A diabetes management system for predicting a future blood glucose value of a patient and for recommending a corrective action to the patient when the future blood glucose value lies outside of a target range. The system includes a patient-operated apparatus for measuring blood glucose values and for storing data relating to insulin doses administered to the patient. The apparatus predicts the patient's future blood glucose value based upon the patient's current blood glucose value, the fraction of insulin action remaining from the insulin doses, and the patient's insulin sensitivity. The apparatus also determines the corrective action for the patient when the predicted blood glucose value lies outside of a target range. The system also includes a physician computer in communication with the apparatus for receiving the blood glucose values and insulin dose data and for calculating an adjusted insulin sensitivity for use in subsequent predictions.

Patent
   RE43316
Priority
Jan 10 1997
Filed
Sep 23 2004
Issued
Apr 17 2012
Expiry
Jan 10 2017
Assg.orig
Entity
Large
30
286
all paid
1. An apparatus for assisting a patient having diabetes mellitus in controlling blood glucose, said apparatus comprising:
a) an input means for entering a blood glucose value g(td) representative of a blood glucose concentration of the patient at time td and for entering an insulin dose value Ik representative of an insulin dose administered to the patient prior to time td;
b) a memory means for storing an insulin sensitivity value representative of an insulin sensitivity of the patient and for storing information for determining an insulin action value fk(2d) representative of a fraction of insulin action remaining at time td from said insulin dose;
c) a processor connected to said input means and said memory means for determining said insulin action value fk(td) and for determining a future blood glucose value g(tj) representative of an expected blood glucose concentration of the patient at time tj, wherein said processor determines said future blood glucose value g(tj) in dependence upon said blood glucose value g(td), said insulin dose value Ik, said insulin sensitivity value, and said insulin action value fk(td);
d) an interpolation formula to calculate the insulin action value fk(td) programmed into the processor, the formula to calculate the insulin action value comprising

fk(td)=Y0+((Zk−X0)(Y1−Y0)/(X1−X0))
wherein X0 represents an initial insulin dose, Y0 represents an insulin action value at initial dose X0, X1 represents a following insulin dose, Y1 represents an insulin action value at following insulin dose X1, and Zk represents time after injection of insulin dose Ik at time td;
e) a formula to calculate the future blood glucose value g(tj) programmed into the processor, the formula to calculate the food glucose value comprising:
g ( t j ) = g ( t d ) - S [ N k = 1 I k f k ( t d ) - f k ( t j ) ]
wherein S represents insulin sensitivity values, Ik represents insulin dose values administered prior to time td, and fk(tj) represents insulin action values at time (tj), k=1 represents a single insulin bolus dose and a supplemental insulin bolus dose, and N represents the total number of insulin bolus doses and supplemental insulin bolus doses; and
f) a display means connected to said processor for displaying said future blood glucose value g(tj), thereby enabling the patient to take timely corrective action to prevent hypoglycemia or hyperglycemia.
15. A system for assisting a patient having diabetes mellitus in controlling blood glucose, said system comprising:
a) an input means for entering a blood glucose value g(td) representative of a blood glucose concentration of the patient at time td and for entering an insulin dose value Ik representative of an insulin dose administered to the patient prior to time td;
b) a memory means for storing maximum and minimum values defining a target blood glucose range of the patient, an insulin sensitivity value representative of an insulin sensitivity of the patient, and information for determining an insulin action value fk(td) representative of a fraction of insulin action remaining at time td from said insulin dose;
c) a processor connected to said input means and said memory means for determining said insulin action value fk(td), for determining a future blood glucose value g(tj) representative of an expected blood glucose concentration of the patient at time tj, and for determining a corrective action for the patient when said future blood glucose value g(tj) lies outside of said target range, wherein said processor determines said future blood glucose value g(tj) in dependence upon said blood glucose value g(td), said insulin dose value, said insulin sensitivity value, and said insulin action value fk(td); and
d) an interpolation formula to calculate the insulin action value fk(td) programmed into the processor, the formula to calculate the insulin action value comprising:

fk(td)=Y0+((Zk−X0)(Y1−Y0)/(X1−X0))
wherein X0 represents an initial insulin dose, Y0 represents an insulin action value at initial dose X0, X1 represents a following insulin dose, Y1, represents an insulin action value at following insulin dose X1, and Zk represents time after injection of insulin dose Ik at time td;
e) a formula to calculate the future blood glucose value g(tj) programmed into the processor, the formula to calculate the food glucose value comprising.
g ( t j ) = g ( t d ) - S [ N k = 1 I k f k ( t d ) - f k ( t j ) ]
wherein S represents insulin sensitivity values, Ik represents insulin dose values administered prior to time td, and fk(tj) represents insulin action values at time (tj), k=1 represents a single insulin bolus dose and a supplemental insulin bolus dose, and N represents the total number of insulin bolus doses and supplemental insulin bolus doses; and
f) a display means connected to said processor for recommending said corrective action to the patient.
29. A method for assisting a patient having diabetes mellitus in controlling blood glucose, said method comprising the following steps:
a) providing the patient with an apparatus for determining a future blood glucose value g(tj) representative of an expected blood glucose concentration of the patient at time tj, wherein said apparatus comprises a memory, an input means for entering a blood glucose value g(td) representative of a blood glucose concentration of the patient at time td and for entering an insulin dose value representative of an insulin dose administered to the patient prior to time td, a display, and a processor connected to said memory, said input means, and said display;
b) storing in said memory an insulin sensitivity value representative of an insulin sensitivity of the patient;
c) storing in said memory information for determining an insulin action value fk(td) representative of a fraction of insulin action remaining at time td from said insulin dose;
d) entering in said processor said insulin dose value and said blood glucose value g(td);
e) determining in said processor said insulin action value fk(td) by programming the processor to execute an interpolation formula to calculate the insulin action value fk(td) programmed into the processor, the formula to calculate the insulin action value comprising:

fk(td)=Y0+((Zk−X0)(Y1−Y0)/(X1−X0))
wherein X0 represents an initial insulin dose, Y0 represents an insulin action value at initial dose X0, X1 represents a following insulin dose, Y1 represents an insulin action value at following insulin dose X1, and Zk represents time after injection of insulin dose Ik at time td;
f) determining in said processor said future blood glucose value g(tj) in dependence upon said blood glucose value g(td), said insulin dose value, said insulin sensitivity value, and said insulin action value fk(td) by programming the processor to execute a formula to calculate the future blood glucose value g(tj) programmed into the processor, the formula to calculate the food glucose value comprising:
g ( t j ) = g ( t d ) - S [ N k = 1 I k f k ( t d ) - f k ( t j ) ]
wherein S represents insulin sensitivity values, Ik represents insulin dose values administered prior to time td, and fk(tj) represents insulin action values at time (tj), k=1 represents a single insulin bolus dose and a supplemental insulin bolus dose, and N represents the total number of insulin bolus doses and supplemental insulin bolus doses; and
g) displaying said future blood glucose value g(tj) on said display, thereby enabling the patient to take timely corrective action to prevent hypoglycemia or hyperglycemia.
40. A method for assisting a patient having diabetes mellitus in controlling blood glucose, said method comprising the following steps:
a) providing the patient with an apparatus for determining a future blood glucose value g(tj) representative of an expected blood glucose concentration of the patient at time tj, wherein said apparatus comprises a memory, an input means for entering a blood glucose value g(td) representative of a blood glucose concentration of the patient at time td and for entering an insulin dose value representative of an insulin dose administered to the patient prior to time td, a display, an a processor connected to said memory, said input means, and said display;
b) storing in said memory an insulin sensitivity value representative of an insulin sensitivity of the patient, information for determining an insulin action value fk(td) representative of a fraction of insulin action remaining at time td from said insulin dose, and maximum and minimum values defining a target blood glucose range of the patient;
c) entering in said processor said insulin dose value and said blood glucose value g(td);
d) determining in said processor said insulin action value fk(td) by programming the processor to execute an interpolation formula to calculate the insulin action value fk(td) as stated in the formula to calculate the insulin action value comprising:

fk(td)=Y0+((Zk−X0)(Y1−Y0)/(X1−X0))
wherein X0 represents an initial insulin dose, Y0 represents an insulin action value at initial dose X0, X1 represents a following insulin dose, Y1 represents an insulin action value at following insulin dose X1, and Zk represents time after injection of insulin dose Ik at time td;
e) determining in said processor said future blood glucose value g(tj) by programming the processor to execute a formula to calculate the future blood glucose value g(tj) using the formula to calculate the food glucose value comprising:
g ( t j ) = g ( t d ) - S [ N k = 1 I k f k ( t d ) - f k ( t j ) ]
wherein S represents insulin sensitivity values, Ik represents insulin dose values administered prior to time td, and fk(tj) represents insulin action values at time (tj), k=1 represents a single insulin bolus dose and a supplemental insulin bolus dose, and N represents the total number of insulin bolus doses and supplemental insulin bolus doses, and in dependence upon said blood glucose value g(td), said insulin dose value, said insulin sensitivity value, and said insulin action value fk(td);
f) determining in said processor if said future blood glucose value g(tj) lies outside of said target range;
g) determining in said processor a corrective action for the patient when said future blood glucose value g(tj) lies outside of said target range; and
h) recommending said corrective action to the patient on said display.
2. The apparatus of claim 1, wherein said memory means includes means for storing maximum and minimum values defining a target blood glucose range of the patient, said processor includes means for determining if said future blood glucose value g(tj) lies outside of said target range and means for determining said corrective action for the patient when said future blood glucose value g(tj) lies outside of said target range, and said display means includes means for recommending said corrective action to the patient.
3. The apparatus of claim 2, wherein said memory means further includes means for storing a target blood glucose value of the patient, said corrective action comprises an administration of a supplemental insulin dose, and said processor further comprises means for determining said supplemental insulin dose in dependence upon said insulin sensitivity value and a difference between said future blood glucose value g(tj) and said target blood glucose value.
4. The apparatus of claim 2, wherein said memory means further includes means for storing a target blood glucose value of the patient, said corrective action comprises a consumption of a number of grams of carbohydrates, and said processor further comprises means for determining said number of grams in dependence upon a difference between said future blood glucose value g(tj) and said target blood glucose value.
5. The apparatus of claim 1, wherein said memory means further includes means for storing a hypoglycemic value indicative of a hypoglycemic threshold of the patient, said processor includes means for determining if said future blood glucose value g(tj) lies below said hypoglycemic value, and said apparatus further comprises audio means connected to aid processor for audibly alerting the patient when said future blood glucose value g(tj) lies below said hypoglycemic value.
6. The apparatus of claim 1, wherein said input means comprises a blood glucose measuring means for measuring a blood sample of the patient and for producing said blood glucose value g(td) from a measurement of said blood sample.
7. The apparatus of claim 1, wherein said insulin dose has an insulin type, said input means includes means for entering said insulin type, and said processor includes means for determining said insulin action value fk(td) in dependence upon said insulin type.
8. The apparatus of claim 7, wherein said insulin type is selected from the group consisting of regular insulin and lispro insulin.
9. The apparatus of claim 1, wherein said processor includes means for determining an insulin action value fk(tj) representative of a fraction of insulin action remaining at time tj from said insulin dose and means for determining said future blood glucose g(tj) in further dependence upon said insulin action value fk(tj).
10. The apparatus of claim 1, wherein said processor includes means for determining an ultimate time point at which said insulin dose will have no insulin action remaining and means for setting time tj equal to said ultimate time point.
11. The apparatus of claim 1, wherein said processor includes means for determining a plurality of future blood glucose values representative of a corresponding plurality of expected blood glucose concentrations of the patient, and wherein said display means includes means for displaying said future blood glucose values in graphical form.
12. The apparatus of claim 1, further comprising a communication means connected to said processor for establishing a communication link between said apparatus and a healthcare provider computer and for transmitting and receiving data therebetween.
13. The apparatus of claim 12, wherein said communication means comprises a modem means for establishing said communication link through a communication network.
14. The apparatus of claim 12, wherein said communication means comprises an input/output port for establishing said communication link through a connection cord.
16. The system of claim 15, wherein said memory means further includes means for storing a target blood glucose value of the patient, said corrective action comprises an administration of a supplemental insulin dose, and said processor further comprises means for determining said supplemental insulin dose in dependence upon said insulin sensitivity value and a difference between said future blood glucose value g(tj) and said target blood glucose value.
17. The system of claim 15, wherein said memory means further includes means for storing a target blood glucose value of the patient, said corrective action comprises a consumption of a number of grams of carbohydrates, and said processor further comprises means for determining said number of grams in dependence upon a difference between said future blood glucose value g(tj) and said target blood glucose value.
18. The system of claim 15, wherein said memory means further includes means for storing a hypoglycemic value indicative of a hypoglycemic threshold of the patient, said processor includes means for determining if said future blood glucose g(tj) lies below said hypoglycemic value, and said system further comprises audio means connected to said processor for audibly alerting the patient when said future blood glucose value g(tj) lies below said hypoglycemic value.
19. The system of claim 15, wherein said input means comprises a blood glucose measuring means for measuring a blood sample of the patient and for producing said blood glucose value g(td) from a measurement of said blood sample.
20. The system of claim 15, wherein said insulin dose has an insulin type, said input means includes means for entering said insulin type, and said processor includes means for determining said insulin action value fk(td) in dependence upon said insulin type.
21. The system of claim 20, wherein said insulin type is selected from the group consisting of regular insulin and lispro insulin.
22. The system of claim 15, wherein said processor includes means for determining an insulin action value fk(tj) representative of a fraction of insulin action remaining at time tj from said insulin dose and means for determining said future blood glucose value g(tj) in further dependence upon said insulin action value fk(tj).
23. The system of claim 15, wherein said processor includes means for determining an ultimate time point at which said insulin dose will have no insulin action remaining and means for setting time tj equal to said ultimate time point.
24. The system of claim 15, wherein said processor includes means for determining a plurality of future blood glucose values representative of a corresponding plurality of expected blood glucose concentrations of the patient, and wherein said display means includes means for displaying said future blood glucose values in graphical form.
25. The system of claim 15, wherein said input means includes means for entering a plurality of blood glucose values and a plurality of insulin dose values, and said system further comprises a computing means in communication with said processor for receiving said blood glucose values and said insulin dose values and for calculating from said blood glucose values and said insulin dose values an adjusted insulin sensitivity value.
26. The system of claim 25, wherein said input means, said memory means, said processor, and said display means are included in a patient-operated apparatus, said computing means comprises a healthcare provider computer, and said apparatus includes a communication means connected to said processor for establishing a communication link between said apparatus and said healthcare provider computer.
27. The system of claim 26, wherein said communication means comprises a modem means for establishing said communication link through a communication network.
28. The system of claim 26, wherein said communication means comprises an input/output port for establishing said communication link through a connection cord.
30. The method of claim 29, further comprising the step of determining in said processor an insulin action value fk(tj) representative of a fraction of insulin action remaining at time tj, from said insulin dose, and wherein said future blood glucose value g(tj) is determined in further dependence upon said insulin action value fk(tj).
31. The method of claim 29, wherein the step of determining said future blood glucose value g(tj) is preceded by the steps of determining in said processor an ultimate time point at which said insulin dose will have no insulin action remaining and setting time tj equal to said ultimate time point.
32. The method of claim 29, further comprising the steps of determining in said processor a plurality of future blood glucose values representative of a corresponding plurality of expected blood glucose concentrations of the patient and displaying said future blood glucose values in graphical form on said display.
33. The method of claim 29, further comprising the steps of storing in said memory maximum and minimum values defining a target blood glucose range of the patient, determining in said processor if said future blood glucose value g(tj) lies outside of said target range, determining in said processor said corrective action for the patient when said future blood glucose value g(tj) lies outside of said target range, and recommending said corrective action on said display.
34. The method of claim 33, wherein said corrective action comprises an administration of a supplemental insulin dose, and said method further comprises the steps of storing in said memory a target blood glucose value of the patient and determining in said processor said supplemental insulin dose in dependence upon said insulin sensitivity value and a difference between said future blood glucose value g(tj) and said target blood glucose value.
35. The method of claim 33, wherein said corrective action comprises a consumption of a number of grams of carbohydrates, and said method further comprises the steps of storing in said memory a target blood glucose value of the patient and determining in said processor said number of grams in dependence upon a difference between said future blood glucose value g(tj).
36. The method of claim 29, further comprising the steps of storing in said memory a hypoglycemic value indicative of a hypoglycemic threshold of the patient, determining in said processor if said future blood glucose value g(tj) lies below said hypoglycemic value, and audibly alerting the patient when said future blood glucose value g(tj) lies below said hypoglycemic value.
37. The method of claim 29, wherein said input means comprises a blood glucose meter and the step of entering said blood glucose value g(td) comprises the steps of measuring a blood sample of the patient with said glucose meter and producing said blood glucose value g(td) from a measurement of said blood sample.
38. The method of claim 29, wherein said insulin dose has an insulin type, said method further comprises the step of entering said insulin type in said processor, and said insulin action value fk(td) is determined in dependence upon said insulin type.
39. The method of claim 38, wherein said insulin type is selected from the group consisting of regular insulin and lispro insulin.
41. The method of claim 40, further comprising the step of determining in said processor an insulin action value fk(tj) representative of a fraction of insulin action remaining at time tj from said insulin dose, and wherein said future blood glucose value g(tj) is determined in further dependence upon said insulin action value fk (tj).
42. The method of claim 40, wherein the step of determining said future blood glucose value g(tj) is preceded by the steps of determining in said processor an ultimate time point at which said insulin dose will have no insulin action remaining and setting time tj equal to said ultimate time point.
43. The method of claim 40, further comprising the steps of determining in said processor a plurality of future blood glucose values representative of a corresponding plurality of expected blood glucose concentrations of the patient and displaying said future blood glucose values in graphical form on said display.
44. The method of claim 40, wherein said corrective action comprises an administration of a supplemental insulin dose, and said method further comprises the steps of storing in said memory a target blood glucose value of the patient and determining in said processor said supplemental insulin dose in dependence upon said insulin sensitivity value and a difference between said future blood glucose value g(tj) and said target blood glucose value.
45. The method of claim 40, wherein said corrective action comprises a consumption of a number of grams of carbohydrates, and said method further comprises the steps of storing in said memory a target blood glucose value of the patient and determining in said processor said number of grams in dependence upon a difference between said future blood glucose value g(tj) and said target blood glucose value.
46. The method of claim 40, further comprising the steps of storing in said memory, a hypoglycemic value indicative of a hypoglycemic threshold of the patient, determining in said processor if said future blood glucose value g(tj) lies below said hypoglycemic value, and audibly alerting the patient when said future blood glucose value g(tj) lies below said hypoglycemic value.
47. The method of claim 40, wherein said input means comprises a blood glucose meter and the step of entering said blood glucose value g(td) comprises the steps of measuring a blood sample of the patient with said glucose meter and producing said blood glucose value g(td) from a measurement of said blood sample.
48. The method of claim 40, wherein said insulin dose has an insulin type, said method further comprises the steps of entering said insulin type in said processor, and wherein said insulin action value fk(td) is determined in dependence upon said insulin type.
49. The method of claim 48, wherein said insulin type is selected from the group consisting of regular insulin and lispro insulin.
50. The method of claim 40, further comprising the steps of entering in said processor a plurality of blood glucose values and a plurality of insulin dose values, determining from said glucose values and said insulin dose values an adjusted insulin dose values an adjusted insulin sensitivity value, and storing said adjusted insulin sensitivity value in said memory.

This application is a

After displaying supplemental insulin dose D, microprocessor 22 determines if the patient wishes to enter a dose value for the supplemental insulin dose by displaying the prompt “SUPPLEMENTAL INSULIN TAKEN? YES/NO?”, step 230. In response to a NO input from the patient, the program module ends. In response to a YES input, microprocessor 22 proceeds to step 232, entering and storing the dose value and insulin type of supplemental insulin dose D. Step 232 is analogous to step 104 previously described with reference to FIG. 7A. Following step 232, the program module ends.

In step 234, microprocessor 22 determines if glucose value G(tj) is less than hypoglycemic value H. If future blood glucose value G(tj) is not less than hypoglycemic value H, microprocessor 22 proceeds to step 240. If glucose value G(tj) lies below hypoglycemic value H, microprocessor 22 audibly alerts the patient by causing speaker 54 to emit audible tones, step 236. This alerts the patient that he or she is likely to develop hypoglycemia unless a carbohydrate supplement is taken.

In step 238, microprocessor 22 calculates a number B of grams of carbohydrates to be consumed by the patient and displays a recommendation to consume number of grams B, step 238. Following step 238, the program module ends. Microprocessor 22 preferably calculates number of grams B in dependence upon carbohydrate value C and the difference between future blood glucose value G(tj) and target blood glucose value T according to equation (4):
B=(T−G(tj))/C  (4).
If future blood glucose value G(tj) is not less than hypoglycemic value H, then glucose value G(tj) lies in a range between hypoglycemic value H and minimum value Rmin.

In this case, microprocessor 22 displays to the patient “POSSIBLE FUTURE HYPOGLYCEMIA: RECOMMEND SUBSEQUENT GLUCOSE MEASUREMENT IN 1.5 HOURS”, step 240. Following step 240, the program module ends. Because the patient's blood glucose concentration may rebound, it is presently preferred not to recommend a carbohydrate supplement unless future blood glucose value G(tj) is below hypoglycemic value H.

FIG. 10 is a flow chart illustrating the steps included in the graph program module of step 220. In steps 302-310, microprocessor 22 generates a plurality of predicted future blood glucose values for various time points between time td and time tj. The future blood glucose values are used to generate blood glucose value curve 50 of graph 48. In the preferred embodiment, the future blood glucose values are calculated for time points which increase from time td to time tj in five minute increments. It is obvious that the time increments may be varied as desired in alternative embodiments.

In step 302, microprocessor 22 sets time tj equal to time td plus five minutes. In step 304, microprocessor 22 determines insulin action values Fk(tj) for each dose value Ik stored in memory 24. Step 304 is analogous to step 210 previously described with reference to FIG. 9A. In step 306, microprocessor 22 calculates future blood glucose value G(tj). Step 306 is analogous to step 214 previously described with reference to FIG. 9A.

In step 308, microprocessor 22 determines if time tj is greater than or equal to the ultimate time point at which the last insulin dose k injected by the patient will have no insulin action remaining. If time tj is not greater than or equal to the ultimate time point, microprocessor 22 sets time tj equal to time tj plus five minutes, step 310. Microprocessor 22 then repeats steps 304-308 to calculate a subsequent future blood glucose value.

If time tj is greater than or equal to the ultimate time point, microprocessor 22 generates blood glucose value curve 50 from the calculated future blood glucose values and displays graph 48 on display 14, step 312. Following step 312, the graph program module ends. As shown in FIG. 1, graph 48 includes line 52 indicating the patient's hypoglycemic threshold and line 53 indicating the patient's hyperglycemic threshold. Lines 52 and 53 enable the patient to determine the time point at which he or she is predicted to develop hypoglycemia and hyperglycemia, respectively.

The diabetes management system of the present invention provides a significant improvement over conventional diabetes management systems by alerting the patient to the possible development of hypoglycemia or hyperglycemia between meals, thereby allowing the patient to take early corrective action. Conventional management systems are unable to account for the insulin action remaining from previous insulin doses and therefore restrict insulin supplements to pre-meal times. Thus, in using these conventional systems, the patient must wait until the next meal time to correct hyperglycemia, and may develop hypoglycemia without warning.

The following is an illustrative example of how apparatus 10 assists a patient in preventing hyperglycemia between meals. The example assumes the patient has an insulin sensitivity value of 40 mg/dl per unit, a target blood glucose range of 100 mg/dl-150 mg/dl, a target blood glucose value of 120 mg/dl, a hypoglycemic value of 70 mg/dl, and a carbohydrate value of 4 mg/dl per gram.

In the example, the patient eats a late dinner at 8:40 PM. Before eating, the patient estimates that the meal requires 15 units of bolus insulin and injects 15 units of lispro at 8:30 PM. The patient records the dose value, dose type, and time of injection in apparatus 10. At bedtime, 11:00 PM, the patient uses apparatus 10 to measure his or her blood glucose value. Apparatus 10 produces and displays to the patient a current blood glucose value of 480 mg/dl. The patient then requests apparatus 10 to predict a future blood glucose value at the ultimate time point.

Microprocessor 22 retrieves from memory 24 the dose value and corresponding insulin type of the dose injected by the patient at 8:30 PM. Microprocessor 22 calculates time after injection value Zk to be 150 minutes. Microprocessor 22 then retrieves from Table 2 the values X0=150 minutes, Y0=0.40, X1=165 minutes, and Y1=0.32. Microprocessor 22 calculates insulin action value Fk(td) from equation (2B) as:

F k ( t d ) = 0.40 + ( 150 - 150 ) ( 0.32 - 0.40 ) ( 165 - 150 ) = 0.40 .

Microprocessor 22 thus determines that the lispro insulin dose injected at 8:30 PM has 40% of its insulin action remaining at 11:00 PM. Microprocessor 22 also sets insulin action value Fk(tj) equal to 0.0 for each dose value stored in memory 24. For simplicity of understanding, the example assumes that only the dose injected at 8:30 PM has remaining insulin action. Microprocessor 22 then calculates the predicted blood glucose value at 3:00 AM according to equation (1) as:
G(tj)=480−40(15×.40)=240 mg/dl.
This indicates that the patient can expect an ultimate blood glucose value of 240 mg/dl when the insulin dose has been completely absorbed. The predicted value of 240 mg/dl is greater than the patient's maximum value of 150 mg/dl, so microprocessor 22 calculates a supplemental insulin dose for the patient and displays the recommended supplement on display 14. The supplemental dose D is calculated from equation (3) as:
D=(240−120)/40=3 units of supplemental insulin.

The patient takes the supplemental insulin dose and records the dose value in apparatus 10. From taking the supplemental insulin dose, the patient obtains eight hours of normal blood glucose in place of hyperglycemia. An adjusted insulin sensitivity may also be determined from the dose values and measured blood glucose values recorded in apparatus 10 as follows. The next morning, the patient measures his or her pre-breakfast blood glucose value using apparatus 10. The patient then transmits the recorded dose values and blood glucose values measured at bedtime and before breakfast to healthcare provider computer 38.

An adjusted insulin sensitivity value is calculated in healthcare provider computer 38 by subtracting the pre-breakfast blood glucose value from the bedtime blood glucose value. The result is divided by the total number of units of insulin which had remaining insulin action at bedtime. The number of units of insulin having remaining insulin action at bedtime is equal to the total number of units of the supplemental insulin dose plus the fraction of any previously injected insulin doses having remaining action.

An illustrative example will now be given using the same values presented above, where the patient's bedtime blood glucose value equals 480 mg/dl, the supplemental insulin dose value equals 3 units, and the fraction of insulin action remaining from a previous 15 unit insulin dose is 0.40. The present example further assumes a pre-breakfast blood glucose value of 138 mg/dl measured the following morning. The adjusted sensitivity value is calculated as:
S=(480−138)/(3+(15×0.40))=38 mg/dl per unit.
The insulin sensitivity value S is preferably updated over time as a moving average of the individually calculated sensitivity values.

A second example illustrates how apparatus 10 assists a patient in preventing hypoglycemia. The second example assumes the same values presented in the first example except that the patient's blood glucose value at 11:00 PM is now assumed to be 280 mg/dl. Microprocessor 22 calculates the predicted glucose value at 3:00 AM from equation (1) as:
G(tj)=280−40(15×0.40)=40 mg/dl.
The predicted value of 40 mg/dl is less than the patient's hypoglycemic value of 70 mg/dl. Accordingly, microprocessor 22 calculates a carbohydrate supplement and displays the number of grams of carbohydrates to be consumed by the patient. The number of grams of carbohydrates is calculated from equation (4) as:
B=(120 mg/dl−40 mg/dl)/4=20 grams.
The patient consumes the carbohydrate supplement and successfully avoids hypoglycemia.

Although the above description contains many specificities, these should not be construed as limitations on the scope of the invention but merely as illustrations of the presently preferred embodiment. Many other embodiments of the invention are possible. For example, the system of the invention may be implemented in many different hardware configurations. It is presently preferred to provide the patient with a small, portable apparatus to facilitate use of the apparatus throughout the day. However, in alternative embodiments, the apparatus may comprise a personal computer, a multi-media processor connected to a television, or any other electronic device capable of performing the functions described.

Additionally, the system is not limited to establishing a communication link between the apparatus and healthcare provider computer through a telephone line or data connection cord. Those skilled in the art will recognize that the apparatus may be placed in communication with the healthcare provider computer through a computer network, a wireless communication network, or a data storage card, such as a smart card, exchanged between the physician and patient. Specific techniques for establishing communication links between a physician and a remotely located patient are well known in the art.

The insulin sensitivity values and insulin action values for determining remaining insulin action may differ in alternative embodiments. The values shown in the preferred embodiment are exemplary of one possible embodiment of the invention and are not intended to limit its scope. Further, the insulin action values may be derived from standard data or derived from the blood glucose values and insulin dose values of an individual patient. The insulin action values may be further customized to the individual patient in dependence upon the patient's preferred mode of insulin administration, e.g. syringe injections into the thigh, gut, or arm, insulin pump administrations, or inhalation.

Further, the insulin action values need not be stored in tabular form. In an alternative embodiment, the apparatus stores first and second mathematical equations derived from the insulin action curves. The first equation expresses remaining insulin action as a function of time after injection of a dose of regular insulin. The second equation expresses remaining insulin action as a function of time after injection of a dose of lispro insulin. In this embodiment, the apparatus determines an insulin action value by determining the time after injection and calculating the insulin action value using the equation corresponding to the type of insulin injected.

The preferred embodiment includes a patient-operated apparatus and a healthcare provider computer in communication with the apparatus. This configuration of system components is presently preferred for ease of setting, storing, and adjusting the target blood glucose value and insulin sensitivity value of the patient under the supervision of a healthcare provider. However, those skilled in the art will recognize that the apparatus itself may also be programmed to adjust the patient's insulin sensitivity value based upon the stored blood glucose values and insulin dose values, eliminating the need for the healthcare provider computer if physician review is deemed unnecessary.

It is presently preferred to include a blood glucose meter in the apparatus for automated entry of blood glucose values. However, the apparatus need not include a blood glucose meter. In one alternative embodiment, the blood glucose meter is separate from the apparatus and the patient manually enters measured blood glucose values into the apparatus through the keypad. In another embodiment, the blood glucose meter is connectable to the apparatus through a serial input/output port for automated uploading of the blood glucose values. Similarly, in embodiments of the apparatus which include a modem, the modem need not be built into the apparatus. In alternative embodiments, the apparatus may be adapted to receive a separate modem card, as is well known in the art.

Moreover, the apparatus is not limited to storing patient data relating only to blood glucose and insulin dose values. In alternative embodiments, the apparatus also stores guidelines for diet, exercise, and other therapy parameters. Further, the apparatus may be programmed to prompt a patient for data relating to the therapy parameters and to display recommended guidelines to the patient.

Additionally, the invention may also be implemented as a simulation system for educating and training patients in blood glucose control. In the simulation embodiment, the insulin dose values are representative of simulated insulin doses and the blood glucose values are representative of simulated blood glucose concentrations. The patient enters various insulin dose values and blood glucose values in the simulation system to learn their effect on his or her future blood glucose concentration.

Therefore, the scope of the invention should be determined not by the examples given but by the appended claims and their legal equivalents.

Brown, Stephen J., Worthington, David L.

Patent Priority Assignee Title
10188793, Jun 10 2014 INSULET CORPORATION Insulin on board calculation, schedule and delivery
10206629, Aug 07 2006 Abbott Diabetes Care Inc. Method and system for providing integrated analyte monitoring and infusion system therapy management
10210538, Jun 27 2013 Cilag GmbH International; Lifescan IP Holdings, LLC Analyte-measurement system recording user menu choices
10448834, Feb 28 2006 Abbott Diabetes Care Inc. Smart messages and alerts for an infusion delivery and management system
10898113, Dec 09 2003 DexCom, Inc. Signal processing for continuous analyte sensor
10943687, May 24 2007 Tandem Diabetes Care, Inc. Expert system for insulin pump therapy
11257580, May 24 2007 Tandem Diabetes Care, Inc. Expert system for insulin pump therapy
11291763, Mar 13 2007 TANDEM DIABETES CARE, INC Basal rate testing using frequent blood glucose input
11298053, May 30 2007 Tandem Diabetes Care, Inc. Insulin pump based expert system
11376362, Jun 10 2014 INSULET CORPORATION Systems for determining insulin on board and recommending insulin therapy and related methods
11389088, Jul 13 2017 BIGFOOT BIOMEDICAL, INC Multi-scale display of blood glucose information
11399575, Aug 02 2017 HALEON US HOLDINGS LLC Wearable device and application for behavioral support
11576594, May 30 2007 Tandem Diabetes Care, Inc. Insulin pump based expert system
11638541, Dec 09 2003 Dexconi, Inc. Signal processing for continuous analyte sensor
11848089, May 24 2007 Tandem Diabetes Care, Inc. Expert system for insulin pump therapy
8727982, Aug 07 2006 Abbott Diabetes Care Inc. Method and system for providing integrated analyte monitoring and infusion system therapy management
8801610, Dec 09 2003 DexCom, Inc. Signal processing for continuous analyte sensor
8954373, Sep 30 2009 DREAMED DIABETES LTD Monitoring device for management of insulin delivery
9107623, Dec 09 2003 DexCom, Inc. Signal processing for continuous analyte sensor
9192328, Dec 09 2003 DexCom, Inc. Signal processing for continuous analyte sensor
9351668, Dec 09 2003 DexCom, Inc. Signal processing for continuous analyte sensor
9364173, Dec 09 2003 DexCom, Inc. Signal processing for continuous analyte sensor
9420965, Dec 09 2003 DexCom, Inc. Signal processing for continuous analyte sensor
9498155, Dec 09 2003 DEXCOM, INC Signal processing for continuous analyte sensor
9507917, Sep 30 2009 DreaMed Diabetes Ltd. Monitoring device for management of insulin delivery
9529503, Jun 27 2013 Cilag GmbH International; Lifescan IP Holdings, LLC Analyte-measurement system recording user menu choices
9697332, Aug 07 2006 Abbott Diabetes Care Inc Method and system for providing data management in integrated analyte monitoring and infusion system
9750441, Dec 09 2003 DexCom, Inc. Signal processing for continuous analyte sensor
9782076, Feb 28 2006 Abbott Diabetes Care Inc. Smart messages and alerts for an infusion delivery and management system
9833191, Nov 07 2012 BIGFOOT BIOMEDICAL, INC Computer-based diabetes management
Patent Priority Assignee Title
3426150,
3566365,
3566370,
3768014,
3910257,
3920005,
3996928, May 28 1975 ALDERSON LABORATORIES, INC , A CORP OF DE Patient vital-signs automated measuring apparatus
4004577, Jul 17 1970 Brunswick Biomedical Corporation Method of treating heart attack patients prior to the establishment of qualified direct contact personal care
4130881, Jul 21 1971 G D SEARLE AND CO , 1751 LAKE COOK RD , DEERFIELD, IL 60015 A CORP OF DE System and technique for automated medical history taking
4150284, Apr 28 1977 Texas Instruments Incorporated Medical patient condition monitoring system
4151407, Apr 28 1977 Texas Instruments Incorporated Low-power, infrared information transmission system
4151831, Nov 15 1976 BIOSELF HOLDING CORPORATION Fertility indicator
4173971, Aug 29 1977 Continuous electrocardiogram monitoring method and system for cardiac patients
4216462, Mar 06 1978 MARQUETTE ELECTRONICS, INC Patient monitoring and data processing system
4227526, Apr 13 1978 BAXTER TRAVENOL LABORATORIES, INC Mechanism for aurally instructing a patient and method
4253521, Oct 23 1978 Halliburton Company Setting tool
4259548, Nov 14 1979 GTE Laboratories Incorporated Apparatus for monitoring and signalling system
4270547, Oct 03 1978 UNIVERSITY OF DENVER, A NON-PROFIT EDUCATIONAL INSTITUTION Vital signs monitoring system
4296756, Jul 26 1979 CYBER DIAGNOSTICS, INC ; MADDEN, ARCH I Remote pulmonary function tester
4347568, Dec 07 1978 OCCIDENTIAL ELECTROCHEMICALS CORPORATION Occupational health/environmental surveillance
4347851, Oct 21 1980 BLODGETT, GERRY A Vital signs monitor
4360345, Jul 14 1980 American Heart Association, Inc. Health education system
4417306, Jan 23 1980 Medtronic, Inc. Apparatus for monitoring and storing utilizing a data processor
4422081, Nov 03 1978 Del Mar Avionics Validator for electrocardial data processing system
4449536, Oct 31 1980 SRI INTERNATIONAL, A CORP OF CALIF Method and apparatus for digital data compression
4465077, Nov 12 1981 Apparatus and method of determining fertility status
4473884, Jan 08 1982 MDT CORPORATION, A DE CORP ; SANTA BARBARA RESEARCH CENTER, GOLETA, CA , A CA CORP Electronic medication dispensing system
4519398, Jul 09 1979 Del Mar Avionics Method and apparatus for long-term monitoring of physiological activity to provide a compact portable record
4531527, Apr 23 1982 Brunswick Biomedical Corporation Ambulatory monitoring system with real time analysis and telephone transmission
4546436, Jul 06 1983 The Johns Hopkins University Portable pH data collector
4566461, Feb 15 1983 Health fitness monitor
4576578, Mar 31 1983 Bell & Howell Company Interactive training apparatus
4592546, Apr 26 1984 INTERACTIVE NETWORKS, INC Game of skill playable by remote participants in conjunction with a live event
4627445, Apr 08 1985 KUDD, ARTHUR R ; DAYTON, JUDSON M Glucose medical monitoring system
4674652, Apr 11 1985 MEDICAL MICROSYSTEMS, INC , A CORP OF CO Controlled dispensing device
4686624, Apr 12 1983 BLUM, ANDRE, 26 CHEMIN DU GRAND BUISSON, BESANCON 25000 ; BLUM, DOMINIQUE, 14 RUE DU VALLON, THISE 25220 ROCHE LEZ BEAUPRE Portable apparatus for acquiring and processing data relative to the dietetics and/or the health of a person
4694490, Nov 03 1981 PERSONALIZED MASS MEDIA CORPORATION, THE Signal processing apparatus and methods
4695954, Oct 31 1984 MEDICAL TECHNOLOGY SYSTEMS, INC Modular medication dispensing system and apparatus utilizing portable memory device
4712562, Jan 08 1985 Jacques J., Ohayon Outpatient monitoring systems
4722349, Sep 29 1983 SYI HALPERIN Arrangement for and method of tele-examination of patients
4729381, Feb 04 1986 COLIN ELECTRONICS CO , LTD Living body information recorder
4731726, May 19 1986 Roche Diabetes Care, Inc Patient-operated glucose monitor and diabetes management system
4768229, Jul 21 1986 Zenith Electronics Corporation; ZENITH ELECTRONIC CORP , 1000 MILWAUKEE AVE , GLENVIEW, IL 60025, A CORP OF DE Restrictive access control system
4779199, Jul 13 1984 Sumitomo Electric Industries, Ltd. Patient monitor
4782511, Jul 11 1986 Murex Corporation Interactive medical laboratory specimen apparatus system
4796639, Nov 05 1987 NORWEST BANK MINNESOTA, NATIONAL ASSOCIATION Pulmonary diagnostic system
4799199, Sep 18 1986 Freescale Semiconductor, Inc Bus master having burst transfer mode
4803625, Jun 30 1986 CARDINAL HEALTH 303, INC Personal health monitor
4835372, Jul 19 1985 McKesson Information Solutions LLC Patient care system
4838275, Nov 29 1985 Home medical surveillance system
4858354, Mar 09 1987 Organization system
4858617, Sep 10 1987 ITH, Inc. Cardiac probe enabling use of personal computer for monitoring heart activity or the like
4890621, Jan 19 1988 Northstar Research Institute, Ltd. Continuous glucose monitoring and a system utilized therefor
4897869, May 17 1988 Canon Kabushiki Kaisha Data communication apparatus
4907973, Nov 14 1988 ETHICON, ENDO-SURGERY, INC Expert system simulator for modeling realistic internal environments and performance
4933873, May 12 1988 HealthTech Services Corporation Interactive patient assistance device
4950246, May 08 1987 Spruyt-Hillen B.V. Injection pen
4953552, Apr 21 1989 Blood glucose monitoring system
4958632, Jul 20 1978 Medtronic, Inc Adaptable, digital computer controlled cardiac pacemaker
4958641, Mar 10 1989 CARD GUARD TECHNOLOGIES, INC Heart data monitoring method and apparatus
4967756, Jun 15 1988 CARD GUARD TECHNOLOGIES, INC Blood pressure and heart rate monitoring method and apparatus
4977899, Mar 10 1989 CARD GUARD TECHNOLOGIES, INC Heart data monitoring method and apparatus
4979509, Jul 19 1989 Northstar Research Institute, Ltd. Continuous glucose monitoring and a system utilized therefor
5007429, Aug 21 1987 PULSETREND, INC , A CORP OF DE Interface using 12-digit keypad for programming parameters in ambulatory blood pressure monitor
5016172, Jun 14 1989 IDEAL IDEAS, INC Patient compliance and status monitoring system
5019974, May 01 1987 EURUS LLC; DIVA MEDICAL MANAGEMENT SYSTEMS BY Diabetes management system and apparatus
5024225, Sep 26 1989 INSTROMEDIX, INC Personal health monitor enclosure
5025374, Dec 09 1987 Arch Development Corp. Portable system for choosing pre-operative patient test
5034807, Mar 10 1986 RESPONSE REWARD SYSTEMS, L C System for evaluation and rewarding of responses and predictions
5036462, Sep 29 1989 HEALTHTECH SERVICES CORP Interactive patient assistance and medication delivery systems responsive to the physical environment of the patient
5049487, Aug 13 1986 LifeScan, Inc. Automated initiation of timing of reflectance readings
5050612, Sep 12 1989 Device for computer-assisted monitoring of the body
5056059, Sep 10 1987 Koninklijke Philips Electronics N V Medical monitoring system interface
5059394, Aug 13 1986 LifeScan, Inc. Analytical device for the automated determination of analytes in fluids
5065315, Oct 24 1989 System and method for scheduling and reporting patient related services including prioritizing services
5068536, Jan 19 1989 Futrex, Inc. Method for providing custom calibration for near infrared instruments for measurement of blood glucose
5074317, Mar 24 1989 System for treatment of enuresis
5077476, Jun 27 1990 Futrex, Inc. Instrument for non-invasive measurement of blood glucose
5095798, Jan 10 1989 NINTENDO CO LTD , 60 FUKUINEKAMITAKAMATSU-CHO HIGAYASHIYAMA-KU, KYOTO JAPAN Electronic gaming device with pseudo-stereophonic sound generating capabilities
5109414, Nov 03 1981 PERSONALIZED MASS MEDIA CORPORATION, THE Signal processing apparatus and methods
5109974, May 11 1990 Menziken Automation Mat AG Assembly line system
5111396, Nov 09 1989 CARD GUARD TECHNOLOGIES, INC Portable ECG data-storage apparatus
5111817, Dec 29 1988 Medical Physics, Inc. Noninvasive system and method for enhanced arterial oxygen saturation determination and arterial blood pressure monitoring
5111818, Oct 08 1985 Capintec, Inc. Ambulatory physiological evaluation system including cardiac monitoring
5120230, May 30 1989 Optical Data Corporation Interactive method for the effective conveyance of information in the form of visual images
5120421, Aug 31 1990 Lawrence Livermore National Security LLC Electrochemical sensor/detector system and method
5128752, Mar 10 1986 QUEST NETTECH CORPORATION System and method for generating and redeeming tokens
5134391, Jan 10 1989 NINTENDO CO LTD System for preventing the use of an unauthorized external memory
5142358, Feb 11 1991 Earn per view television viewing regulation device
5142484, May 12 1988 Health Tech Services Corporation An interactive patient assistance device for storing and dispensing prescribed medication and physical device
5176502, Apr 25 1990 Fresenius AG Syringe pump and the like for delivering medication
5182707, Jul 23 1990 MATRIA HEALTHCARE, LLC Apparatus for recording reagent test strip data by comparison to color lights on a reference panel
5204670, Aug 29 1988 B I INCORPORATED Adaptable electric monitoring and identification system
5222020, Apr 18 1989 Takeda Engineering Consultant Inc.; TAKEDA ENGINEERING CONSULTANT INC , A JAPANESE CORP Acquisition of arterial response process for pulsating blood flow and its blood pressure measuring method
5227874, Mar 10 1986 QUEST NETTECH CORPORATION Method for measuring the effectiveness of stimuli on decisions of shoppers
5228450, May 03 1991 BURDICK, INC Methods and apparatus for ambulatory physiological monitoring
5231990, Jul 09 1992 Spacelabs Healthcare, LLC Application specific integrated circuit for physiological monitoring
5249044, May 05 1992 QUEST NETTECH CORPORATION Product information storage, display, and coupon dispensing system
5251126, Oct 29 1990 MILES INC , A CORP OF IN Diabetes data analysis and interpretation method
5261401, Nov 04 1988 Medtronic, Inc Ambulatory cardiac diagnostic units having means for inhibiting pacemaker response
5262943, Oct 15 1991 NCS PEARSON, INC System and process for information management and reporting
5265888, Jun 22 1990 Nintendo Co., Ltd. Game apparatus and memory cartridge used therefor
5266179, Jul 20 1990 Matsushita Electric Industrial Co., Ltd.; Kyoto Daiichi Kagaku Co., Ltd. Quantitative analysis method and its system using a disposable sensor
5275159, Mar 22 1991 Map Medizintechnik fur Arzt und Patient GmbH Method and apparatus for diagnosis of sleep disorders
5282950, Jul 15 1991 Boehringer Mannheim GmbH Electrochemical analysis system
5299121, Jun 04 1992 Medscreen, Inc. Non-prescription drug medication screening system
5301105, Apr 08 1991 ALLCARE HEALTH MANAGEMENT SYSTEMS, INC All care health management system
5304468, Aug 13 1986 LifeScan, Inc. Reagent test strip and apparatus for determination of blood glucose
5307263, Nov 17 1992 HEALTH HERO NETWORK, INC Modular microprocessor-based health monitoring system
5309919, Mar 02 1992 Pacesetter, Inc Method and system for recording, reporting, and displaying the distribution of pacing events over time and for using same to optimize programming
5329459, Sep 29 1989 HealthTech Services Corporation Interactive medication delivery system
5329608, Apr 02 1992 AT&T Bell Laboratories Automatic speech recognizer
5331549, Jul 30 1992 Medical monitor system
5339821, Feb 13 1992 Universal Entertainment Corporation Home medical system and medical apparatus for use therewith
5341291, Dec 09 1987 Arch Development Corporation Portable medical interactive test selector having plug-in replaceable memory
5343239, Nov 20 1991 OPENTV, INC Transaction based interactive television system
5344324, Jul 15 1992 Nova Scientific Corporation Apparatus and method for testing human performance
5357427, Mar 15 1993 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Remote monitoring of high-risk patients using artificial intelligence
5366896, Jul 30 1991 University of Virginia Robotically operated laboratory system
5371687, Nov 20 1992 Roche Diabetes Care, Inc Glucose test data acquisition and management system
5375604, Dec 11 1992 Draeger Medical Systems, Inc Transportable modular patient monitor
5377100, Mar 08 1993 The United States of America as represented by the Administrator of the; UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE, ADMINISTRATOR NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Method of encouraging attention by correlating video game difficulty with attention level
5390238, Jun 15 1992 GENERAL DYNAMICS C4 SYSTEMS, INC Health support system
5399821, Oct 20 1993 Teikoku Tsushin Kogyo Co., Ltd. Keytop for push-button switches, and method of manufacturing same
5410471, Feb 24 1992 Toto, Ltd. Networked health care and monitoring system
5410474, Jul 27 1993 Miles Inc. Buttonless memory system for an electronic measurement device
5429140, Jun 04 1993 American Home Products Corporation Integrated virtual reality rehabilitation system
5431691, Mar 02 1992 Pacesetter, Inc Method and system for recording and displaying a sequential series of pacing events
5434611, Dec 16 1991 Matsushita Electric Industrial Co., Ltd. Home health care system which employs a two-way community antenna television network to permit communication between a doctor and patients at different locations
5438607, Nov 25 1992 CHESTER PRZYGODA, JR REVOCABLE TRUST UAD 06 03 04, THE; CHESTER PRZYGODA, JR REVOCABLE TRUST UAD 06 03 04 Programmable monitoring system and method
5441047, Mar 25 1992 Ambulatory patient health monitoring techniques utilizing interactive visual communication
5454721, Dec 30 1993 Application of multi-media technology to nutrition education and diet planning
5454722, Nov 12 1993 Project Orbis International, Inc. Interactive multimedia eye surgery training apparatus and method
5456606, Mar 16 1987 System for making therapeutic recordings
5456692, Sep 03 1993 Pacesetter, Inc System and method for noninvasively altering the function of an implanted pacemaker
5458123, Dec 16 1992 Draeger Medical Systems, Inc System for monitoring patient location and data
5467269, Dec 20 1991 TELSPAN, INC Method and means for telephonically crediting customers with rebates and refunds
5471039, Jun 22 1994 Panda Eng. Inc. Electronic validation machine for documents
5483276, Aug 02 1993 THE NIELSEN COMPANY US , LLC Compliance incentives for audience monitoring/recording devices
5488412, Mar 31 1994 AT&T IPM Corp Customer premises equipment receives high-speed downstream data over a cable television system and transmits lower speed upstream signaling on a separate channel
5488423, Nov 17 1994 U.S. Narrow Networks, Inc. Home communication method and apparatus
5501231, Jun 02 1993 INTERNATIONAL ELECTRONIC TECHNOLOGY CORP Patient operated system for testing and recording a biological condition of the patient
5502636, Jan 31 1992 R.R. Donnelley & Sons Company Personalized coupon generating and processing system
5502726, Jan 31 1992 Nellcor Puritan Bennett Incorporated Serial layered medical network
5504519, Oct 03 1991 RAQUEL VELASCO Method and apparatus for printing coupons and the like
5517405, Oct 14 1993 AETNA Life and Casualty Company Expert system for providing interactive assistance in solving problems such as health care management
5518001, Jun 17 1994 Pacesetter, Inc Cardiac device with patient-triggered storage of physiological sensor data
5519433, Nov 20 1991 OPENTV, INC Interactive television security through transaction time stamping
5544649, Mar 25 1992 CARDIOMEDIX, INC Ambulatory patient health monitoring techniques utilizing interactive visual communication
5546943, Dec 09 1994 Stimulating a beneficial human response by using visualization of medical scan data to achieve psychoneuroimmunological virtual reality
5549117, May 23 1994 Enact Health Management Systems System for monitoring and reporting medical measurements
5550575, May 04 1994 LG ELECTRONICS, INC Viewer discretion television program control system
5553609, Feb 09 1995 Indiana Research and Technology Corporation; Indiana University Research and Technology Corporation Intelligent remote visual monitoring system for home health care service
5558638, Apr 30 1993 HFG HEALTHCO-4, LLC Patient monitor and support system
5564429, Nov 25 1991 VITALSCAN, INC Method of identifying valid signal-carrying channels in a cardiorespiratory alert system
5569212, Jul 22 1994 HEALTH HERO NETWORK, INC Apparatus for electrically determining injection doses in syringes
5572421, Dec 09 1987 Portable medical questionnaire presentation device
5574828, Apr 28 1994 REAL AGE, INC Expert system for generating guideline-based information tools
5576952, Mar 09 1993 WILSON TELEMETRY LLC Medical alert distribution system with selective filtering of medical information
5590648, Nov 30 1992 Tremont Medical Personal health care system
5596994, Aug 30 1993 Automated and interactive behavioral and medical guidance system
5597307, Jul 01 1994 TV Interactive Data Corporation Method for starting up a process automatically on insertion of a storage media into a host device
5601435, Nov 04 1994 RAYA SYSTEMS, INC Method and apparatus for interactively monitoring a physiological condition and for interactively providing health related information
5613495, Dec 26 1991 Instromedix, Inc. High functional density cardiac monitoring system for captured windowed ECG data
5619991, Apr 26 1995 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Delivery of medical services using electronic data communications
5624265, Jul 01 1994 TV Interactive Data Corporation Printed publication remote contol for accessing interactive media
5628309, Jan 25 1996 HEALTH HERO NETWORK, INC Meter for electrically measuring and recording injection syringe doses
5629981, Jul 29 1994 Texas Instruments Incorporated Information management and security system
5631844, Jul 30 1991 UNIVERSITY OF VIRGINIA PATEND FOUNDATION Interactive remote sample analysis system
5633910, Sep 13 1994 Outpatient monitoring system
5640953, Mar 09 1995 Draeger Medical Systems, Inc Portable patient monitor reconfiguration system
5642731, Jul 23 1990 MADRIGAL HEALTH, LLC Method of and apparatus for monitoring the management of disease
5642936, Jan 29 1996 OncorMed Methods for identifying human hereditary disease patterns
5666487, Jun 28 1995 Verizon Patent and Licensing Inc Network providing signals of different formats to a user by multplexing compressed broadband data with data of a different format into MPEG encoded data stream
5670711, Mar 08 1996 Regents of the University of Minnesota Portable rock strength evaluation device
5675635, Jan 24 1996 Sprint Communications Company L.P. System and method for conducting poll at a processor associated with the originating switch
5678562, Nov 09 1995 Burdick, Inc. Ambulatory physiological monitor with removable disk cartridge and wireless modem
5678571, May 23 1994 Health Hero Network Method for treating medical conditions using a microprocessor-based video game
5687322, May 01 1989 Catalina Marketing Corporation Method and system for selective incentive point-of-sale marketing in response to customer shopping histories
5687717, Aug 06 1996 Tremont Medical, Inc. Patient monitoring system with chassis mounted or remotely operable modules and portable computer
5687734, Oct 20 1994 Philips Electronics North America Corporation Flexible patient monitoring system featuring a multiport transmitter
5704364, Nov 08 1995 LIFEWATCH TECHNOLOGIES LTD Concurrent medical patient data and voice communication method and apparatus
5704366, May 23 1994 Nortek Security & Control LLC System for monitoring and reporting medical measurements
5704902, Sep 19 1995 Headwaters Research & Development, INC Handholdable massager having combination massaging and dual function two speed actuator pad
5711297, Dec 29 1993 Clinical Decision Support, LLC Computerized medical advice system and method including meta function
5715451, Jul 20 1995 UNILOC LUXEMBOURG S A Method and system for constructing formulae for processing medical data
5715823, Feb 27 1996 ATL ULTRASOUND, INC Ultrasonic diagnostic imaging system with universal access to diagnostic information and images
5717913, Jan 03 1995 University of Central Florida Research Foundation, Inc Method for detecting and extracting text data using database schemas
5720733, Jul 22 1994 HEALTH HERO NETWORK, INC Apparatus for determining and recording injection doses in syringes using electrical capacitance measurements
5722418, Aug 30 1993 Method for mediating social and behavioral processes in medicine and business through an interactive telecommunications guidance system
5727153, Jun 06 1995 STERLING GLOBAL SOLUTIONS, LLC D B A SPARKFLY Retail store having a system of receiving electronic coupon information from a portable card and sending the received coupon information to other portable cards
5730124, Dec 14 1993 Mochida Pharmaceutical Co., Ltd. Medical measurement apparatus
5732696, Mar 17 1992 New York University Polysomnograph scoring
5732709, May 23 1994 Enact Health Management Systems System for monitoring and reporting medical measurements
5734413, Nov 20 1991 OPENTV, INC Transaction based interactive television system
5752234, Aug 18 1995 PATIENT SOLUTIONS, INC Method and apparatus for managing disposable medical supplies appropriate for a single patient visit
5760771, Jul 17 1996 AT&T Corp System and method for providing structured tours of hypertext files
5772585, Aug 30 1996 EMC, Inc System and method for managing patient medical records
5778882, Feb 24 1995 Brigham and Women's Hospital; BRIGHAM AND WOMEN S HOSPITAL Health monitoring system
5782814, Jul 22 1994 HEALTH HERO NETWORK, INC Apparatus for determining and recording injection doses in syringes using electrical inductance
5785650, Aug 09 1995 Medical system for at-home patients
5791342, Sep 03 1996 Telediagnostics Systems, Inc.; TELEDIAGNOSTIC SYSTEMS, INC Medical data transmission system
5792117, Jul 22 1994 HEALTH HERO NETWORK, INC Apparatus for optically determining and electronically recording injection doses in syringes
5793969, Jul 09 1993 TRIPATH IMAGING, INC Network review and analysis of computer encoded slides
5796393, Nov 08 1996 Meta Platforms, Inc System for intergrating an on-line service community with a foreign service
5802494, Jul 13 1990 Kabushiki Kaisha Toshiba Patient monitoring system
5810747, Aug 21 1996 IRDETO ACCESS, INC Remote site medical intervention system
5819735, Aug 15 1996 KOCHER, JEAN-PIERRE Device and method for monitoring dietary intake of calories and nutrients
5822544, Jul 27 1990 Hill-Rom Services, Inc Patient care and communication system
5822715, Jan 10 1997 HEALTH HERO NETWORK, INC Diabetes management system and method for controlling blood glucose
5825283, Jul 03 1996 System for the security and auditing of persons and property
5827180, Nov 07 1994 THE STAYWELL COMPANY Method and apparatus for a personal health network
5828943, Apr 26 1994 HEALTH HERO NETWORK, INC Modular microprocessor-based diagnostic measurement apparatus and method for psychological conditions
5835896, Mar 29 1996 eBay Inc Method and system for processing and transmitting electronic auction information
5840020, Feb 12 1996 Nokia Technologies Oy Monitoring method and a monitoring equipment
5868669, Dec 29 1993 Clinical Decision Support, LLC Computerized medical diagnostic and treatment advice system
5875432, Aug 05 1994 Computerized voting information system having predefined content and voting templates
5879163, Jun 24 1996 HEALTH HERO NETWORK, INC On-line health education and feedback system using motivational driver profile coding and automated content fulfillment
5893077, Aug 23 1995 Microsoft Technology Licensing, LLC Method and apparatus for generating and collecting a billing event object within an on-line network
5893098, Sep 14 1994 Xylon LLC System and method for obtaining and collating survey information from a plurality of computer users
5897493, Mar 28 1997 HEALTH HERO NETWORK, INC Monitoring system for remotely querying individuals
5899855, Nov 17 1992 HEALTH HERO NETWORK, INC Modular microprocessor-based health monitoring system
5911687, Nov 15 1995 Hitachi, Ltd. Wide area medical information system and method using thereof
5913310, May 15 1997 HEALTH HERO NETWORK, INC Method for diagnosis and treatment of psychological and emotional disorders using a microprocessor-based video game
5918603, May 23 1994 HEALTH HERO NETWORK, INC Method for treating medical conditions using a microprocessor-based video game
5920477, Dec 23 1991 Blanding Hovenweep, LLC; HOFFBERG FAMILY TRUST 1 Human factored interface incorporating adaptive pattern recognition based controller apparatus
5933136, Dec 23 1996 HEALTH HERO NETWORK, INC Network media access control system for encouraging patient compliance with a treatment plan
5941829, Nov 08 1995 LIFEWATCH SERVICES INC Concurrent medical patient data and voice communication method and apparatus
5961446, Oct 06 1995 Tevital Incorporated Patient terminal for home health care system
5971922, Apr 07 1998 RESEARCH INSTITUTE OF APPLICATION TECHNOLOGIES FOR CHAOS & COMPLEX SYSTEMS CO , LTD System and method for predicting blood glucose level
5983217, Mar 21 1997 AT&T Corp Apparatus and method for querying replicated databases
5987471, Nov 13 1997 Apple Inc Sub-foldering system in a directory-service-based launcher
5995969, Oct 21 1997 Electronics and Telecommunications Research Institute Integrated case repository meta model system for process methodology and integrated supporting method
5997476, Mar 28 1997 Health Hero Network, Inc. Networked system for interactive communication and remote monitoring of individuals
6001065, Aug 02 1995 IBVA Technologies, Inc. Method and apparatus for measuring and analyzing physiological signals for active or passive control of physical and virtual spaces and the contents therein
6022315, Dec 29 1993 Clinical Decision Support, LLC Computerized medical diagnostic and treatment advice system including network access
6022615, Jun 07 1989 Markus, Rettenbacher Shaped part for use as a construction material
6024281, Sep 27 1989 Nutritional information system for shoppers
6029138, Aug 15 1997 BRIGHAM AND WOMEN S HOSPITAL Computer system for decision support in the selection of diagnostic and therapeutic tests and interventions for patients
6035328, Feb 21 1997 Siemens Aktiengesellschaft Medical therapeutic and/or diagnostic system
6046761, Apr 09 1996 MEDCOM TECHNOLOGY ASSOCIATES INC Interactive communication system for medical treatment of remotely located patients
6049794, Dec 09 1997 Change Healthcare Holdings, LLC System for screening of medical decision making incorporating a knowledge base
6050940, Jun 17 1996 MEDCOM NETWORK SYSTEMS, LLC General-purpose medical instrumentation
6055314, Mar 22 1996 Rovi Technologies Corporation System and method for secure purchase and delivery of video content programs
6055487, Jul 30 1991 UNIVERSITY OF VIRGINIA PATEND FOUNDATION Interactive remote sample analysis system
6055506, Apr 25 1997 Unitron Medical Communications, Inc. Outpatient care data system
6057758, May 20 1998 Koninklijke Philips Electronics N V Handheld clinical terminal
6110148, Jul 22 1994 Health Hero Network, Inc. Capacitance-based dose measurements in syringes
6138145, Jun 25 1997 NEC Corporation Method of electronic dialog between computers, computer for electronic dialog with counterpart computer, and storage medium storing electronic dialog program executable by computer
6151586, Dec 23 1996 Health Hero Network, Inc.; Health Hero Network; RAYA SYSTEMS, INC Computerized reward system for encouraging participation in a health management program
6168563, Nov 17 1992 HEALTH HERO NETWORK, INC Remote health monitoring and maintenance system
6177940, Sep 20 1995 CEDARON MEDICAL, INC Outcomes profile management system for evaluating treatment effectiveness
6189029, Sep 20 1996 Microsoft Technology Licensing, LLC Web survey tool builder and result compiler
6221012, Dec 11 1992 Draeger Medical Systems, Inc Transportable modular patient monitor with data acquisition modules
6248065, Apr 30 1997 Health Hero Network, Inc. Monitoring system for remotely querying individuals
6368273, Mar 28 1997 Robert Bosch LLC Networked system for interactive communication and remote monitoring of individuals
6370513, Aug 08 1997 DIETFOOD CORP Method and apparatus for automated selection, organization, and recommendation of items
6436036, Nov 01 1995 WEIGHT WATCHERS INTERNATIONAL, INC Process for controlling body weight
6513532, Jan 19 2000 MICROLIFE MEDICAL HOME SOLUTIONS INC Diet and activity-monitoring device
EP251520,
EP286456,
EP320749,
EP461910,
EP653718,
EP370599,
EP508912,
EP526166,
EP676709,
EP680727,
EP761160,
GB2218831,
GB2225637,
WO8501667,
WO9000367,
WO9109374,
WO9301489,
WO9302622,
WO9416774,
WO9509386,
WO9520199,
WO9529447,
WO9607908,
WO9625877,
WO9708605,
WO9712544,
WO9816895,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 23 2004Health Hero Network, Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
Oct 23 2013M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Apr 17 20154 years fee payment window open
Oct 17 20156 months grace period start (w surcharge)
Apr 17 2016patent expiry (for year 4)
Apr 17 20182 years to revive unintentionally abandoned end. (for year 4)
Apr 17 20198 years fee payment window open
Oct 17 20196 months grace period start (w surcharge)
Apr 17 2020patent expiry (for year 8)
Apr 17 20222 years to revive unintentionally abandoned end. (for year 8)
Apr 17 202312 years fee payment window open
Oct 17 20236 months grace period start (w surcharge)
Apr 17 2024patent expiry (for year 12)
Apr 17 20262 years to revive unintentionally abandoned end. (for year 12)