Apparatus for mixing two fluids has separate supply lines for delivering the fluids to a mixing head. flow rate of fluid in one supply line is monitored by arranging a pressure transducer to measure a pressure drop across an orifice in an orifice plate arranged in the supply line and a controller is responsive to the detected flow rate to control flow rate of fluid in the other supply line to achieve a desired flow ratio of both fluids at the mixing head for producing a mixed fluid having the correct proportions of both fluids. The fluids may be a concentrate syrup and a plain or carbonated water to produce a beverage.
|
1. A dispensing valve system for mixing therein and dispensing there from a first fluid and a second fluid at a predefined ratio, comprising:
a dispensing valve body having a first inlet and a second inlet for providing connection to pressurized sources of the first fluid and the second fluid respectively, the first inlet delivering the first fluid to a first channel, the first channel having a pressure based flow sensing means, the second inlet delivering the second fluid to a second channel and the second channel having a second fluid flow sensing means therein for sensing the flow rate of the second fluid there through, and the second flow sensing means and the pressure based flow sensing means connected to a microcontroller for determining the flow rates of the second and first fluids respectively,
a valve in the first channel and operated by the microcontroller for regulating the flow of the first fluid there thorough in an on/off manner,
a linear actuator controlled by the microcontroller for operating a rod extending in the second channel, the rod having a rod end movable to a stop position for stopping the flow of the second fluid and to a full flow position for permitting a maximum flow of the second liquid and movable to a plurality of positions between the stop and full open positions for regulating the flow rate of the second fluid as a function of the size of a flow orifice created between the rod and the second channel relative to the position of the rod end between the stop and full flow positions, and the microcontroller regulating the flow rate of the second fluid as a function of the sensed flow rate of the first fluid so as to maintain the predetermined ratio there between.
0. 5. An apparatus for providing a mixture of at least two fluids, which comprises a first fluid supply line connectable to a source of the first fluid, a second fluid supply line connectable to a source of the second fluid, and a mixing head into which the two fluids can be supplied through their respective supply lines and mixed therein, the first fluid supply line including an orifice plate, the orifice plate having a chamfered edge leading into its orifice in the direction of flow, and pressure transducer means for measuring the pressure drop in the first fluid as it passes through the orifice plate, the pressure transducer means providing the measured pressure drop to a controller, the controller being pre-programmed with flow rate values determined over a range of pressure drops for the first fluid and to control the rate of flow of the second fluid to the mixing head in response to the flow rate of the first fluid to achieve a desired flow ratio of the two fluids, in which the first fluid supply line contains a multiple position on/off valve controllable to provide a range of flow rates of the first fluid, and in which the controllable on/off valve comprises a substantially rigid housing containing a passageway between an inlet to and an outlet from the valve, a closure member movable in the passageway from a first position in which the valve is fully closed to a second position in which the valve is fully open, the closure member engaging the wall of the passageway to seal the passageway, at least one of the wall of the passageway and the closure member defining at least one groove, the groove having a transverse cross-section that increases in area in one of the downstream and upstream directions, such that movement of the closure member from the first position towards the second position progressively opens a flow channel through the groove.
0. 7. An apparatus for providing a mixture of at least two fluids, which apparatus comprises a first fluid supply line connectable to a source of the first fluid, a second fluid supply line connectable to a source of the second fluid, a mixing head into which the two fluids can be supplied through their respective supply lines and mixed therein, and pressure based flow sensing means in which a pressure transducer measures fluid pressure on one side of an orifice plate having an orifice while an opposite side of the orifice plate vents to atmosphere, said pressure based flow sensing means comprising an orifice in an orifice plate arranged to vent to atmosphere and through which orifice the first fluid supply line passes, a pressure transducer immediately upstream of the orifice plate to measure the pressure drop in the fluid passing through the plate, the pressure transducer providing the measured pressure drop to a controller that is pre-programmed with flow rate values determined over a range of pressure drops for the first fluid and to control the rate of flow of the second fluid to the mixing head in response to the flow rate of the first fluid to achieve a desired flow ratio of the two fluids, in which the first fluid supply line contains a controllable on/off valve upstream of the orifice plate and pressure transducer, and in which the controllable on/off valve comprises a substantially rigid housing containing a passageway between an inlet to and an outlet from the valve, a closure member movable in the passageway from a first position in which the valve is fully closed to a second position in which the valve is fully open, the closure member engaging the wall of the passageway to seal the passageway, at least one of the wall of the passageway and the closure member defining at least one groove, the groove having a transverse cross-section that increases in area in one of the downstream and upstream directions, whereby movement of the closure member from the first position towards the second position opens a flow channel through the groove.
2. The dispensing valve system as defined in
3. The dispensing valve system as defined in
4. The dispensing valve system as defined in
0. 6. An apparatus according to claim 5, in which the at least one groove is of tapering V-shape.
0. 8. An apparatus according to claim 7, in which the grooves are of tapering V-shape.
|
|||||||||||||||||||||||||
This invention relates to an apparatus to control of the flow rates of fluids. It is particularly concerned to provide a means whereby the flow rates of two or more fluids to be mixed are controlled and is especially intended for use in the mixing of the components of a post-mix beverage.
In the dispensing of a post-mix beverage, i.e. in which the components of the beverage are mixed at the point of sale from one or more fluid components, e.g. a concentrated syrup and a diluent, usually plain or carbonated water, it is obviously desirable to provide a mixed beverage of the correct ratio of components and it is important that this ratio should not vary beyond tightly controlled limits. It is, therefore, desirable to have some means of determining the amount of each component being provided to, for example, a dispense nozzle. One way of achieving this is to determine the flow rate of each component, either by direct measurement or by calculation after measurement of another property, and to calculate the amount dispensed from a series of flow rate determinations with respect to elapsed time.
It is an object of the present invention to provide an improved means of accurately mixing fluids, particularly beverage fluid components, in a desired ratio. It is also an objet of the present invention to provide an improved means of determining fluid flow rate values.
Accordingly the invention herein provides an apparatus for the mixing of at least two fluids, which comprises a first fluid supply line connectable to a source of the first fluid, a second fluid supply line connectable to a source of the second fluid. The invention also includes a mixing head into which the two fluids can be supplied through their respective supply lines and mixed therein and dispensed there from. The first fluid supply line passes through an orifice in an orifice plate and a pressure transducer is positioned to measure the pressure drop in the fluid passing through the plate. The pressure transducer provides the measured pressure data to a controller, the controller being pre-programmed with flow rate values determined over a range of pressure drops for the first fluid and to control the rate of flow of the second fluid to the mixing head in response to the flow rate of the first fluid to achieve a desired flow ratio of the two fluids. The controller may allow flow for a predetermined time dependent on the monitored flow rates in order to achieve a specific volume of dispensed fluids.
As indicated above, the invention is particularly intended for use in the dispensing of post-mix beverages and will, therefore, be more particularly described below with particular reference to that embodiment. The mixing head may conveniently include a dispense nozzle from which the mixed beverage maybe dispensed into a suitable receptacle. The first fluid is preferably a concentrated syrup and the second fluid is preferably a diluent, e.g. plain or carbonated water. The second fluid supply line may contain any suitable flow rate measuring device e.g. a flow turbine, and this is flow rate sensor is also connected to the controller. Thus, the flow rate of the second fluid/diluent may also be monitored in addition to the pressure transducer monitoring of the first fluid/syrup. The controller is also connected to a valve in the second fluid supply line and can cause that valve to be opened to the desired amount to achieve the required flow rate for the dispense ratio for the particular beverage being dispensed.
By monitoring the second fluid rate in conjunction with that of the first fluid rate and, where necessary, adjusting the second fluid flow rate to correspond to any variations in the monitored first fluid flow rate, the ratio of the dispensed beverage can be accurately maintained at the required value. Thus any variations in the flow rate of the concentrate of a post-mix beverage, e.g. due to pressure variations in the supply line or delays in response of the on/off valve through which the concentrate is supplied, can be monitored and taken into account by rapid consequential adjustments to the diluent flow rate.
The concentrate supply line may contain a simple on/off valve to allow the concentrate to flow when a beverage dispense is signalled to the controller. The controller then causes the valve, e.g. a solenoid or diaphragm valve, to open while at the same time, or fractionally earlier, opening the on/off valve in the diluent supply line and commencing monitoring of the two flow rates. In this embodiment, therefore, the concentrate valve is either open or closed and when open it remains fully open to provide a particular nominal flow rate. The valve may have, e.g., a manual adjuster to fine tune this nominal flow rate for particular concentrates. The pressure transducer in this embodiment is essentially, therefore, providing monitoring of flow rate fluctuations above and below the nominal rate through the fully opened valve.
In another embodiment, the on/off valve in the concentrate flow line may be controllable to provide a range of flow rates of the concentrate whereby the controller maybe programmed to control dispense of a wider range of beverages based on a greater number of different concentrates that may be supplied one at a time through the first fluid supply line. In a particular preferred version of this latter embodiment, the valve in the concentrate supply line is of the type described and claimed in our international patent publication WO99/29619 (application no. PCT/GB98/03564). That international application describes and claims a valve comprising a substantially rigid housing containing a passageway between an inlet and an outlet of the valve, a closure member movable in the passageway from a first position in which the valve is fully closed to a second position in which the valve is fully open, the closure member engaging the wall of the passageway to seal the passageway, the wall of the passageway or the closure member defining at least one groove, the groove having a transverse cross-section that increases in area in the downstream or upstream direction, whereby movement of the closure member from the first position towards the second position opens a flow channel through the groove. The groove(s) may be, for example, of tapering V-shape and will, for convenience, hereafter be referred to as “V-grooves” and the valves of this general type as “V-groove valves”, although it will be appreciated that the grooves may, if desired, have a different tapering cross-section, e.g. of circular, rectangular or other shape.
The progressive increase or decrease in area of the groove flow channels can produce excellent linear flow through these V-groove valves, i.e. for a given pressure the flow rate is more directly proportional to the valve position than for conventional valves. This enables better control of the flow rate over the entire operating range of the valve. Alternatively the V-groove valve may be replaced, for example, by a solenoid, on/off valve upstream of a needle valve to provide the desired range of concentrate flow rates. The means to open and close the adjustable concentrate valve may be any suitable mechanism. A stepper motor or a linear solenoid actuator are amongst the preferred mechanisms.
The valve to control the flow of diluent may also be, if desired, a V-groove valve. Pressure transducers are well known in the art and the skilled man will readily be able to choose one suitable for his particular needs. Essentially, the pressure transducer measures fluid pressure at a particular point or surface and converts this measurement into an electrical signal. The electrical signal is fed to the control means which, therefore, is programmed to receive the pressure data in this electrical form.
The orifice plate may be positioned upstream or downstream of the on/off valve in the concentrate supply line but it is preferred that it be upstream as this arrangement, although possibly subject to static pressure variations, is less Lady to be affected by variations in flow characteristics through the orifice plate. Nevertheless, it may be desirable in certain circumstances to position the orifice plate downstream of the on/off valve and, in one such embodiment, the orifice plate may be positioned immediately before the outlet of the concentrate supply line to the mixing head. In this arrangement the plate can vent to atmosphere and the pressure transducer measures the pressure immediately upstream of the plate. However, it is preferred to measure the pressure difference across the orifice in the plate and this may be done whether the plate is positioned upstream or downstream of the on/off valve. Preferably, the positioning of the orifice plate, when not venting to a atmosphere as described above, in the supply line should be such that the supply line at the downstream side of the plate remains full of the concentrate. Thus the flow line through the plate should preferably be uphill or at least horizontal. By this means there is less likelihood of trapped air affecting the pressure measurements and hence the flow rate values.
It will be appreciated that fluid flow characteristics through the orifice plate are affected inter alia by the size of the orifice, the sharpness of the edge leading into the orifice and the thickness of the plate. In principle, the thinner the plate the better in that the fluid can then effectively be considered to be passing through a very short tube. The shorter the tube the less “re-attachment” effect of the fluid to the wall of the tube and the less undesirable effect on the flow and the flow rate measurement. Clearly too thin a plate may buckle under the fluid pressure and we have, therefore, found, that as an alternative to a very sharp orifice edge on a slightly thicker plate, which edge maybe expensive to manufacture, a chamfered edge leading into or leading out of the orifice may be usefully employed to give a predictable characteristic at the cost of slight increase in viscosity sensitivity.
Where the concentrate valve is adjustable to provide a range of concentrate flow rates, the controller may be programmed to provide a “profiled” dispense for the beverage. In other words, the initial portion of the dispense may, for example, be at a low flow rate, e.g. to prevent initial over-foaming of a carbonate beverage, and then the rate may be increased to fall for the majority of the dispense period and then reduced to a slower rate again for the final filling of the glass or other receptacle. Thus the dispense pour may be controlled to suit the particular beverage in question.
As indicated above, the controller may be programmed to dispense a number of different beverages. It may also be programmed to dispense different volumes, e.g. a small portion and a large portion, of each beverage. The controller may also be programmed to take into account viscosity changes due to temperature variations. This can be achieved by the appropriate positioning of a temperature sensor in one or each fluid supply lines so that the correct ratios of fluids can be maintained regardless of temperature variations.
A better understanding of the structure, function, objects and advantages of the of the present invention can be had by reference to the following detailed description with reference to the accompanying drawings, wherein:
As seen in
A piston 24 controlled by an actuator (not shown) completely closes passageway 20 in its fully lowered position by mating with internal walls 26 beyond the narrow end of grooves 22. As the piston is moved upwards, the valve 18 opens and the through flow of concentrate increases with increasing V-groove cross section until the fully open position illustrated is reached. Diluent flow line B passes through a regulating valve 28 and a flow turbine 30 to reach mixing head 10. A controller 32, such as a microcontroller, receives signals from the pressure transducer 16 and from flow turbine 30. It is also connected to a control panel 34 via which a range of mixed beverages may be commanded. On receiving a command for a particular beverage, controller 32 opens valve 28 to allow flow of diluent and simultaneously, or marginally later, opens valve 18 by raising piston 24 to an appropriate degree. By monitoring the flow rate of concentrate through line A and adjusting the flow rate through line B accordingly, the controller ensures that the desired ratio of fluids for the commanded beverage is maintained. It may close the valves after a predetermined time or volume has been dispensed.
In
In
One suitable form of orifice plate 90 is shown in
| Patent | Priority | Assignee | Title |
| 10473494, | Oct 24 2017 | Rain Bird Corporation | Flow sensor |
| 10634538, | Jul 13 2016 | Rain Bird Corporation | Flow sensor |
| 11380559, | Apr 09 2019 | Ebara Corporation; HIRATA CORPORATION | Carrier device, work processing apparatus, control method of carrier device and storage medium storing program |
| 11662242, | Dec 31 2018 | Rain Bird Corporation | Flow sensor gauge |
| 8344896, | Jun 03 2009 | Nestec S A | Process for detecting scale formation in a beverage preparation machine |
| Patent | Priority | Assignee | Title |
| 4125123, | May 03 1976 | INSTROMET, INC | Methods of and means for accurately measuring the calorific value of combustible gases |
| 4143255, | Sep 19 1977 | HOOPER, JOHN L | Device for detecting fluid flow |
| 4846234, | Nov 03 1987 | The Coca-Cola Company | Microgravity dispenser with agitator, metering device and cup filler |
| 4930555, | Nov 03 1987 | The Coca-Cola Company | Microgravity dispenser with agitator, metering device and cup filler |
| 4979639, | May 23 1989 | COCA-COLA COMPANY, THE | Beverage dispenser control valve and ratio control method therefor |
| 5011043, | Jun 05 1987 | The Coca-Cola Company | Post-mix beverage dispenser valve with continuous solenoid modulation |
| 5036884, | Nov 19 1990 | TYCO VALVES & CONTROLS INC | Mounting means for fluid pressure transmitters |
| 5381926, | Jun 05 1992 | The Coca-Cola Company; COCA-COLA COMPANY, THE | Beverage dispensing value and method |
| 5797519, | Mar 14 1997 | Lancer Corporation | Postmix beverage dispenser |
| 5842603, | Jun 06 1990 | COCA-COLA COMPANY, THE; Lancer Corporation | Postmix juice dispenser |
| 5899390, | Mar 29 1995 | Robert Bosch GmbH | Orifice plate, in particular for injection valves |
| 6450369, | May 08 1999 | IMI Cornelius Inc. | Beverage dispenser |
| EP266202, | |||
| GB2362873, | |||
| GB332116, | |||
| WO9929619, |
| Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
| Jul 30 2001 | SIMMONS, PHILIP ANDREW | IMI Cornelius, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 055088 | /0870 | |
| Nov 15 2005 | IMI Cornelius Inc. | (assignment on the face of the patent) | / | |||
| Jan 24 2014 | IMI Cornelius Inc | CORNELIUS, INC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 055188 | /0118 | |
| Dec 28 2020 | CORNELIUS, INC | MARMON FOODSERVICE TECHNOLOGIES, INC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 055053 | /0048 |
| Date | Maintenance Fee Events |
| Apr 24 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
| Date | Maintenance Schedule |
| May 01 2015 | 4 years fee payment window open |
| Nov 01 2015 | 6 months grace period start (w surcharge) |
| May 01 2016 | patent expiry (for year 4) |
| May 01 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
| May 01 2019 | 8 years fee payment window open |
| Nov 01 2019 | 6 months grace period start (w surcharge) |
| May 01 2020 | patent expiry (for year 8) |
| May 01 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
| May 01 2023 | 12 years fee payment window open |
| Nov 01 2023 | 6 months grace period start (w surcharge) |
| May 01 2024 | patent expiry (for year 12) |
| May 01 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |