiac tissue, the apparatus comprising:
a catheter shaft adapted for insertion into a patient's left ventricle;
a member carrying an end effector formed separately from the catheter shaft, wherein the end effector comprises a needle, to treat an interior wall of the left ventricle, the end effector disposed for selective translation relative to a longitudinal axis of the catheter shaft; and
a stabilization assembly, formed separately from the catheter shaft and disposed in a distal region of the catheter shaft, to alternate between a retracted position and an expanded position, that stabilizes the catheter shaft and member within the left ventricle during actuation of the end effector, wherein while the stabilization assembly is expanded, the end effector is capable of making a plurality of treatment sites through transition of the member without repositioning at least a portion of the catheter shaft within the left ventricle, wherein the stabilization assembly comprises at least one inflatable hoop member.
22. A method of treating an interior region of an organ or vessel comprising:
providing an apparatus having an outer sheath, a guide member extending from the outer sheath, the guide member including carrying an end effector formed separately from the guide member for treating an interior region of the an organ or vessel; and a stabilization assembly, which is formed separately from the outer sheath, comprising a plurality of bands extendable from within the outer sheath, each one of the plurality of bands terminating in a spool that contacts an interior wall of the organ or vessel when extended;
inserting the apparatus within an organ or vessel;
extending the plurality of bands from the outer sheath to form spools, each spool contacting an interior wall of the organ or vessel to stabilize the guide member within the organ or vessel;
translating the guide member to dispose the end effector at a selected location position relative to a longitudinal axis of the apparatus; and
actuating the end effector to form a channel in an interior region of the organ or vessel.
0. 1. Apparatus for treating an organ or vessel defining a cavity, the apparatus comprising:
a catheter shaft adapted for insertion into the cavity, the catheter shaft having a distal region and a portion defining a groove,
a guide member including an end effector to treat an interior wall of the hollow-body organ, the guide member disposed in the groove for translation along the catheter shaft;
means for disposing the end effector at a selected orientation relative to the catheter shaft; and
a stabilization assembly, disposed in the distal region, that stabilizes the catheter shaft and guide member within the organ or vessel during actuation of the end effector.
2. The apparatus as defined in
a catheter shaft adapted for insertion into the cavity, the catheter shaft having a distal region and a portion defining a groove,
a guide member carrying an end effector formed separately from the guide member to treat an interior wall of the organ or vessel, the guide member slidably engaged in the groove for selective translation along a longitudinal axis of the catheter shaft;
means for disposing the end effector at a selected orientation relative to the longitudinal axis of the catheter shaft; and
a stabilization assembly, formed separately from the catheter shaft and disposed in the distal region of the catheter shaft, that stabilizes the catheter shaft when activated within the organ or vessel during actuation of the end effector, wherein while the stabilization assembly is activated, the end effector is capable of making a plurality of treatment sites which are orthogonally disposed relative to a portion of the distal region of the catheter shaft, and which are placed longitudinally relative to the distal region of the catheter shaft, through translation of the guide member without repositioning at least a portion of the catheter shaft within the organ or vessel, wherein the stabilization assembly comprises a band movable from a first position, wherein the band is disposed adjacent to an exterior surface of the catheter shaft, to a second position, wherein the band forms a plurality of loops extending from the exterior surface of the catheter shaft.
3. The apparatus as defined in
a catheter shaft adapted for insertion into the cavity, the catheter shaft having a distal region and a portion defining a groove,
a guide member carrying an end effector formed separately from the guide member to treat an interior wall of the organ or vessel, the guide member slidably engaged in the groove for selective translation along a longitudinal axis of the catheter shaft;
means for disposing the end effector at a selected orientation relative to the longitudinal axis of the catheter shaft; and
a stabilization assembly, formed separately from the catheter shaft and disposed in the distal region of the catheter shaft, that stabilizes the catheter shaft when activated within the organ or vessel during actuation of the end effector, and wherein while the stabilization assembly is activated the end effector is capable of making a plurality of treatment sites which are orthogonally disposed relative to a portion of the distal region of the catheter shaft, and which are placed longitudinally relative to the distal region of the catheter shaft, through translation of the guide member without repositioning at least a portion of the catheter shaft within the organ or vessel, wherein the end effector comprises a rotating cutting head.
4. The apparatus as defined in
5. The apparatus as defined in
a catheter shaft adapted for insertion into the cavity, the catheter shaft having a distal region and a portion defining a groove,
a guide member including an end effector to treat an interior wall of the organ or vessel, the guide member slidably engaged in the groove for selective translation along a longitudinal axis of the catheter shaft;
means for disposing the end effector at a selected orientation relative to the longitudinal axis of the catheter shaft; and
a stabilization assembly, formed separately from the catheter shaft and disposed in the distal region of the catheter shaft, that stabilizes the catheter shaft when activated within the organ or vessel during actuation of the end effector, and wherein while the stabilization assembly is activated the end effector is capable of making a plurality of treatment sites which are orthogonally disposed relative to a portion of the distal region of the catheter shaft, and which are placed longitudinally relative to the distal region of the catheter shaft, through translation of the guide member and without repositioning at least a portion of the catheter shaft within the organ or vessel, wherein the apparatus further comprises an outer sheath and the stabilization assembly comprises a plurality of wire hoops affixed to the catheter shaft, the plurality of wire hoops movable from a first position wherein the wire hoops are confined within the outer sheath, and a second position, wherein the wire hoops project outwardly from the catheter shaft to engage an interior surface of the organ or vessel.
7. The apparatus as defined in
9. The apparatus as defined in
0. 10. Apparatus for performing transmyocardial revascularization, the apparatus comprising:
a catheter shaft adapted for insertion into a patient's left ventricle, the catheter shaft having a distal region including a portion adapted to engage an interior wall in a vicinity of an apex of the patient's left ventricle;
a guide member having an end effector to treat the interior wall of the left ventricle, the guide member disposed for translation along the catheter shaft; and
a stabilization assembly, disposed in the distal region, that stabilizes the catheter shaft and guide member within the left ventricle during actuation of the end effector.
11. The apparatus as defined in
a catheter shaft adapted for insertion into a patient's left ventricle, the catheter shaft having a distal region including a portion adapted to engage an interior wall in a vicinity of an apex of the patient's left ventricle;
a guide member carrying an end effector formed separately from the guide member to treat the interior wall of the left ventricle, the guide member disposed for selective translation along a longitudinal axis of the catheter shaft; and
a stabilization assembly, formed separately from the catheter shaft and disposed in the distal region of the catheter shaft, to alternate between a retracted position and an expanded position, that stabilizes the catheter shaft within the left ventricle during actuation of the end effector, wherein the stabilization assembly comprises a band movable from a first position, wherein the band is disposed adjacent to an exterior surface of the catheter shaft, to a second position, wherein the band forms a plurality of loops extending from the exterior surface of the catheter shaft.
12. The apparatus as defined in
a catheter shaft adapted for insertion into a patient's left ventricle, the catheter shaft having a distal region including a portion adapted to engage an interior wall in a vicinity of an apex of the patient's left ventricle;
a guide member carrying an end effector formed separately from the guide member to treat the interior wall of the left ventricle, the guide member disposed for selective translation along a longitudinal axis of the catheter shaft; and
a stabilization assembly, formed separately from the catheter shaft and disposed in the distal region of the catheter shaft, to alternate between a retracted position and an expanded position, that stabilizes the catheter shaft within the left ventricle during actuation of the end effector, wherein the stabilization assembly comprises a wire movable from a first position, wherein the wire is partially retracted within a lumen of the catheter shaft, to a second position, wherein the wire forms a plurality of sinusoidal bends that contact and support the catheter shaft.
13. The apparatus as defined in
a catheter shaft adapted for insertion into a patient's left ventricle, the catheter shaft having a distal region including a portion adapted to engage an interior wall in a vicinity of an apex of the patient's left ventricle;
a guide member carrying an end effector formed separately from the guide member, wherein a distal portion of the end effector is configured for selective bending at an angle relative to a main body of the guide member to treat the interior wall of the left ventricle, the guide member disposed for selective translation along a longitudinal axis of the catheter shaft; and
a stabilization assembly, formed separately from the catheter shaft and disposed in the distal region of the catheter shaft to alternate between a retracted position and an expanded position, that stabilizes the catheter shaft within the left ventricle during actuation of the end effector, and wherein while the stabilization assembly is expanded the end effector is capable of making a plurality of treatment sites which are orthogonally disposed relative to a portion of the distal region of the catheter shaft, and which are placed longitudinally relative to the distal region of the catheter shaft, through translation of the guide member without repositioning at least a portion of the catheter shaft within the left ventricle, wherein the end effector comprises a rotating cutting head.
14. The apparatus as defined in
0. 15. A method of treating an interior region of an organ or vessel comprising:
providing apparatus having a catheter shaft adapted for insertion into an organ or vessel, a guide member mounted in a groove on the catheter shaft and having an end effector for treating an interior region of the organ or vessel, and a stabilization assembly mounted on the catheter shaft;
inserting the apparatus within an organ or vessel;
deploying the stabilization assembly to stabilize the catheter shaft and guide member within the organ or vessel;
translating the guide member within the groove of the catheter shaft to dispose the end effector at a selected location relative to the catheter shaft; and
actuating the end effector to form a channel in an interior region of the organ or vessel.
16. The method as defined in
providing an apparatus having a catheter shaft adapted for insertion into the organ or vessel, a guide member slidably mounted in a groove on the catheter shaft and carrying an end effector formed separately from the guide member for treating an interior region of the organ or vessel, and a stabilization assembly mounted on the catheter shaft and formed separately from the catheter shaft;
inserting the apparatus within the organ or vessel;
deploying the stabilization assembly to stabilize the catheter shaft within the organ or vessel;
slidably translating the guide member within the groove of the catheter shaft to dispose the end effector at a selected position relative to a longitudinal axis of the catheter shaft;
actuating the end effector to form a channel in an interior region of the organ or vessel; and
delivering RF energy to the channel to create a controlled depth of necrosis.
0. 17. The method as defined in
translating the guide member in the groove relative to the catheter shaft to relocate the end effector; and
repeating actuation of the end effector.
18. The method as defined in
providing an apparatus having a catheter shaft adapted for insertion into the organ or vessel, a guide member slidably mounted in a groove on the catheter shaft and carrying an end effector formed separately from the guide member for treating an interior region of the organ or vessel, and a stabilization assembly formed separately from the catheter shaft and mounted on the catheter shaft, wherein the stabilization assembly comprises a band movable from a first position, wherein the band is disposed adjacent to an exterior surface of the catheter shaft, to a second position, wherein the band forms a plurality of loops extending from the exterior surface of the catheter shaft, and deploying the stabilization assembly to stabilize the catheter shaft and guide member within the organ or vessel further comprises moving the band from the first position to the second position ;
inserting the apparatus within the organ or vessel;
deploying the stabilization assembly to stabilize the catheter shaft within the organ or vessel, wherein deploying the stabilization assembly comprises moving the band from the first position to the second position;
slidably translating the guide member within the groove of the catheter shaft to dispose the end effector at a selected position relative to a longitudinal axis of the catheter shaft;
actuating the end effector to form a channel in an interior region of the organ or vessel.
19. The method as defined in
providing an apparatus having a catheter shaft adapted for insertion into the organ or vessel, a guide member slidably mounted in a groove on the catheter shaft and carrying an end effector formed separately from the guide member for treating an interior region of the organ or vessel, and a stabilization assembly mounted on the catheter shaft and formed separately from the catheter shaft;
inserting the apparatus within the organ or vessel;
deploying the stabilization assembly to stabilize the catheter shaft within the organ or vessel;
slidably translating the guide member within the groove of the catheter shaft to dispose the end effector at a selected position relative to a longitudinal axis of the catheter shaft; and
actuating the end effector to form a channel in an interior region of the organ or vessel, wherein actuating the end effector comprises rotating a cutting head.
20. The method as defined in
providing an apparatus having a catheter shaft adapted for insertion into the organ or vessel, a guide member slidably mounted in a groove on the catheter shaft and carrying an end effector formed separately from the guide member for treating an interior region of the organ or vessel, and a stabilization assembly, formed separately from the catheter shaft and mounted on the catheter shaft, wherein the stabilization assembly comprises a plurality of wire hoops affixed to the catheter shaft, the plurality of wire hoops movable from a first position wherein the wire hoops are confined within the outer sheath, and a second position, wherein the wire hoops project outwardly from the catheter shaft to engage an interior surface of the organ or vessel, and deploying the stabilization assembly to stabilize the catheter shaft and guide member within the organ or vessel further comprises retracting the outer sheath;
inserting the apparatus within the organ or vessel;
deploying the stabilization assembly to stabilize the catheter shaft within the organ or vessel;
slidably translating the guide member within the groove of the catheter shaft to dispose the end effector at a selected position relative to a longitudinal axis of the catheter shaft; and
actuating the end effector to form a channel in an interior region of the organ or vessel.
21. The method as defined in
providing an apparatus having a catheter shaft adapted for insertion into the organ or vessel, a guide member slidably mounted in a groove on the catheter shaft and carrying an end effector formed separately from the guide member for treating an interior region of the organ or vessel, and a stabilization assembly, formed separately from the catheter shaft and mounted on the catheter shaft, wherein the stabilization assembly comprises a wire movable from a first position wherein the wire is partially retracted within the catheter shaft, and a second position, wherein the wire forms a plurality of interconnected bends that engage an interior surface of the organ or vessel, and deploying the stabilization assembly to stabilize the catheter shaft and guide member within the organ or vessel, and the method further comprises extending the wire so that it resumes a preformed shape;
inserting the apparatus within the organ or vessel;
deploying the stabilization assembly to stabilize the catheter shaft within the organ or vessel;
slidably translating the guide member within the groove of the catheter shaft to dispose the end effector at a selected position relative to a longitudinal axis of the catheter shaft;
actuating the end effector to form a channel in an interior region of the organ or vessel.
|
The present application is a continuation-in-part application of commonly assigned U.S. patent application Ser. No. 08/863,877, filed May 27, 1997, now U.S. Pat. No. 5,910,150 which claims the benefit of the filing date of U.S. provisional patent application Ser. No. 60/032,196, filed Dec. 2, 1996.
The present invention relates to apparatus and methods for performing surgery on an interior wall of a hollow-body organ such as the heart, or within the brain cavities and the like. More particularly, the present invention provides a device that enables a clinician to perform surgery on an interior wall of an organ or vessel using apparatus for stabilizing an end effector during the surgery.
A leading cause of death in the United States today is coronary artery disease, in which atherosclerotic plaque causes blockages in the coronary arteries, resulting in ischemia of the heart (i.e., inadequate blood flow to the myocardium). The disease manifests itself as chest pain or angina. In 1996, approximately 7 million people suffered from angina in the United States.
Coronary artery bypass grafting (CABG), in which the patient's chest is surgically opened and an obstructed artery replaced with a native artery harvested elsewhere, has been the conventional treatment for coronary artery disease for the last thirty years. Such surgery creates significant trauma to the patient, requires long recuperation times, and causes a great deal of morbidity and mortality. In addition, experience has shown that the graft becomes obstructed with time, requiring further surgery.
More recently, catheter-based therapies such as percutaneous transluminal coronary angioplasty (PTCA) and atherectomy have been developed. In PTCA, a mechanical dilatation device is disposed across an obstruction in the patient's artery and then dilated to compress the plaque lining the artery to restore patency to the vessel. Atherectomy involves using an end effector, such as a mechanical cutting device (or laser) to cut (or ablate) a passage through the blockage. Such methods have drawbacks, however, ranging from re-blockage of dilated vessels with angioplasty to catastrophic rupture or dissection of the vessel during atherectomy. Moreover, these methods may only be used for that fraction of the patient population where the blockages are few and are easily accessible. Neither technique is suitable for the treatment of diffuse atherosclerosis.
A more recent technique, which holds promise of treating a larger percentage of the patient population, including those patients suffering from diffuse atherosclerosis, is referred to as transmyocardial revascularization (TMR). In this method, a series of channels are formed in the left ventricular wall of the heart. Typically, between 15 and 30 channels about 1 mm in diameter and up to 3.0 cm deep are formed with a laser in the wall of the left ventricle to perfuse the heart muscle with blood coming directly from the inside of the left ventricle, rather than traveling through the coronary arteries. Apparatus and methods have been proposed to create those channels both percutaneously and intraoperatively (i.e., with the chest opened).
U.S. Pat. No. 5,389,096 to Aita et al. describes a catheter-based laser apparatus for percutaneously forming channels extending from the endocardium into the myocardium. U.S. Pat. No. 5,380,316 to Aita et al. describes an intraoperative laser-based system for performing TMR. U.S. Pat. No. 5,591,159 to Taheri describes a mechanical apparatus for performing TMR involving a catheter having an end effector formed from a plurality of spring-loaded needles.
Neither the Aita nor Taheri devices describe apparatus wherein the laser-tip or spring-loaded needles are stabilized during the channel-forming process. Because the end effector of such devices may shift position while in use, such previously known devices may not provide the ability to reliably determine the depth of the channels, nor the relative positions between channels if multiple channels are formed.
In view of the shortcomings of previously known TMR devices, it would be desirable to provide apparatus and methods for performing percutaneous surgery, such as TMR, that permit precise control of the end region of the device carrying the end effector.
It also would be desirable to control the location of the end region of the device within the ventricle both with respect to features of the ventricular walls and in relation to other channels formed by the device, and to stabilize the end region of the device within the organ, for example, to counteract reaction forces created by the actuation of the end effector during treatment.
A number of devices are known in the medical arts that provide certain aspects of the desired functionality. For example, U.S. Pat. Nos. 5,389,073 and 5,330,466 to Imran describe steerable catheters; U.S. Pat. No. 5,415,166 to Imran describes a device for endocardial mapping; U.S. Pat. No. 4,813,930 to Elliott describes a radially extendable member for stabilizing an angioplasty catheter within a vessel; U.S. Pat. No. 5,354,310 describes an expandable wire mesh and graft for stabilizing an aneurysm; and U.S. Pat. Nos. 5,358,472 and 5,358,485 to Vance et al. describe atherectomy cutters that provide for aspiration of severed material.
None of the foregoing references overcomes problems associated with locating an end region of a catheter against a position on the inside wall of a heart chamber. Moreover, the prior art is devoid of a comprehensive solution to the above-noted shortcomings of previously-known apparatus for percutaneously performing surgery, and especially for performing TMR.
In view of the foregoing, it is an object of this invention to provide apparatus and methods for performing surgery, such as TMR, that permit precise control of an end effector disposed in an end region of the apparatus.
It is another object of this invention to provide apparatus and methods, suitable for use in performing TMR and surgery of other hollow-body organs, that include the capability to stabilize within the organ an end region of the device carrying an end effector, for example, to counteract reaction forces created by the end effector during treatment.
These and other objects of the present invention are accomplished by providing apparatus having a directable end region carrying an end effector for performing surgery. Apparatus constructed in accordance with the present invention comprises a catheter having a longitudinal axis and an end region movable to a series of positions along the longitudinal axis. The end region may be selectively moved to a position at an angle relative to the longitudinal axis of the catheter, including a substantially orthogonal position. The catheter includes means for stabilizing a distal region of the apparatus within a hollow-body organ, and for counter-acting reaction forces developed during actuation of an end effector.
In a preferred embodiment of the apparatus of the invention, the catheter includes a catheter shaft and a guide member disposed for longitudinal sliding movement within a groove of the catheter shaft. The guide member includes an end region including an end effector maneuverable between a transit position wherein the end region lies parallel to a longitudinal axis of the catheter to a working position wherein the end region and end effector are oriented at an angle relative to the longitudinal axis, including a substantially orthogonal position. The catheter shaft preferably may include adjustable outwardly projecting stabilization members to provide a stable platform to counteract reaction forces generated when the end effector contacts the wall of the hollow-body organ.
Methods of using the apparatus of the present invention to perform surgery, such as transmyocardial revascularization, are also provided.
Further features of the invention, its nature and various advantages will be more apparent from the accompanying drawings and the following detailed description of the preferred embodiments, in which:
The present invention relates generally to apparatus and methods for percutaneously performing surgery within an organ or vessel. The apparatus of the present invention comprises a catheter including a stabilizing catheter shaft which percutaneously may be disposed within an organ. A guide member engaged with the catheter shaft includes an end region that may be selectively articulated to a position at an angle to a longitudinal axis of the catheter, including a position substantially orthogonal to the longitudinal axis. The end region carries an end effector (e.g., an ablative or mechanical cutting device) for treating tissue. Severed or ablated tissue may be aspirated through the catheter to its proximal end for disposal. The catheter shaft, either alone or in conjunction with stabilizing members, and the guide member, provides precise control over the location of the end region, and thus, the end effector.
The present invention therefore offers a device having a directable end region and end effector for performing surgery that provides a degree of control heretofore unattainable. While the invention is described hereinafter as particularly useful in the emerging field of transmyocardial revascularization, apparatus constructed in accordance with the present invention may be advantageously used in performing surgery on other organs or vessels, such as the intestines, blood vessels or the brain cavities. In addition, while the present invention is described herein in the context of a mechanical cutting system, the control and stabilization apparatus of the present invention may be advantageously used with other types of cutting elements, such as lasers, cryogenic cutters or radio-frequency ablation devices.
Referring to
End region 25 of guide member 22 may be positioned longitudinally with respect to catheter shaft 21 by imparting relative movement between guide member 22 and catheter shaft 21 using handle assembly 26. Catheter shaft 21 preferably includes a plurality of stabilizing members 27 to support and stabilize distal region 23 of the apparatus within the hollow-body organ.
Apparatus 20 is coupled via cable 28 to controller 29. In a preferred embodiment wherein the end effector comprises a rotating cutting head, controller 29 includes a motor and control logic for rotating the cutting head responsive to commands input at handle assembly 26 or a footpedal (not shown) and a vacuum source for aspirating severed tissue from the treatment site. Controller 29 optionally may further include RF circuitry (shown in dotted line) for energizing the cutting head to cauterize tissue as it is cut. Alternatively, controller 29 may include a laser source or radio frequency circuitry for causing laser or RF ablation, respectively, using a suitable end effector.
Referring now to
Guide member 22 includes end region 25 carrying an end effector and flanges 34 and 35 that slidingly engage grooves 31 and 32. End region 25 may be articulated in region 36 using control wires or a temperature actuated shape-memory alloy steering mechanism, such as described in the aforementioned patents to Imran. Guide member 22 may be constructed of a spring material (commonly called a Bowden) with spaces in-between the coils to allow it to bend when it is pulled by a control wire asymmetrically, as previously known in the art. Alternatively, guide member 22 may be constructed of a stiffer material such as polyimide coated over a braided steel tubular structure, such as employed in previously known neuro-navigational endoscope devices. In this case, slits are provided on the inside of the bend in region 36 so that the guide member bends in the direction of the slits. The slits allow a tight bend radius which may not otherwise be achievable.
Guide member 22 preferably includes a lumen, as described hereinafter, through which tissue may be evacuated from a treatment site by suction. Accordingly, guide member 22 may also be formed from a loosely wound spring reinforced with a soft elastomeric coating. The elastomeric coating advantageously serves the following functions: it provides sealing along the length of the guide member required to maintain adequate suction through the lumen; it prevents collapse of the lumen in the presence of applied suction; it resists kinking of the coils of the spring; and it also enables the guide member to be bent to relatively tight radii. Reinforced tubing suitable for use as guide member 22 is available from Adam Spence Corporation, Wall, N.J.
In the above-described embodiments, end region 25 of guide member 22 is movable from a transit position lying parallel to the longitudinal axis of catheter shaft 21 to a working position wherein end region 25 is articulated to a position substantially orthogonal to the longitudinal axis of the catheter shaft. In addition, end region 25 may be constructed to enable it to be locked in position at any angle a that may be desired for a given application.
With respect to
Accordingly, wires 27a-27d may be moved from a retracted position in which they are retracted against distal region 23 of catheter shaft 21 to an expanded position in which they engage a wall of the organ and urge end region 25 into engagement with an opposing wall of the organ, thereby stabilizing catheter shaft 21 against rotation.
Stabilization members 27 may be constructed of any suitable elastic material, including stainless steel, spring steel, nickel-titanium alloys, and a variety of plastics. A nickel-titanium alloy is preferred where wires 27a-27d comprise a continuous coil, as in
Where stabilization members 27 comprise a single coil, as in
The longitudinal position of end region 25 with respect to catheter shaft 21 may be adjusted by sliding guide member 22 in groove 30 of the catheter shaft. Handle assembly 26 preferably includes means, described hereinafter, for moving guide member with respect to catheter shaft 21 so that end region 25 may be positioned at a series of vertical locations. In addition, stabilization members 27 may be adjusted to provide some control over the lateral positioning of the catheter shaft and guide member with respect to the interior wall of the organ or vessel. Thus, apparatus 20 enables a matrix of treatment sites to be accessed without removing and repositioning the apparatus.
Referring now to
Orientation of end region 25 of guide member 22 is accomplished by control wire 46, which is slidingly disposed in lumen 47 of guide member 22. As described hereinabove, guide member 22 preferably comprises a spring material with spaces in-between the coils to allow it to bend when control wire 46 is retracted in a proximal direction. Alternatively, guide member 22 may be constructed of polyimide coated over a braided steel tube and includes slits on the inside of bend region 36 so that end region 25 bends in the direction of the slits when control wire 46 is retracted in a proximal direction.
Cutting head 41 is connected to the motor of controller 29 via drive rod 45. Drive rod 45 may be formed of a flexible tube such as a bowden or a covered coil or may be formed of a plastic having both high torquability and flexibility. Drive rod 45 is disposed in lumen 44 for a limited range of reciprocation, e.g., up to 3.0 cm, to permit extension of cutting head 41 beyond the end of guide member 22. When end region 25 is in its transit position, cutting head 41 is disposed just below distal endface 48 of guide member 22. Drive rod 45 is hollow and preferably includes a covering of a soft plastic or elastomeric material to allow the application of a negative pressure to aspirate the severed tissue.
Applicant expects that high speed rotation of cutting head 41 will generate frictional heating of the tissue surrounding the cutting head, thereby causing coagulation of the tissue with minimal thermal damage to the surrounding tissue. Alternatively, tubular member 42 of cutting head 41 may comprise an electrically conductive material and be electrically coupled to the optional radio-frequency generator circuitry in controller 29 to provide coagulation of the edges of a channel formed in the tissue by cutting head 41. In this embodiment, tubular element 42 serves as the electrode in a monopolar coagulation arrangement. In addition, a second electrode (not shown) may be formed on the working end spaced apart from the cutting head 41, so that tubular member 42 serves as one electrode of a bipolar coagulation arrangement. Applicant expects that the sealing action produced by RF coagulation, if provided, will simulate the lesions produced by a laser.
With respect to
Upper portion 52 includes indicator 57a that may be selectively aligned with indicators 57b, so that the channels formed by end effector 40 are positioned at a series of spaced-apart locations. Cable 28 extends from upper portion 52 and connects the working end of apparatus 20 to controller 29. Upper portion 52 also includes button 58 which may be moved in slot 59 to control the articulation of end region 25 of guide member 22, and depth control lever 60 disposed in slot 61. Depth control lever 60 is moved within slot 61 to control reciprocation of cutting head 41 from end region 25. Slot 61 has a length so that when button 60 is moved to fully extend cutting head 41 from guide member 22, a proximal portion of tubular member 42 remains within guide member 22. In addition, or alternatively, a user-adjustable limit bar (not shown) may be provided in slot 61 to select the maximum extension of cutting head 41 desired for a particular application.
RF button 62 also may be provided to control activation of the optional RF circuitry of controller 29 to coagulate tissue surrounding the channel formed by micromorcellator 40. RF button also could take the form of a microswitch located within slot 61 of handle assembly 50, so as to provide automatic activation of the RF coagulation feature for a short period of time when depth control lever 60 is advanced to contact the user-adjustable limit bar.
It will therefore be seen that handle assembly 50 provides for longitudinal movement of end region 25 with respect to catheter shaft 21 via relative movement between upper portion 52 and lower portion 51 (using knob 53); provides selective deployment of stabilization members 27 via button 55; selective orientation of end region 25 via button 58; control over the depth of the channels formed by end effector 40 via depth control lever 60; and, optionally, activation of an RF coagulation feature via button 62.
Referring now to
Insertion of apparatus 20 into the left ventricle is with guide member 22 in its distal-most position with stabilization members 27 fully retracted and end region 25 in its transit position. As barbs 33 of catheter shaft 21 engage apex 205 of the left ventricle, catheter shaft 21 (and guide member 22) preferentially bends in regions 65 and 66 to form a “dog-leg”, in which distal region 23 becomes urged against a lateral wall of the ventricle. Regions 65 and 66 where the bends take place may be made flexurally weaker than the remainder of the catheter shaft to aid in the bending of the catheter at these locations.
Referring to
The motor and vacuum source of controller 29 are then actuated to cause cutting head 41 to rotate and to induce negative pressure in lumen 44 of micromorcellator 40. The clinician then pushes depth control lever 60 distally in slot 61, causing cutting head 41 to be advanced beyond distal endface 48 of guide member 22 and engage the endocardium. When micromorcellator 40 engages the endocardium, a reaction force is generated in catheter shaft 21 that tends both to push end region 25 away from the tissue and to cause the catheter shaft to want to rotate. The relatively flat configuration of catheter shaft 21, in conjunction with barbs 33, is expected to adequately counteract the torque induced by operation of the micromorcellator. In addition, stabilization members 27 function to counteract both these outward reaction and torque effects.
As micromorcellator 40 is advanced to form channel 207 in the left ventricular wall, tissue severed by cutting head 41 is suctioned into lumen 44 and aspirated to the proximal end of apparatus 20 via the vacuum source of controller 29. The depth of channel 207, which is proportional to the movement of depth control lever 60 in slot 61, may be predetermined using conventional ultrasound techniques, MRI scanning, or other suitable methods. As channel 207 is formed, tissue severed from the ventricular wall is aspirated through lumen 44 of guide member 22, thereby reducing the risk of embolization of the severed material. In addition, applicant expects that the use of suction through lumen 44 will assist in stabilizing the micromorcellator, and tend to draw tissue into the cutting head.
Once micromorcellator 40 has achieved its maximum predetermined depth, cutting head 41 is withdrawn from channel 207 by retracting depth control lever 60 to its proximal-most position, thereby returning cutting head 41 to a position just below distal endface 48 of end region 25 of guide member 22. It is expected that rotation of cutting head 41 will generate sufficient frictional heat in the tissue contacting the exterior of cutting head 41 to coagulate the tissue defining the channel.
Optionally, RF button 62 may be depressed on handle assembly 50 to apply a burst of RF energy to the edges of channel 207 as micromorcellator 40 achieves its maximum predetermined depth, and while cutting head 41 is stationary, rotating or being withdrawn from the channel. If provided, this burst of RF energy is expected to further coagulate the tissue defining the walls of channel 207 and modify the surface properties of the tissue.
As shown in
The foregoing methods enable a matrix of channels to be formed illustratively in the left ventricular wall. It will of course be understood that the same steps may be performed in mirror image to stabilize the apparatus against the left ventricular wall while actuating the end effector to produce a series of channels in the septal region. In accordance with presently accepted theory, the formation of such channels in the endocardium or septal region enables oxygenated blood in the left ventricle to flow directly into the myocardium and thus nourish and oxygenate the muscle. It is believed that these channels may be drilled anywhere on the walls of the heart chamber, including the septum, apex and left ventricular wall, and the above-described apparatus provides this capability.
Referring now to
Dual-rail embodiment 70 may be used without stabilization members, or alternatively catheter shaft 73 may include the stabilization members of
Wires 71 and 72, in cooperation with a distally-directed axial force exerted on the handle assembly by the clinician, serve to anchor the catheter against a lateral wall of the left ventricle, while catheter shaft 74 and guide member 79 are advanced along the dual-rail. Like apparatus 20, apparatus 70 may include flexurally weaker locations along its length to aid in positioning distal region 74 within the left ventricle.
The dual-rail design of apparatus 70 also may be advantageously employed to determine the location of end region 75 and end effector 81 with respect to the interior of the hollow-body organ or vessel. In this embodiment, wires 71 and 72 are electrically connected within cushion 77 and have a uniform resistance per unit length. Electrodes 80 are positioned in distal end 82 of catheter shaft 73 to measure the resistance of wires 71 and 72 between the electrodes.
The resistance between electrodes 80 may be measured, for example, by ohmmeter circuitry, to determine the distance between the distal end 82 of the catheter shaft and the apex of the left ventricle. In conjunction with the displacement between the upper and lower portions of the handle assembly (see
Referring now to FIGS. 8 and 9A-9C, a first alternative embodiment of the stabilization members of the present invention are described. In
Accordingly, wires 91a-91d of the embodiment of
As illustrated in
Referring now to
As described hereinabove, guide member 102 moves relative to catheter shaft 101 to enable the clinician to form a series of vertically aligned channels in the myocardium. Once a line of channels has been formed, the catheter must be moved laterally to a new location and the procedure repeated until the desired number of channels has been achieved. One expedient for doing so, for example, applicable to the apparatus of
Specifically, when inflated, stabilization members 103 provide a degree of hoop strength that ensures proper contact of the distal face of end region 106 with the wall of the hollow-body organ or vessel at all times. Once a vertical row of channels has been formed, stabilization members 103 are deflated by the clinician and end region 106 is moved to a new lateral position. The stabilization members are fully re-inflated and another vertical row of channels is formed, as discussed hereinabove.
With respect to FIGS. 11 and 12A-12C, another embodiment of the apparatus of the present invention is described in which the stabilization members comprise longitudinally-oriented balloons. Apparatus 110 is otherwise similar to the apparatus of
Referring now to
End region 125 of guide member 122 may be positioned longitudinally with respect to catheter shaft 121 by imparting relative movement between guide member 122 and catheter shaft 121 using handle assembly 126. Catheter shaft 121 includes stabilizing assembly 127 to support and stabilize distal region 123 of the apparatus within an organ or vessel.
Apparatus 120 is coupled via cable 128 to controller 129. In a preferred embodiment, wherein the end effector comprises a flexible wire having a sharpened tip, controller 129 includes a hydraulic or pneumatic piston, valve assembly and control logic for extending and retracting the end effector beyond the distal endface of end region 125 responsive to commands input at handle assembly 126 or a footpedal (not shown). Controller 129 optionally may further contain RF generator circuitry for energizing electrodes disposed on the end effector to cause a controlled degree of necrosis at the treatment site.
Referring now to
End region 125 of guide member 122 is movable from a transit position lying parallel to longitudinal axis 124 of catheter shaft 121 to a working position wherein end region 125 is articulated to a position substantially orthogonal to the longitudinal axis of the catheter shaft. In addition, end region 125 may be constructed to enable it to be locked in position at any angle a that may be desired for a given application.
Stabilization assembly 127 comprises flat band 137 of resilient material, such as stainless steel, that projects outwardly from catheter shaft 121 in distal region 123. Illustratively, stabilization assembly 127 comprises multiple loops 127a-127c of band 137. Band 137 has its distal end affixed to the distal end of catheter shaft 121, and its proximal end connected to handle assembly 126. Band 137 passes through an interior lumen of catheter shaft 121 (see
Referring to
In the position shown in
The longitudinal position of end region 125 with respect to catheter shaft 121 may be adjusted by sliding guide member 122 in track 130 of the catheter shaft. Handle assembly 126 preferably includes means, described hereinafter, for moving guide member 122 with respect to catheter shaft 121 so that end region 125 may be positioned at a series of longitudinal locations In addition, stabilization assembly 127 may be adjusted to provide some control over the lateral positioning of the catheter shaft and guide member with respect to the interior wall of the organ or vessel. Thus, apparatus 120 enables a matrix of treatment sites to be accessed without removing and repositioning the apparatus.
With respect to
Threaded post 145 is coupled to the proximal end of band 137, and slides in a slot (not visible in
Upper portion 141 includes indicator 147a that may be selectively aligned with indicators 147b, so that the treatment sites are positioned at a series of spaced-apart locations. Cable 128 extends from upper portion 141 and connects the end effector of apparatus 120 to controller 129. Button 148 disposed on the top surface of upper portion 141 may be depressed to command the control logic of controller 129 to reciprocate the end effector from end region 125, and optionally, cause necrosis at the treatment site. Button 149, disposed in a slot in the upper surface of the proximal end of guide tube 122 (not visible in
Handle assembly 126 therefore provides for longitudinal movement of end region 125 with respect to catheter shaft 121 via relative movement between upper portion 141 and lower portion 140 (using knob 142); provides selective deployment of stabilization assembly 127 (using post 145 and thumbwheel 146); selective orientation of end region 125 (using button 149); and control over operation of the end effector (using button 148).
Referring now to
In
With respect to
Referring to
Apparatus 170 includes distal region 173 within which guide member 172 has end region 175 that is selectively movable between a transit position parallel to longitudinal axis 174 of catheter shaft 171 and a working position (as shown), substantially orthogonal to longitudinal axis 174. Distal region 173 preferably includes an end effector, as described in detail hereinabove. End region 175 of guide member 172 may be positioned longitudinally with respect to catheter shaft 171 by imparting relative movement between guide member 172 and catheter shaft 171 using handle assembly 176. Catheter shaft 121 includes stabilizing element 177 to support and stabilize distal region 173 of the apparatus within an organ or vessel.
Distal region 173 of apparatus 170 is described in greater detail with respect to
Stabilization element 177 comprises wire or band 186 of resilient material, such as stainless steel, that exits catheter shaft 171 through skive 187, and is fixed to catheter shaft 171 near distal end 188. When deployed within a hollow organ, such as a chamber of the heart, as depicted in
While preferred illustrative embodiments of the invention are described, it will be apparent to one skilled in the art that various changes and modifications may be made without departing from the invention, and the appended claims are intended to cover all such changes and modifications that fall within the true spirit and scope of the invention.
Patent | Priority | Assignee | Title |
10039906, | Sep 04 2014 | Silk Road Medical, Inc. | Methods and devices for transcarotid access |
10052129, | Mar 15 2013 | THE SPECTRANETICS CORPORATION | Medical device for removing an implanted object |
10085864, | Jul 18 2007 | Silk Road Medical, Inc. | Systems and methods for treating a carotid artery |
10136913, | Mar 15 2013 | THE SPECTRANETICS CORPORATION | Multiple configuration surgical cutting device |
10213582, | Dec 23 2013 | ROUTE 92 MEDICAL, INC | Methods and systems for treatment of acute ischemic stroke |
10219819, | Mar 15 2013 | THE SPECTRANETICS CORPORATION | Retractable blade for lead removal device |
10226563, | Dec 23 2008 | SILK ROAD MEDICAL, INC | Methods and systems for treatment of acute ischemic stroke |
10226598, | Feb 05 2008 | Silk Road Medical, Inc. | Interventional catheter system and methods |
10265520, | Mar 13 2013 | The Spetranetics Corporation | Alarm for lead insulation abnormality |
10286139, | Jul 18 2007 | Silk Road Medical, Inc. | Methods and systems for establishing retrograde carotid arterial blood flow |
10314615, | Mar 15 2013 | THE SPECTRANETICS CORPORATION | Medical device for removing an implanted object |
10327790, | Aug 05 2011 | ROUTE 92 MEDICAL, INC | Methods and systems for treatment of acute ischemic stroke |
10368900, | Sep 14 2012 | THE SPECTRANETICS CORPORATION | Tissue slitting methods and systems |
10383691, | Mar 13 2013 | THE SPECTRANETICS CORPORATION | Last catheter with helical internal lumen |
10384034, | Dec 23 2013 | SILK ROAD MEDICAL, INC | Transcarotid neurovascular catheter |
10405924, | May 30 2014 | THE SPECTRANETICS CORPORATION | System and method of ablative cutting and vacuum aspiration through primary orifice and auxiliary side port |
10426885, | Jul 18 2007 | Silk Road Medical, Inc. | Methods and systems for establishing retrograde carotid arterial blood flow |
10448999, | May 30 2014 | THE SPECTRANETICS CORPORATION | Surgical instrument for removing an implanted object |
10471233, | Dec 23 2013 | ROUTE 92 MEDICAL, INC | Methods and systems for treatment of acute ischemic stroke |
10485613, | Mar 13 2013 | THE SPECTRANETICS CORPORATION | Device and method of ablative cutting with helical tip |
10485917, | Jul 18 2007 | Silk Road Medical, Inc. | Methods and systems for establishing retrograde carotid arterial blood flow |
10524817, | Mar 15 2013 | THE SPECTRANETICS CORPORATION | Surgical instrument including an inwardly deflecting cutting tip for removing an implanted object |
10531891, | Sep 14 2012 | THE SPECTRANETICS CORPORATION | Tissue slitting methods and systems |
10537354, | Dec 22 2006 | THE SPECTRANETICS CORPORATION | Retractable separating systems and methods |
10543307, | Jul 18 2007 | Silk Road Medical, Inc. | Methods and systems for establishing retrograde carotid arterial blood flow |
10569049, | Dec 23 2013 | ROUTE 92 MEDICAL, INC | Methods and systems for treatment of acute ischemic stroke |
10646239, | Aug 05 2011 | ROUTE 92 MEDICAL, INC | Methods and systems for treatment of acute ischemic stroke |
10709832, | Jul 18 2007 | Silk Road Medical, Inc. | Methods and systems for establishing retrograde carotid arterial blood flow |
10722251, | Aug 05 2011 | ROUTE 92 MEDICAL, INC | Methods and systems for treatment of acute ischemic stroke |
10743893, | Aug 05 2011 | Route 92 Medical, Inc. | Methods and systems for treatment of acute ischemic stroke |
10779855, | Aug 05 2011 | ROUTE 92 MEDICAL, INC | Methods and systems for treatment of acute ischemic stroke |
10799293, | Mar 13 2013 | THE SPECTRANETICS CORPORATION | Laser ablation catheter |
10835279, | Mar 14 2013 | THE SPECTRANETICS CORPORATION | Distal end supported tissue slitting apparatus |
10842532, | Mar 15 2013 | THE SPECTRANETICS CORPORATION | Medical device for removing an implanted object |
10849603, | Mar 15 2013 | SPECTRANETICS LLC | Surgical instrument for removing an implanted object |
10864351, | Dec 23 2013 | Route 92 Medical, Inc. | Methods and systems for treatment of acute ischemic stroke |
10864357, | Sep 04 2014 | Silk Road Medical, Inc. | Methods and devices for transcarotid access |
10869687, | Dec 22 2006 | SPECTRANETICS LLC | Tissue separating systems and methods |
11020133, | Jan 10 2017 | Route 92 Medical, Inc. | Aspiration catheter systems and methods of use |
11027104, | Sep 04 2014 | SILK ROAD MEDICAL, INC | Methods and devices for transcarotid access |
11065019, | Feb 04 2015 | ROUTE 92 MEDICAL, INC | Aspiration catheter systems and methods of use |
11103627, | Dec 23 2008 | Silk Road Medical, Inc. | Methods and systems for treatment of acute ischemic stroke |
11160579, | Mar 15 2013 | SPECTRANETICS LLC | Multiple configuration surgical cutting device |
11224450, | Feb 04 2015 | Route 92 Medical, Inc. | Aspiration catheter systems and methods of use |
11229770, | May 17 2018 | Route 92 Medical, Inc. | Aspiration catheter systems and methods of use |
11291799, | Dec 23 2013 | Silk Road Medical, Inc. | Transcarotid neurovascular catheter |
11318282, | Dec 23 2013 | ROUTE 92 MEDICAL, INC | Methods and systems for treatment of acute ischemic stroke |
11364332, | Jul 18 2007 | Silk Road Medical, Inc. | Methods and systems for establishing retrograde carotid arterial blood flow |
11364369, | Feb 05 2008 | Silk Road Medical, Inc. | Interventional catheter system and methods |
11399852, | Jan 10 2017 | Route 92 Medical, Inc. | Aspiration catheter systems and methods of use |
11534575, | Dec 23 2013 | Route 92 Medical, Inc. | Methods and systems for treatment of acute ischemic stroke |
11576691, | Feb 04 2015 | Route 92 Medical, Inc. | Aspiration catheter systems and methods of use |
11596435, | Sep 14 2012 | SPECRTRANETICS LLC | Tissue slitting methods and systems |
11607523, | May 17 2018 | Route 92 Medical, Inc. | Aspiration catheter systems and methods of use |
11633571, | Feb 04 2015 | Route 92 Medical, Inc. | Rapid aspiration thrombectomy system and method |
11654222, | Dec 23 2008 | Silk Road Medical, Inc. | Methods and systems for treatment of acute ischemic stroke |
11759613, | Sep 04 2014 | Silk Road Medical, Inc. | Methods and devices for transcarotid access |
11793529, | Feb 04 2015 | Route 92 Medical, Inc. | Aspiration catheter systems and methods of use |
11806032, | Feb 04 2015 | Route 92 Medical, Inc. | Aspiration catheter systems and methods of use |
11871944, | Aug 05 2011 | Route 92 Medical, Inc. | Methods and systems for treatment of acute ischemic stroke |
11925334, | Mar 15 2013 | SPECTRANETICS LLC | Surgical instrument for removing an implanted object |
11925380, | Mar 14 2013 | SPECTRANETICS LLC | Distal end supported tissue slitting apparatus |
11925770, | May 17 2018 | Route 92 Medical, Inc. | Aspiration catheter systems and methods of use |
8740834, | Jul 18 2007 | Silk Road Medical, Inc. | Methods and systems for establishing retrograde carotid arterial blood flow |
8784355, | Jul 18 2007 | Silk Road Medical, Inc. | Methods and systems for establishing retrograde carotid arterial blood flow |
8858490, | Jul 18 2007 | SILK ROAD MEDICAL, INC | Systems and methods for treating a carotid artery |
8961551, | Dec 22 2006 | THE SPECTRANETICS CORPORATION | Retractable separating systems and methods |
9011364, | Jul 18 2007 | Silk Road Medical, Inc. | Methods and systems for establishing retrograde carotid arterial blood flow |
9028520, | Dec 22 2006 | THE SPECTRANETICS CORPORATION | Tissue separating systems and methods |
9126018, | Sep 04 2014 | SILK ROAD MEDICAL, INC | Methods and devices for transcarotid access |
9241699, | Sep 04 2014 | SILK ROAD MEDICAL, INC | Methods and devices for transcarotid access |
9259215, | Jul 18 2007 | Silk Road Medical, Inc. | Systems and methods for treating a carotid artery |
9265512, | Dec 23 2013 | SILK ROAD MEDICAL, INC | Transcarotid neurovascular catheter |
9283040, | Mar 13 2013 | THE SPECTRANETICS CORPORATION | Device and method of ablative cutting with helical tip |
9289226, | Dec 22 2006 | THE SPECTRANETICS CORPORATION | Retractable separating systems and methods |
9291663, | Mar 13 2013 | THE SPECTRANETICS CORPORATION | Alarm for lead insulation abnormality |
9399118, | Sep 04 2014 | Silk Road Medical, Inc. | Methods and devices for transcarotid access |
9413896, | Sep 14 2012 | THE SPECTRANETICS CORPORATION | Tissue slitting methods and systems |
9456872, | Mar 13 2013 | THE SPECTRANETICS CORPORATION | Laser ablation catheter |
9492637, | Dec 23 2013 | SILK ROAD MEDICAL, INC | Transcarotid neurovascular catheter |
9561345, | Dec 23 2013 | ROUTE 92 MEDICAL, INC | Methods and systems for treatment of acute ischemic stroke |
9603618, | Mar 15 2013 | THE SPECTRANETICS CORPORATION | Medical device for removing an implanted object |
9655755, | Jul 18 2007 | Silk Road Medical, Inc. | Systems and methods for treating a carotid artery |
9662480, | Sep 04 2014 | Silk Road Medical, Inc. | Methods and devices for transcarotid access |
9668765, | Mar 15 2013 | THE SPECTRANETICS CORPORATION | Retractable blade for lead removal device |
9669191, | Feb 05 2008 | SILK ROAD MEDICAL, INC | Interventional catheter system and methods |
9724122, | Sep 14 2012 | THE SPECTRANETICS CORPORATION | Expandable lead jacket |
9763692, | Sep 14 2012 | THE SPECTRANETICS CORPORATION | Tissue slitting methods and systems |
9789242, | Jul 18 2007 | Silk Road Medical, Inc. | Methods and systems for establishing retrograde carotid arterial blood flow |
9801650, | Dec 22 2006 | THE SPECTRANETICS CORPORATION | Tissue separating systems and methods |
9808275, | Dec 22 2006 | THE SPECTRANETICS CORPORATION | Retractable separating systems and methods |
9833555, | Jul 18 2007 | Silk Road Medical, Inc. | Methods and systems for establishing retrograde carotid arterial blood flow |
9861783, | Dec 23 2013 | SILK ROAD MEDICAL, INC | Transcarotid neurovascular catheter |
9883885, | Mar 13 2013 | THE SPECTRANETICS CORPORATION | System and method of ablative cutting and pulsed vacuum aspiration |
9918737, | Mar 15 2013 | BRIDGE DESIGN, INC | Medical device for removing an implanted object |
9925366, | Mar 15 2013 | THE SPECTRANETICS CORPORATION | Surgical instrument for removing an implanted object |
9925371, | Mar 13 2013 | THE SPECTRANETICS CORPORATION | Alarm for lead insulation abnormality |
9937005, | Mar 13 2013 | THE SPECTRANETICS CORPORATION | Device and method of ablative cutting with helical tip |
9949753, | Sep 14 2012 | THE SPECTRANETICS CORPORATION | Tissue slitting methods and systems |
9956399, | Mar 15 2013 | THE SPECTRANETICS CORPORATION | Medical device for removing an implanted object |
9980743, | Mar 15 2013 | THE SPECTRANETICS CORPORATION | Medical device for removing an implanted object using laser cut hypotubes |
D765243, | Feb 20 2015 | BRIDGE DESIGN, INC | Medical device handle |
D770616, | Feb 20 2015 | BRIDGE DESIGN, INC | Medical device handle |
D806245, | Feb 20 2015 | THE SPECTRANETICS CORPORATION | Medical device handle |
D819204, | Feb 20 2015 | THE SPECTRANETICS CORPORATION | Medical device handle |
D854682, | Feb 20 2015 | THE SPECTRANETICS CORPORATION | Medical device handle |
Patent | Priority | Assignee | Title |
1162901, | |||
2710000, | |||
2749909, | |||
3120845, | |||
3470876, | |||
3477423, | |||
3557794, | |||
3614953, | |||
3692020, | |||
3780246, | |||
4207874, | Mar 27 1978 | Laser tunnelling device | |
4362161, | Oct 27 1980 | DePuy Orthopaedics, Inc | Cranial drill |
4381037, | Oct 29 1979 | Black & Decker Inc. | Portable electric tool |
4461305, | Sep 04 1981 | Automated biopsy device | |
4464738, | Feb 22 1980 | Sonic Tape Public Limited Company | Sonar distance sensing apparatus |
4468224, | Jan 28 1982 | ADVANCED CARDIOVASCULAR SYSTEMS, INC , | System and method for catheter placement in blood vessels of a human patient |
4479896, | Dec 11 1981 | Center for Blood Research | Method for extraction localization and direct recovery of platelet derived growth factor |
4576162, | Mar 30 1983 | Apparatus and method for separation of scar tissue in venous pathway | |
4578057, | Aug 31 1984 | BROWN BROTHERS HARRIMAN & CO | Ventricular right angle connector and system |
4582056, | Mar 30 1983 | Endocardial lead extraction apparatus and method | |
4600014, | Feb 10 1984 | Transrectal prostate biopsy device and method | |
4640296, | Nov 12 1983 | Angiomed AG | Biopsy cannula |
4646738, | Dec 05 1985 | Concept, Inc. | Rotary surgical tool |
4702261, | Jul 03 1985 | Sherwood Services AG; TYCO GROUP S A R L | Biopsy device and method |
4729763, | Jun 06 1986 | Catheter for removing occlusive material | |
4788975, | Nov 05 1987 | TRIMEDYNE, INC | Control system and method for improved laser angioplasty |
4790812, | Nov 15 1985 | Apparatus and method for removing a target object from a body passsageway | |
4792327, | Sep 23 1987 | Lipectomy cannula | |
4813930, | Oct 13 1987 | DIMED, INCORPORATED, 2018 BROOKWOOD MEDICAL CENTER DRIVE, SUITE 305 BIRMINGHAM JEFFERSON ALABAMA 35209 A CORP OF ALABAMA | Angioplasty guiding catheters and methods for performing angioplasty |
4850354, | Aug 13 1987 | Allegiance Corporation | Surgical cutting instrument |
4856529, | May 24 1985 | Volcano Corporation | Ultrasonic pulmonary artery catheter and method |
4895156, | Jul 02 1986 | Sensor system using fluorometric decay measurements | |
4895166, | Nov 23 1987 | SciMed Life Systems, INC | Rotatable cutter for the lumen of a blood vesel |
4898577, | Sep 28 1988 | BADGER, RODNEY S | Guiding cathether with controllable distal tip |
4917102, | Sep 14 1988 | ADVANCED CARDIOVASCULAR SYSTEMS, INC , P O BOX 58167, SANTA CLARA, CA 95052-8167, A CORP OF CA | Guidewire assembly with steerable adjustable tip |
4923462, | Mar 17 1987 | DOW CORNING ENTERPRISES | Catheter system having a small diameter rotatable drive member |
4957742, | Nov 29 1984 | Regents of the University of Minnesota | Method for promoting hair growth |
4964854, | Jan 23 1989 | MEDEX, INC | Intravascular catheter assembly incorporating needle tip shielding cap |
4976710, | Jan 28 1987 | Working well balloon method | |
4985028, | Aug 30 1989 | LIGHTWAVE ABLATIOIN SYSTEMS | Catheter |
5030201, | Nov 24 1989 | Expandable atherectomy catheter device | |
5087265, | Feb 17 1989 | SUMMERS, DAVID P | Distal atherectomy catheter |
5093877, | Oct 30 1990 | Eclipse Surgical Technologies, Inc | Optical fiber lasing apparatus lens |
5104393, | Aug 30 1989 | LIGHTWAVE ABLATIOIN SYSTEMS | Catheter |
5106386, | Aug 30 1989 | LIGHTWAVE ABLATIOIN SYSTEMS | Catheter |
5123904, | Apr 28 1988 | Olympus Optical Co., Ltd. | Surgical resecting instrument |
5125924, | Sep 24 1990 | PLC MEDICAL SYSTEMS, INC | Heart-synchronized vacuum-assisted pulsed laser system and method |
5125926, | Sep 24 1990 | PLC MEDICAL SYSTEMS, INC | Heart-synchronized pulsed laser system |
5133713, | Mar 30 1990 | Apparatus of a spinning type of resectoscope for prostatectomy | |
5135531, | May 14 1984 | Surgical Systems & Instruments, Inc. | Guided atherectomy system |
5152744, | Feb 07 1990 | Smith & Nephew, Inc | Surgical instrument |
5195988, | May 26 1988 | Medical needle with removable sheath | |
5197968, | Aug 14 1991 | Mectra Labs, Inc. | Disposable tissue retrieval assembly |
5224951, | Feb 19 1991 | Tyco Healthcare Group LP | Surgical trocar and spike assembly |
5242460, | Oct 25 1990 | Advanced Cardiovascular Systems, INC | Atherectomy catheter having axially-disposed cutting edge |
5263959, | Oct 21 1991 | CATHCO, INC | Dottering auger catheter system and method |
5269785, | Jun 28 1990 | Bonutti Skeletal Innovations LLC | Apparatus and method for tissue removal |
5273051, | Mar 16 1993 | Method and associated device for obtaining a biopsy of tissues of an internal organ | |
5281218, | Jun 05 1992 | Boston Scientific Scimed, Inc | Catheter having needle electrode for radiofrequency ablation |
5285795, | Sep 12 1991 | Clarus Medical, LLC | Percutaneous discectomy system having a bendable discectomy probe and a steerable cannula |
5287861, | Oct 30 1992 | Coronary artery by-pass method and associated catheter | |
5292309, | Jan 22 1993 | SciMed Life Systems, INC; Boston Scientific Scimed, Inc | Surgical depth measuring instrument and method |
5313949, | Feb 28 1986 | Boston Scientific Scimed, Inc | Method and apparatus for intravascular two-dimensional ultrasonography |
5323781, | Jan 31 1992 | Duke University | Methods for the diagnosis and ablation treatment of ventricular tachycardia |
5324284, | Jun 05 1992 | Boston Scientific Scimed, Inc | Endocardial mapping and ablation system utilizing a separately controlled ablation catheter and method |
5330466, | Dec 01 1992 | Cardiac Pathways Corporation | Control mechanism and system and method for steering distal extremity of a flexible elongate member |
5336237, | Aug 25 1993 | Devices for Vascular Intervention, Inc. | Removal of tissue from within a body cavity |
5339799, | Apr 23 1991 | Olympus Optical Co., Ltd. | Medical system for reproducing a state of contact of the treatment section in the operation unit |
5342300, | Mar 13 1992 | Steerable stent catheter | |
5342393, | Aug 27 1992 | Duke University | Method and device for vascular repair |
5354310, | Mar 22 1993 | Cordis Corporation | Expandable temporary graft |
5358472, | Jan 13 1992 | SciMed Life Systems, INC; Boston Scientific Scimed, Inc | Guidewire atherectomy catheter and method of using the same |
5358485, | Jan 13 1992 | Schneider (USA) Inc. | Cutter for atherectomy catheter |
5366468, | Nov 09 1993 | Linvatec Corporation | Double bladed surgical router having aspiration ports within flutes |
5366490, | Aug 12 1992 | VIDAMED, INC , A DELAWARE CORPORATION | Medical probe device and method |
5370675, | Aug 12 1992 | VENTURE LENDING & LEASING, INC | Medical probe device and method |
5379772, | Sep 14 1993 | Volcano Corporation | Flexible elongate device having forward looking ultrasonic imaging |
5380316, | Dec 18 1990 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Method for intra-operative myocardial device revascularization |
5383884, | Dec 04 1992 | AHN, SAMUEL S | Spinal disc surgical instrument |
5389073, | Dec 01 1992 | Cardiac Pathways Corporation | Steerable catheter with adjustable bend location |
5389096, | Dec 18 1990 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | System and method for percutaneous myocardial revascularization |
5392917, | Aug 03 1993 | Ethicon, Inc. | Easy open 1-2-3 instrumentation package |
5396897, | Jan 16 1992 | The General Hospital Corporation | Method for locating tumors prior to needle biopsy |
5403334, | Sep 12 1989 | Advanced Cardiovascular Systems, INC | Atherectomy device having helical blade and blade guide |
5409000, | Sep 14 1993 | Boston Scientific Scimed, Inc | Endocardial mapping and ablation system utilizing separately controlled steerable ablation catheter with ultrasonic imaging capabilities and method |
5415166, | Feb 15 1991 | Cardiac Pathways Corporation | Endocardial mapping apparatus and cylindrical semiconductor device mounting structure for use therewith and method |
5419777, | Mar 10 1994 | Bavaria Medizin Technologie GmbH | Catheter for injecting a fluid or medicine |
5425376, | Sep 08 1993 | SOFAMOR DANEK PROPERTIES, INC | Method and apparatus for obtaining a biopsy sample |
5429144, | Nov 03 1993 | WILK PATENT DEVELOPMENT CORP | Coronary artery by-pass method |
5439474, | Oct 08 1993 | LI MEDICAL TECHNOLOGIES, INC | Morcellator system |
5443443, | May 14 1984 | Surgical Systems & Instruments, Inc.; SURGICAL SYSTEMS & INSTRUMENTS, INC | Atherectomy system |
5456689, | Oct 13 1993 | Ethicon, Inc | Method and device for tissue resection |
5464395, | Apr 05 1994 | Catheter for delivering therapeutic and/or diagnostic agents to the tissue surrounding a bodily passageway | |
5465717, | Feb 15 1991 | Boston Scientific Scimed, Inc | Apparatus and Method for ventricular mapping and ablation |
5488958, | Nov 09 1992 | Cook Medical Technologies LLC | Surgical cutting instrument for coring tissue affixed thereto |
5492119, | Dec 22 1993 | Cardiac Pacemakers, Inc | Catheter tip stabilizing apparatus |
5497784, | Nov 11 1991 | Avantec Vascular Corporation | Flexible elongate device having steerable distal extremity |
5505725, | Oct 30 1990 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Shapeable optical fiber apparatus |
5507802, | Jun 02 1993 | Cardiac Pathways Corporation | Method of mapping and/or ablation using a catheter having a tip with fixation means |
5520634, | Apr 23 1993 | Ethicon, Inc. | Mechanical morcellator |
5527279, | Dec 01 1992 | Boston Scientific Scimed, Inc | Control mechanism and system and method for steering distal extremity of a flexible elongate member |
5531780, | Sep 03 1992 | Pacesetter, Inc | Implantable stimulation lead having an advanceable therapeutic drug delivery system |
5551427, | Feb 13 1995 | BIOCARDIA, INC | Implantable device for the effective elimination of cardiac arrhythmogenic sites |
5554152, | Dec 18 1990 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Method for intra-operative myocardial revascularization |
5562694, | Oct 11 1994 | LSI Solutions, Inc | Morcellator |
5569178, | Oct 20 1995 | Power assisted suction lipectomy device | |
5569254, | Apr 12 1995 | MIDAS REX, L P | Surgical resection tool having an irrigation, lighting, suction and vision attachment |
5569284, | Sep 23 1994 | United States Surgical Corporation | Morcellator |
5575293, | Feb 06 1995 | Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated | Apparatus for collecting and staging tissue |
5575772, | Jul 01 1993 | Boston Scientific Corporation | Albation catheters |
5575787, | Sep 20 1993 | UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC | Cardiac ablation catheters and method |
5575810, | Oct 15 1993 | EP Technologies, Inc. | Composite structures and methods for ablating tissue to form complex lesion patterns in the treatment of cardiac conditions and the like |
5578067, | Apr 14 1994 | Pacesetter AB | Medical electrode system having a sleeve body and control element therefor for selectively positioning an exposed conductor area |
5584842, | Dec 02 1992 | INTRAMED LABORATORIES, INC | Valvulotome and method of using |
5588432, | Mar 21 1988 | Boston Scientific Corporation | Catheters for imaging, sensing electrical potentials, and ablating tissue |
5591159, | Nov 09 1994 | TAHERI ENTERPRISES, LLC | Transcavitary myocardial perfusion apparatus |
5593405, | Jul 16 1994 | Fiber optic endoscope | |
5601573, | Mar 02 1994 | Ethicon Endo-Surgery, Inc. | Sterile occlusion fasteners and instruments and method for their placement |
5601586, | Sep 30 1992 | Linvatec Corporation | Variable angle rotating shaver |
5601588, | Sep 29 1994 | Olympus Optical Co., Ltd. | Endoscopic puncture needle |
5606974, | May 02 1995 | Cardiac Pacemakers, Inc | Catheter having ultrasonic device |
5607421, | May 01 1991 | The Trustees of Columbia University in the City of New York | Myocardial revascularization through the endocardial surface using a laser |
5609591, | Oct 05 1993 | S.L.T. Japan Co., Ltd. | Laser balloon catheter apparatus |
5609621, | Aug 04 1995 | Medtronic, Inc.; Medtronic, Inc | Right ventricular outflow tract defibrillation lead |
5611803, | Dec 22 1994 | IMAGYN MEDICAL TECHNOLOGIES, INC | Tissue segmentation device |
5613972, | Jul 15 1992 | The University of Miami | Surgical cutting heads with curled cutting wings |
5640955, | Feb 14 1995 | ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC | Guiding introducers for use in the treatment of accessory pathways around the mitral valve using a retrograde approach |
5643253, | Jun 06 1995 | CARDIOFOCUS, INC | Phototherapy apparatus with integral stopper device |
5651781, | Apr 20 1995 | THE SPECTRANETICS CORPORATION | Surgical cutting instrument |
5658263, | May 18 1995 | Cordis Corporation | Multisegmented guiding catheter for use in medical catheter systems |
5662124, | Jun 19 1996 | Wilk Patent Development Corp. | Coronary artery by-pass method |
5662671, | Jul 17 1996 | Boston Scientific Scimed, Inc | Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries |
5665062, | Jan 23 1995 | CARDIOVASCULAR TECHNOLOGIES, INC | Atherectomy catheter and RF cutting method |
5669920, | Jul 09 1993 | Advanced Cardiovascular Systems, INC | Atherectomy catheter |
5680860, | Jul 01 1994 | SciMed Life Systems, INC; Boston Scientific Corporation | Mapping and/or ablation catheter with coilable distal extremity and method for using same |
5683362, | May 13 1994 | Apparatus for performing diagnostic and therapeutic modalities in the biliary tree | |
5688234, | Jan 26 1996 | Abbott Laboratories Vascular Enterprises Limited | Apparatus and method for the treatment of thrombotic occlusions in vessels |
5702412, | Oct 03 1995 | Cedars-Sinai Medical Center | Method and devices for performing vascular anastomosis |
5709697, | Nov 22 1995 | United States Surgical Corporation | Apparatus and method for removing tissue |
5722400, | Feb 16 1995 | Daig Corporation | Guiding introducers for use in the treatment of left ventricular tachycardia |
5724975, | Dec 12 1996 | PLC Medical Systems, Inc. | Ultrasonic detection system for transmyocardial revascularization |
5725521, | Mar 29 1996 | Eclipse Surgical Technologies, Inc. | Depth stop apparatus and method for laser-assisted transmyocardial revascularization and other surgical applications |
5730741, | Feb 07 1997 | Eclipse Surgical Technologies, Inc. | Guided spiral catheter |
5743870, | May 09 1994 | SOMNUS MEDICAL TECHNOLOGIES, INC | Ablation apparatus and system for removal of soft palate tissue |
5755714, | Sep 17 1996 | Eclipse Surgical Technologies, Inc. | Shaped catheter for transmyocardial revascularization |
5766163, | Jul 03 1996 | Eclipse Surgical Technologies, Inc.; Eclipse Surgical Technologies, Inc | Controllable trocar for transmyocardial revascularization (TMR) via endocardium method and apparatus |
5776092, | Mar 23 1994 | ERBE ELEKTROMEDIZIN GMBH | Multifunctional surgical instrument |
5782823, | Apr 05 1996 | Eclipse Surgical Technologies, Inc.; Eclipse Surgical Technologies, Inc | Laser device for transmyocardial revascularization procedures including means for enabling a formation of a pilot hole in the epicardium |
5797870, | Jun 07 1995 | Advanced Research & Technology Institute | Pericardial delivery of therapeutic and diagnostic agents |
5807384, | Dec 20 1996 | Eclipse Surgical Technologies, Inc.; Eclipse Surgical Technologies, Inc | Transmyocardial revascularization (TMR) enhanced treatment for coronary artery disease |
5807401, | Nov 07 1994 | GRIESHABER & CO , AG SCHAFFHAUSEN | Ophthalmic surgical apparatus for pulverizing and removing the lens nucleus from the eye of a living being |
5814028, | Nov 03 1993 | ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC | Curved guiding introducers for cardiac access |
5830210, | Oct 21 1996 | PLC Medical Systems, Inc. | Catheter navigation apparatus |
5830222, | Oct 11 1996 | Medtronic Vascular, Inc | Device, system and method for intersititial transvascular intervention |
5833715, | Sep 03 1992 | Pacesetter, Inc. | Implantable stimulation lead having an advanceable therapeutic drug delivery system |
5834418, | Mar 20 1996 | THERATECHNOLOGIES, INC | Process for the preparation of platelet growth factors extract |
5840059, | Jun 07 1995 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Therapeutic and diagnostic agent delivery |
5846225, | Feb 19 1997 | Cornell Research Foundation, Inc. | Gene transfer therapy delivery device and method |
5851171, | Nov 04 1997 | Advanced Cardiovascular Systems, Inc. | Catheter assembly for centering a radiation source within a body lumen |
5857995, | Apr 12 1996 | HOWMEDICA OSTEONICS CORP | Multiple bladed surgical cutting device removably connected to a rotary drive element |
5871495, | Sep 13 1996 | Eclipse Surgical Technologies, Inc.; Eclipse Surgical Technologies, Inc | Method and apparatus for mechanical transmyocardial revascularization of the heart |
5873366, | Nov 07 1996 | Method for transmyocardial revascularization | |
5876373, | Apr 04 1997 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Steerable catheter |
5878751, | Nov 07 1996 | MYOCARDIAL STENTS, INC | Method for trans myocardial revascularization (TMR) |
5885272, | Oct 30 1990 | Eclipse Surgical Technologies, Inc | System and method for percutaneous myocardial revascularization |
5885276, | Dec 02 1997 | Galil Medical Ltd. | Method and device for transmyocardial cryo revascularization |
5893848, | Oct 24 1996 | PLC Medical Systems, Inc. | Gauging system for monitoring channel depth in percutaneous endocardial revascularization |
5899874, | Apr 30 1992 | Stiftelsen for Medicinsk-Teknisk Utveckling | Preparation and method for production of platelet concentrates with significantly prolonged viabilty during storage |
5906594, | Jan 08 1997 | Symbiosis Corporation | Endoscopic infusion needle having dual distal stops |
5910150, | Dec 02 1996 | Advanced Cardiovascular Systems, INC | Apparatus for performing surgery |
5916214, | May 01 1995 | Medtronic CardioRhythm | Dual curve ablation catheter |
5921982, | Jul 30 1993 | Systems and methods for ablating body tissue | |
5925012, | Dec 27 1996 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Laser assisted drug delivery |
5928943, | Nov 22 1994 | CARDION AG | Embryonal cardiac muscle cells, their preparation and their use |
5931848, | Dec 02 1996 | Advanced Cardiovascular Systems, INC | Methods for transluminally performing surgery |
5938632, | Mar 06 1997 | Boston Scientific Scimed, Inc | Radiofrequency transmyocardial revascularization apparatus and method |
5941868, | Dec 22 1995 | Abbott Laboratories | Localized intravascular delivery of growth factors for promotion of angiogenesis |
5941893, | May 27 1997 | Advanced Cardiovascular Systems, INC | Apparatus for transluminally performing surgery |
5944716, | Dec 09 1996 | Boston Scientific Scimed, Inc | Radio frequency transmyocardial revascularization corer |
5951567, | Jul 24 1997 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Introducer for channel forming device |
5964754, | May 24 1996 | Sulzer Osypka GmbH | Device for perforating the heart wall |
5964757, | Sep 05 1997 | Cordis Webster, Inc.; CORDIS WEBSTER, INC | Steerable direct myocardial revascularization catheter |
5968059, | Mar 06 1997 | Boston Scientific Scimed, Inc | Transmyocardial revascularization catheter and method |
5971993, | Jun 15 1998 | Myocardial Stents, Inc. | System for delivery of a trans myocardial device to a heart wall |
5980545, | May 13 1996 | Edwards Lifesciences Corporation | Coring device and method |
5980548, | Oct 29 1997 | Kensey Nash Corporation | Transmyocardial revascularization system |
5989278, | Sep 13 1996 | Eclipse Surgical Technologies, Inc. | Method and apparatus for mechanical transmyocardial revascularization of the heart |
6030377, | Oct 21 1996 | NOVADAQ TECHNOLOGIES INC | Percutaneous transmyocardial revascularization marking system |
6036677, | Mar 07 1997 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Catheter with flexible intermediate section |
6045530, | Oct 14 1998 | Heyer-Schulte NeuroCare Inc. | Adjustable angle catheter |
6045565, | Nov 04 1997 | Boston Scientific Scimed, Inc | Percutaneous myocardial revascularization growth factor mediums and method |
6051008, | May 27 1997 | ABBOTT CARDIOVASCULAR SYSTEMS INC | Apparatus having stabilization members for percutaneously performing surgery and methods of use |
6056743, | Nov 04 1997 | Boston Scientific Scimed, Inc | Percutaneous myocardial revascularization device and method |
6056760, | Jan 30 1997 | Nissho Corporation | Device for intracardiac suture |
6066126, | Dec 18 1997 | Medtronic, Inc | Precurved, dual curve cardiac introducer sheath |
6093177, | Mar 07 1997 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Catheter with flexible intermediate section |
6102887, | Aug 11 1998 | BIOCARDIA, INC | Catheter drug delivery system and method for use |
6106520, | Sep 30 1997 | BROWN, TONY R ; LAUFER, MICHAEL D | Endocardial device for producing reversible damage to heart tissue |
6126654, | Apr 04 1997 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Method of forming revascularization channels in myocardium using a steerable catheter |
6165164, | Mar 29 1999 | Cordis Corporation | Catheter for injecting therapeutic and diagnostic agents |
6179809, | Sep 24 1997 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Drug delivery catheter with tip alignment |
6197324, | Dec 18 1997 | C. R. Bard, Inc. | System and methods for local delivery of an agent |
6224584, | Jan 14 1997 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Therapeutic and diagnostic agent delivery |
6238389, | Sep 30 1997 | Boston Scientific Scimed, Inc | Deflectable interstitial ablation device |
6251104, | May 08 1996 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Guiding catheter system for ablating heart tissue |
6270496, | May 05 1998 | Cardiac Pacemakers, Inc. | Steerable catheter with preformed distal shape and method for use |
6309370, | Feb 05 1998 | Biosense, Inc | Intracardiac drug delivery |
6322548, | May 10 1995 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Delivery catheter system for heart chamber |
6589232, | Nov 25 1997 | Selective treatment of endocardial/myocardial boundary | |
6613062, | Oct 29 1999 | Medtronic, Inc. | Method and apparatus for providing intra-pericardial access |
6620139, | Dec 14 1998 | Tre Esse Progettazione Biomedica S.r.l. | Catheter system for performing intramyocardiac therapeutic treatment |
6638233, | Aug 19 1999 | Covidien LP | Apparatus and methods for material capture and removal |
6905476, | Jun 04 1998 | Biosense Webster, Inc. | Catheter with injection needle |
6994716, | Sep 18 2002 | Terumo Kabushiki Kaisha | Medical manipulator |
7094201, | Jul 17 1996 | Medtronic, Inc. | System and method for genetically treating cardiac conduction disturbances |
20040010231, | |||
EP807412, | |||
EP853921, | |||
EP868923, | |||
EP876796, | |||
EP895752, | |||
RE33258, | Nov 30 1987 | HOWMEDICA OSTEONICS CORP | Irrigating, cutting and aspirating system for percutaneous surgery |
WO9210142, | |||
WO8603122, | |||
WO9625097, | |||
WO9626675, | |||
WO9635469, | |||
WO9710753, | |||
WO9713471, | |||
WO9805307, | |||
WO9817186, | |||
WO9838916, | |||
WO9839045, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 18 2002 | Abbott Cardiovascular Systems Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Apr 03 2015 | 4 years fee payment window open |
Oct 03 2015 | 6 months grace period start (w surcharge) |
Apr 03 2016 | patent expiry (for year 4) |
Apr 03 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 03 2019 | 8 years fee payment window open |
Oct 03 2019 | 6 months grace period start (w surcharge) |
Apr 03 2020 | patent expiry (for year 8) |
Apr 03 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 03 2023 | 12 years fee payment window open |
Oct 03 2023 | 6 months grace period start (w surcharge) |
Apr 03 2024 | patent expiry (for year 12) |
Apr 03 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |