Apparatuses for removal of volatile organic compounds in a soil formation include a microporous diffuser for injecting air and gaseous ozone as bubbles into water in the soil formation. The gaseous ozone is present at concentrations to effect removal of volatile organic compounds by the gaseous ozone reacting with the volatile organic compound(s). Injection of air and gaseous ozone is controlled by a timer to allow separation of bubbles by size. In various embodiments, a plurality of microporous diffusers may be controlled by a single timer or each of the plurality of microporous diffusers may be controlled by one of a plurality of timers.
|
0. 26. A method for remediating contaminants in a groundwater or soil formation in situ, comprising: injecting a multi-gas oxidizing agent into the groundwater or soil formation through one or more tubes such that the multi-gas oxidizing agent produces bubbles in said groundwater or soil formation that react with the contaminants and encapsulate the contaminants as vapor inside the bubbles.
0. 25. A method of treating a groundwater or soil formation in situ, comprising: injecting gaseous ozone and air through porous materials to produce bubbles in the groundwater or soil formation at concentrations sufficient to react with, and effect removal of, one or more contaminants in the groundwater or soil formation,
wherein the step of producing ozone bubbles comprises increasing a half-life of the ozone.
1. An apparatus for removal of volatile organic compounds in a soil formation comprising:
a diffuser for injecting air and gaseous ozone as bubbles into water in the soil formation, the gaseous ozone at concentrations to effect removal of volatile organic compounds by the gaseous ozone reacting with the volatile organic compounds,
wherein injection of air and gaseous ozone is controlled by a timer to allow separation of bubbles by size,
wherein the bubbles range in size from about 5 to 200 μm.
9. An apparatus for removal of volatile organic compounds in a soil formation comprising:
a plurality of diffusers for injecting air and gaseous ozone as bubbles into water in the soil formation, the gaseous ozone at concentrations to effect removal of volatile organic compounds by the gaseous ozone reacting with the volatile organic compounds,
wherein injection of air and gaseous ozone is controlled by at least one timer to allow separation of bubbles by size,
wherein the bubbles range in size from about S 5 to 200 μm.
0. 21. A method of treating a groundwater or soil formation in situ, comprising: injecting gaseous ozone and air through porous materials to produce bubbles in the groundwater or soil formation at concentrations sufficient to react with, and effect removal of, one or more contaminants in the groundwater or soil formation,
wherein the step of producing bubbles comprises producing bubbles encapsulating ozone and air to convert the contaminants from a dissolved state to a gaseous state and encapsulating the contaminants as a vapor therein.
2. The apparatus of
3. The apparatus of
4. The apparatus of
5. The apparatus of
6. The apparatus of
7. The apparatus of
a casing;
a packer disposed through the casing; and
an outlet screen coupled to the casing.
8. The apparatus of
13. The apparatus of
14. The apparatus of
15. The apparatus of
16. The apparatus of
17. The apparatus of
18. The apparatus of
a casing;
a packer disposed through the casing; and
an outlet screen coupled to the casing.
19. The apparatus of
20. The apparatus of
0. 22. The method of claim 21, wherein the bubbles encapsulating air and ozone increase a transfer rate of the contaminants from a dissolved state to a gaseous state.
0. 23. The method of claim 22 further comprising the step of decomposing the contaminants with the encapsulated air and ozone.
0. 24. The method of claim 23 wherein the step of decomposing the contaminants decomposes the contaminants at a rate that exceeds a rise time of bubble formation.
0. 27. The method of claim 26, wherein the step of injecting further comprises the step of injecting the multi-gas oxidizing agent through a slotted well screen at said groundwater or soil formation.
0. 28. The method of claim 26, wherein the step of injecting further comprises the step of injecting the multi-gas oxidizing agent through a diffuser at said groundwater or soil formation.
0. 29. The method of claim 26, wherein the multi-gas oxidizing agent comprises air and ozone.
0. 30. The method of claim 26, wherein the gaseous bubbles increase a half-life of the ozone.
0. 31. The method of claim 26, wherein the bubbles have reduced bubble sizes to increase surface area to gas volume ratios.
0. 32. The method of claim 26, wherein the bubbles have an initial bubble diameter in a range of about 5 to 200 μm.
0. 33. The method of claim 26, wherein injecting produces the bubbles encapsulating ozone and air to convert the contaminants from a dissolved state to a gaseous state.
0. 34. The method of claim 33, wherein the bubbles increase a transfer rate of the contaminants from a dissolved state to a gaseous state.
0. 35. The method of claim 34, further comprising the step of decomposing the contaminants in the encapsulated air and ozone.
0. 36. The method of claim 35, wherein the step of decomposing the contaminants comprises decomposing the contaminants at a rate that exceeds a rise time of bubble formation.
0. 37. The method of claim 26, wherein the step of injecting produces bubbles with a diameter slightly smaller than a pore size of the soil formation.
0. 38. The method of claim 26, wherein the step of injecting the multi-gas oxidizing agent further comprises injecting the multi-gas oxidizing agent through a slotted well screen surrounded with porous materials to produce bubbles.
0. 39. The method of claim 26, further comprising decomposing the contaminants in said groundwater or soil formation by ozone interaction with double bonded carbon atoms of the contaminants.
0. 40. The method of claim 26, said groundwater or soil formation containing chlorinated hydrocarbons.
0. 41. The method of claim 26, said groundwater or soil formation containing organic and/or hydrocarbon material.
0. 42. The method claim 26, wherein the step of injecting the multi-gas oxidizing agent comprises injecting aerated and ozonated water.
0. 43. The method of claim 26, further comprising intermittently agitating water in said groundwater or soil formation.
0. 44. The method of claim 26, further comprising periodically pulsing the injected multi-gas oxidizing agent.
0. 45. The method of claim 26, wherein the porous material comprises a material selected from the group consisting of PVC, HDPE porous material, sand, and gravel.
|
This application
where:
Table 2 gives Henry's Constants (Hc) for a selected number of organic compounds and the second rate constants (Rc) for the ozone radical rate of reaction. The fourth column presents the product of both Hc and Rc (RRC) as a ranking of effectiveness. In actual practice diffusion is rate-limiting, resulting in the most effective removal with PCE (tetrachloroethylene).
TABLE 2
REMOVAL RATE COEFFICIENTS FOR THE
MICROBUBBLE/OZONE PROCESS - C-SPARGE
Ozone K2
Second order
K1
Rate
Organic
Rate Constanta
Henry's
Removal
Compound
(M−1 SEC−1)
Constantb
Coefficient
Benzene
2
5.59 × 10−3
.0110
Toluene
14
6.37 × 10−3
.0890
Chlorobenzene
0.75
3.72 × 10−3
.0028
Trichloroethylene
17
9.10 × 10−3
.1540
Tetrachloroethylene
0.1
2.59 × 10−2
.026
Ethanol
.02
4.48 × 10−5
.0000008
Rc · Hc = RRC
aFrom Hoigne and Bader, 1983
bFrom EPA 540/1-86/060, Superfund Public Health Evaluation Manual
Elimination of the Need for Vapor Extraction
The need for vapor control exists when vapors of VOC's partitioned from the dissolved form into the microbubbles, reach the unsaturated zone, releasing vapors. Without reaction with a decomposing gas, such as ozone, a large mass can be transmitted in a short time, creating potential health problems near residential basement areas.
The combined extraction/decomposition process has the capacity to eliminate the need for vapor capture. If the ozone-mediated decomposition rate exceeds the vertical time-of-travel, vapors will either not be produced or their concentration will be so low as to eliminate the requirement for capture. By controlling the size of microbubbles and matching them to suitable slow rise times, the need for vapor control is eliminated.
The rise time of bubbles of different sizes was computed for water, producing the upwards gravitational velocity (Table 3). The upwards velocity provides the positive pressure to push the bubbles through the porous media, following Darcy's equation. By determining the rise rate in the field, the rise time, proportional to upwards pressure, can be calculated. The bubble size is very important. Once a bubble exceeds the pore cavity size, it is significantly retarded or trapped. Pulsing of the water phase provides a necessary boost to assure steady upwards migration and reduction of coalescence.
TABLE 3
TIME (MINUTES FOR
UPWARD
UPWARDS MIGRATION
BUBBLE
VELOCITY
(3 METERS) (Coarse
DIAMETER
IN WATER
Sand and Gravel)
10 mm
.25 m/s
19 min
2 mm
.16 m/s
30 min
.2 mm
.018 m/s
240 min
Elimination Rate of PCE Relative to Ozone Content
The reaction of ozone with tetrachloroethene (PCE) will produce degradation products of hydrochloric acid, carbon dioxide, and water. By adjusting the ozone concentration to match the dissolved PCE level, the PCE can be removed rapidly without excess ozone release to the air or release of PCE vapor into the unsaturated zone.
Accordingly, the object and purpose of the present disclosure is to provide microporous diffusers for removal of contaminants from soil and associated subsurface ground water aquifer, without applying a vacuum for extraction or relying on biodegradation processes.
Another object of the present disclosure is to provide multi-gas systems to be used in combination with the microporous diffusers to promote an efficient removal of poorly biodegradable organics, particularly dissolved chlorinated solvents, without vacuum extraction.
A further object of the present disclosure is to provide that remediation occurs by destroying organic and hydrocarbon material in place without release of contaminating vapors to the atmosphere.
The instrumentalities will be described for the purposes of illustration only in connection with certain embodiments; however, it is recognized that those persons skilled in the art may make various changes, modifications, improvements and additions on the illustrated embodiments all without departing from the spirit and scope of the present disclosure.
The present instrumentalities are directed to sparging apparatus for injection of an oxidizing gas in the form of small bubbles into aquifer regions to encourage in situ remediation of subsurface leachate plumes. In particular, microporous diffusers inject multi-gas bubbles into aquifer regions to encourage biodegradation of leachate plumes which contain biodegradable organics, or Criegee decomposition of leachate plumes containing dissolved chlorinated hydrocarbons.
Referring to
In an embodiment, as shown in
Referring to
Referring to
Spargepoint® diffusers include several unique configurations as follows:
a. A direct substitute for a well screen comprising 30% porosity, 5-50 micron channel size and resistance to flow from 1 to 3 PSI. This configuration can take high volume flow and needs a selective annular pack (sized to formation). The use of high density polyethylene or polypropylene is light-weight, rugged and inexpensive.
b. A microporous diffuser can be placed on the end of a narrow diameter pipe riser KVA 14-291. This reduces the residence time in the riser volume.
c. A shielded microporous diffuser which is injected with a hand-held or hydraulic vibratory hammer. The microporous material is molded around an internal metal (copper) perforated tubing and attached to an anchor which pulls the Spargepoint® out when the protective insertion shaft is retracted. The unit is connected to the surface with 3/16 or ¼ inch polypropylene tubing with a compression fitting.
d. A thin Spargepoint® with molded tubing can be inserted down a narrow shaft for use with push or vibratory tools with detachable points. The shaft is pushed to the depth desired, then the Spargepoint® is inserted, the shaft is pulled upwards, pulling off the detachable drive point and exposing the Spargepoint®.
e. A microporous diffuser/pump combination placed within a well screen in such a manner that bubble production and pumping is sequenced with a delay to allow separation of large bubbles from the desired fine “champagne” bubbles. The pressure from the pump is allowed to offset the formation back pressure to allow injection of the remaining fine bubbles into the formation.
In the present apparatuses an improvement comprises several new equipment designs associated with the Spargepoint® diffusers. Most important is the submittal for HDPE porous material with well fittings and pass-through design which allows individual pressure and flow control as shown in
Secondly, the push-probe points have been developed for use with pneumatic tools, instead of drilling auger insertion.
Improvements on C-Sparger®/microporous Spargepoint® diffuser. One of the major pass-through Spargepoint® problems in horizontal sparging is the even distribution of air bubbles. If an inlet is attached to the end of a screen, the pressure drops continuously as air is released from the screen. The resulting distribution of flow causes most bubbles to be produced where the connection occurs with flow alternating outwards. The end of the screen produces little or no bubbles.
To allow even distribution of bubbles, either individual Spargepoints® are bundled (spaghetti tube approach) or the Spargepoints® are constructed in a unique way which allows interval tubing connections with flow and pressure control for each Spargepoint® region within the proposed arrangement. Tubing connected to a Spargepoint® passes through the Spargepoint® internally without interfering with the function of producing small bubbles on a smooth external surface. The tubing penetration reduces the internal gas volume of the Spargepoint®, thereby reducing residence time for oxidative gases (important since ozone has a certain half-life before decomposition), and allows three to four Spargepoints® to be operated simultaneously with equal flow and pressure. Each Spargepoint® can also be programmed to pulse on a timed sequencer, saving electrical costs and allowing certain unique vertical and horizontal bubble patterns. Spargepoint® diffusers can be fitted with an F480 thread with internal bypass and compression fittings,
(1) fits standard well screen;
(2) allows individual flow/pressure control;
(3) reduces residence time; and
(4) allows for casing/sparge instead of continuous bubbler.
Use of injectable points configured as molded, 18 Inch×40 inch HDPE molded into ¼ inch pp tubing or HDPE tubing allows a smooth tube to be inserted into a push probe with a detachable point. Use of “Bullet” prepacked Spargepoint® diffusers with a KVA “hefty system” prepacked sand cylinder and bentonite cylinder placed over tubing and porous point is advantageous. Also use of a porous point reinforced with inner metal tube (perforated) to allow strength throughout tubing resists disintegration of plastic during insertion.
Use of pressure/flow headers: Rotameter/mirror: A mirror placed at an angle in a well hole to allow site of a flowmeter reading scale to a point.
It is well recognized that the effectiveness of treatment is dependent upon the uniformity of gas dispersion as it travels through the formation. A porous structure, with appropriate packing, matches the condition of the pores of the soil with thirty percent (30%) pore distribution. The dispersion of bubbles as a fluid can be checked using Darcy's equation.
The use of microporous materials in the Spargepoint® to inject gases into groundwater saturated formations has special advantages for the following reasons:
The most effective range of pore space for the diffuser material selected depends upon the nature of the unconsolidated formation to be injected. The following serves as a general guide:
The surrounding sand pack placed between the Spargepoint® and natural material to fill the zone after drilling and excavation should also be compatible in channel size to reduce coalescing of the produced bubbles.
The permeability range for fluid injection function without fracturing would follow:
Permeability is defined as a measure of the ease of movement of a gas through the soil. The ability of a porous soil to pass any fluid, including gas, depends upon its internal resistance to flow, dictated largely by the forces of attraction, adhesion, cohesion, and viscosity. Because the ratio of surface area to porosity increases as particle size decreases, permeability is often related to particle size see Table 3.
Patent | Priority | Assignee | Title |
10053966, | May 17 2016 | NANO GAS TECHNOLOGIES INC. | Nanogas flooding of subterranean formations |
9694401, | Mar 04 2013 | KERFOOT TECHNOLOGIES, INC | Method and apparatus for treating perfluoroalkyl compounds |
Patent | Priority | Assignee | Title |
1920719, | |||
2517525, | |||
2845185, | |||
2946446, | |||
3027009, | |||
3206178, | |||
3219520, | |||
3276994, | |||
3441216, | |||
3545731, | |||
3570218, | |||
3669276, | |||
3670817, | |||
3708206, | |||
3808123, | |||
3814394, | |||
3823776, | |||
3997447, | Jun 07 1974 | Composite Sciences, Inc. | Fluid processing apparatus |
4007118, | Oct 16 1975 | Cubic Corporation | Ozone oxidation of waste water |
4021347, | Jan 09 1976 | Sewage treatment system | |
4048072, | Oct 23 1975 | Schramm, Inc. | Air diffusers |
4049552, | Mar 22 1973 | ORPAT OREGON PATENT DEVELOPMENT CO , AN OREGON COPARTNERSHIP CONSISTING OF STANLEY MILLER, JOHN H ARFF, MICHAEL S MUZIKANT AND J H HAMER | Ozone generating system |
4064163, | Dec 30 1976 | RHONE POULENC NEDERLANDS B V | Process for the manufacture of aliphatic phosphonic acids |
4118447, | Jun 20 1977 | Xodar Corporation | Aerator containing a ballast charge |
4178239, | Nov 13 1974 | ATLANTIC RICHFIELD COMPANY, A CORP OF PA | Biological intermediate sewage treatment with ozone pretreatment |
4203837, | Jan 16 1976 | Process for removal of discrete particulates and solutes from liquids by foam flotation | |
4268283, | Dec 31 1979 | Cooper Cameron Corporation | Fluid control means for geothermal wells |
4298467, | Jun 06 1977 | Panlmatic Company | Water treatment system |
4310057, | May 30 1980 | C KEITH THOMPSON | Apparatus for extracting subterranean gas samples |
4351810, | Jul 09 1981 | The United States of America as represented by the Secretary of Commerce | Method for removing sulfur dioxide from a gas stream |
4360234, | Sep 20 1976 | Kennecott Utah Copper Corporation | In-situ method and apparatus for sparging gas bubbles |
4614596, | Jan 10 1985 | Apparatus and method for dissolving a gas in an aqueous stream | |
4622139, | Mar 20 1985 | Aerator device | |
4639314, | Jan 18 1985 | Fine bubble diffuser and diffuser system having filtered blow-down tube | |
4684479, | Aug 14 1985 | CAVITATION-CONTROL TECHNOLOGY, INC | Surfactant mixtures, stable gas-in-liquid emulsions, and methods for the production of such emulsions from said mixtures |
4695447, | Jul 09 1984 | DETOX INTERNATIONAL CORPORATION, 525 DUNHAM ROAD, ST CHARLES, IL , 60174, A CORP OF DE | Destruction of inorganic hazardous wastes |
4696739, | Apr 02 1984 | AQUA STRIP CORPORATION, A CORP OF NY | Water purification apparatus |
4730672, | Mar 04 1987 | MWR, INC | Method of removing and controlling volatile contaminants from the vadose layer of contaminated earth |
4780215, | Jun 08 1987 | CARLSON, IRENE L | Water purification device |
4804050, | Apr 30 1987 | K-V Associates, Inc. | Method of underground fluid sampling |
4832122, | Aug 25 1988 | The United States of America as represented by the United States | In-situ remediation system and method for contaminated groundwater |
4837153, | Aug 22 1984 | LAURENSON, JR JOHN G | Compost air injection and evacuation system with improved air control |
4838434, | Nov 15 1979 | University of Utah | Air sparged hydrocyclone flotation apparatus and methods for separating particles from a particulate suspension |
4844795, | May 13 1988 | Method and apparatus for decontaminating the aquifer of hydrocarbons | |
4849114, | Nov 25 1986 | ZIMPRO ENVIRONMENTAL, INC | Oxidation of toxic compounds in water |
4883589, | May 17 1988 | New Jersey Institute of Technology | System for removing contaminants from ground water |
4941957, | Jul 03 1984 | ZIMPRO ENVIRONMENTAL, INC | Decomposition of volatile ogranic halogenated compounds contained in gases and aqueous solutions |
4943305, | Jun 23 1988 | INDUSTRIE-ENGINEERING GMBH | Aerating apparatus for expelling volatile impurities from ground water |
4960706, | Mar 27 1989 | BAXTER INTERNATIONAL INC , A CORP OF DE | Static oxygenator for suspension culture of animal cells |
4966717, | Feb 10 1989 | Ozone injection system and method | |
4971731, | Jun 26 1989 | CARROLL INTERNATIONAL CORPORATION | Method and apparatus for generating microbubbles in froth flotation mineral concentration systems |
5006250, | Dec 04 1987 | BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, THE | Pulsing of electron donor and electron acceptor for enhanced biotransformation of chemicals |
5078921, | Oct 21 1988 | CARROLL INTERNATIONAL CORPORATION | Froth flotation apparatus |
5080805, | May 04 1988 | Helen, Houser; Stan, Houser | Method and apparatus for removing iron from well water |
5116163, | Jan 16 1990 | INDUSTRIE-ENGINEERING GMBH | Arrangement for driving out volatile impurities from ground water |
5120442, | Feb 07 1987 | Dr. Karl Thomae GmbH | Process for the simultaneous chemical and biological elimination of solid and liquid organic waste |
5122165, | Jul 10 1990 | International Environmental Systems, Inc. | Removal of volatile compounds and surfactants from liquid |
5126111, | Dec 05 1990 | 1025130 ONTARIO LIMITED | Fluid purification |
5133906, | Oct 09 1990 | APOLLO ENTERPRISES, INC | Aerator |
5160655, | Feb 27 1989 | Lever Brothers Company, Division of Conopco, Inc. | Aqueous structured liquid detergent compositions containing selected peroxygen bleach compounds |
5167806, | Jul 03 1990 | International Environmental Systems, Inc. | Gas dissolving and releasing liquid treatment system |
5178491, | Jun 19 1991 | SHAW INTELLECTUAL PROPERTY HOLDINGS, INC | Vapor-phase nutrient delivery system for in situ bioremediation of soil |
5178755, | Feb 20 1992 | ESTR Inc. | UV-enhanced ozone wastewater treatment system |
5180503, | May 10 1991 | The Board of Trustees of the Leland Stanford Junior University | In-situ vapor stripping for removing volatile organic compounds from groundwater |
5190648, | Nov 10 1988 | LARRY A RAMSAUER TRUST | Water purifying method and apparatus |
5205927, | Sep 25 1987 | Battelle Memorial Institute | Apparatus for treatment of soils contaminated with organic pollutants |
5215680, | Jul 10 1990 | Cavitation-Control Technology, Inc. | Method for the production of medical-grade lipid-coated microbubbles, paramagnetic labeling of such microbubbles and therapeutic uses of microbubbles |
5221159, | Mar 28 1990 | ENVIRONMENTAL IMPROVEMENT TECHNOLOGIES, INC ; ENVIROMENTAL IMPROVEMENT TECHNOLOGIES, INC | Subsurface contaminant remediation, biodegradation and extraction methods and apparatuses |
5227184, | Oct 30 1987 | AMERICAN WATER PURIFICATION, INC | Method for sanitizing food products |
5238437, | Feb 07 1992 | MATTEL, INC , A CORP OF DELAWARE | Bubble dispensing doll |
5246309, | May 16 1991 | NIASKI ENVIRONMENTAL CORPORATION, A NEVADA CORPORATION | System and method for decontamination of contaminated ground |
5248395, | Dec 26 1989 | UOP | Process for purifying aqueous media |
5254253, | Nov 19 1991 | Zenon Environmental Inc. | Modular shipboard membrane bioreactor system for combined wastewater streams |
5259962, | May 30 1991 | OCEANOVAC, INC | Method and apparatus for decontamination of soils and other particulate materials |
5269943, | Sep 25 1987 | BATTELLE MEMORIAL, A CORP OF OHIO | Method for treatment of soils contaminated with organic pollutants |
5277518, | Mar 28 1990 | ENVIRONMENTAL IMPROVEMENT TECHNOLOGIES, INC ; ENVIROMENTAL IMPROVEMENT TECHNOLOGIES, INC | Contaminant remediation, biodegradation and removel methods and apparatus |
5302286, | Mar 17 1992 | BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, THE, A CORP OF CA | Method and apparatus for in situ groundwater remediation |
5332333, | Jan 27 1993 | Vacuum extraction method and apparatus for removing volatile contaminants from the vadose layer of contaminated earth | |
5348664, | Oct 28 1992 | SIEMENS WATER TECHNOLOGIES CORP | Process for disinfecting water by controlling oxidation/reduction potential |
5362400, | Jul 04 1990 | Paref AB | Process for the purification of water |
5364537, | Jan 16 1991 | OTV (Omnium De Traitements Et De Valorisation) | Process for the oxidation of organic micropollutants in water using the O3 /H2 O2 combination |
5375539, | Sep 21 1992 | Efficient removal of volatile compounds from soil or water | |
5389267, | May 10 1991 | BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, THE | In-situ vapor stripping for removing volatile organic compounds from groundwater |
5398757, | Feb 22 1994 | KINDER MORGAN HOLDCO DE INC ; KINDER MORGAN, INC | Mono-well for soil sparging and soil vapor extraction |
5402848, | Apr 07 1994 | Method and apparatus for conducting environmental procedures | |
5403476, | May 29 1992 | INDUSTRIE-ENGINEERING GMBH | Arrangement for removing impurities from ground water |
5406950, | Dec 23 1993 | MALLINCKRODT MEDICAL, INC | Inhalable contrast agent |
5425598, | Aug 12 1993 | WASATCH ENVIRONMENTAL, INC | System for sparging ground water contaminants |
5427693, | Apr 16 1993 | AEROGENIX, L L C | Modular ozone water treatment apparatus and associated method |
5430228, | Feb 24 1993 | HE HOLDINGS, INC , A DELAWARE CORP ; Raytheon Company | Ozone methods for the destruction of chemical weapons |
5431286, | Jan 06 1994 | Inco Limited | Recirculating column flotation apparatus |
5451320, | Jul 10 1990 | International Environmental Systems, Inc., USA | Biological process for groundwater and wastewater treatment |
5464309, | Apr 30 1993 | Xerox Corporation | Dual wall multi-extraction tube recovery well |
5472294, | Mar 28 1990 | ENVIRONMENTAL IMPROVEMENT TECHNOLOGIES, INC | Contaminant remediation, biodegradation and volatilization methods and apparatuses |
5480549, | Jan 25 1994 | The United States of America as represented by the United States | Method for phosphate-accelerated bioremediation |
5482630, | Jun 20 1994 | Board of Regents, The University of Texas System | Controlled denitrification process and system |
5520483, | Feb 12 1993 | CITIZENS BANK OF PENNSYLVANIA | Method and system for remediation of groundwater contamination |
5525008, | Jan 11 1995 | Remediation apparatus and method for organic contamination in soil and groundwater | |
5545330, | Dec 01 1994 | Amerada Hess Corporation | Water treatment system |
5560737, | Aug 15 1995 | New Jersey Institute of Technology | Pneumatic fracturing and multicomponent injection enhancement of in situ bioremediation |
5588490, | May 31 1995 | PIEDMONT OLSEN HENSLEY, INC | Method and system to achieve two dimensional air sparging |
5609798, | Jun 07 1995 | MSP CORPORATION | High output PSL aerosol generator |
5615974, | Jan 07 1992 | Terra Vac, Inc. | Process for soil decontamination by oxidation and vacuum extraction |
5620593, | Jun 12 1996 | Multi-stage in-well aerator | |
5622450, | Mar 24 1995 | Pressure extraction process for removing soil and groundwater contaminants | |
5624635, | Jan 18 1994 | Method and apparatus for ozone treatment of soil | |
5663475, | Aug 26 1994 | The United States of America as represented by the Secretary of the Air | Reactor for oxidation of petrochemicals using ozone and hydrogen peroxide |
5664628, | May 25 1993 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Filter for subterranean wells |
5667733, | Aug 19 1992 | CLARKE ENGINEERING TECHNOLOGIES, INC | Aerosol generator and method for effecting the size of droplets dispersed thereby |
5676823, | Mar 07 1996 | Baker Hughes Incorporated; Baker Hughes, Inc | Sparger system including jet stream aerator |
5698092, | Aug 07 1995 | In-situ oxidizing zone remediation system for contaminated groundwater | |
5741427, | Mar 14 1996 | ANESYS CORP | Soil and/or groundwater remediation process |
5827485, | Jun 16 1989 | Linde Aktiengesellschaft | Reactor |
5833388, | Jul 29 1996 | HALEY AND ALDRICH, INC | Method for directing groundwater flow and treating groundwater in situ |
5851407, | Nov 26 1997 | McWong Environmental Technology | Process and apparatus for oxidation of contaminants in water |
5855775, | May 05 1995 | KERFOOT TECHNOLOGIES, INC | Microporous diffusion apparatus |
5860598, | Aug 14 1997 | Fog atomizer | |
5879108, | Jun 09 1997 | Eder Associates | Air sparging/soil vapor extraction apparatus |
5925257, | Sep 27 1996 | Method and apparatus for removing biofilm from an aqueous liquid | |
5954452, | Jul 11 1997 | GA Technologies, Inc. | In situ remediation of underground organic pollution |
5967230, | Nov 14 1997 | KENT COOPER | In situ water and soil remediation method and system |
5975800, | Jul 29 1996 | Haley & Aldrich, Inc. | Method for directing groundwater flow and treating groundwater in situ |
6007274, | May 19 1997 | GERAGHTY & MILLER, INC | In-well air stripping, oxidation, and adsorption |
6017449, | Jan 19 1995 | Container for liquid with dispersion device | |
6083403, | Nov 05 1998 | Ecolab USA Inc | Stabilized substituted aminomethane-1, 1-diphosphonic acid n-oxides and use thereof in preventing scale and corrosion |
6083407, | May 05 1995 | KERFOOT TECHNOLOGIES, INC | Microporous diffusion apparatus |
6086769, | Sep 16 1996 | COMMODORE SEPARATION TECHNOLOGIES, INC | Supported liquid membrane separation |
6136186, | Jan 31 1997 | LYNNTECH AIR SYSTEMS, LTD | Photocatalytic oxidation of organics using a porous titanium dioxide membrane and an efficient oxidant |
6139755, | Jun 14 1997 | Oxidation method, nozzle system and sewage treatment plant | |
6149819, | Mar 02 1999 | Evoqua Water Technologies LLC | Air and water purification using continuous breakpoint halogenation and peroxygenation |
6210955, | Oct 05 1994 | Gas Technology Institute | Foam transport process for in-situ remediation of contaminated soils |
6214240, | May 29 1998 | Mitsubishi Denki Kabushiki Kaisha | Method for ozone treatment using a mixture of ozone and hydrogen peroxide |
6217767, | Feb 03 1992 | Clark Environmental Services | Vacuum sparging process for treating contaminated groundwater and/or wastewater |
6221002, | Jun 26 1997 | Chemical Land Holdings, Inc. | Method to reduce hexavalent chromium in soils, sediments, industrial wastes and other contaminated materials using ascorbic acid |
6254310, | May 19 1997 | Arcadis Geraghty & Miller, Inc. | In-well air stripping and adsorption |
6283674, | May 19 1997 | Arcadis Geraghty & Miller | In-well air stripping, oxidation, and adsorption |
6284143, | May 05 1995 | KERFOOT TECHNOLOGIES, INC | Microporous diffusion apparatus |
6306296, | May 05 1995 | KERFOOT TECHNOLOGIES, INC | Groundwater and soil remediation with microporous diffusion apparatus |
6312605, | May 05 1995 | KERFOOT TECHNOLOGIES, INC | Gas-gas-water treatment for groundwater and soil remediation |
6352387, | Dec 02 1999 | ENVIRONMENTAL REMEDIATION AND FINANCIAL SERVICES LLC | Recirculation-enhanced subsurface reagent delivery system |
6357670, | May 13 1996 | Universidad de Sevilla | Stabilized capillary microjet and devices and methods for producing same |
6364162, | Jan 06 2000 | Johnson Research & Development Co. | Automatic pressurized fluid gun |
6391259, | Jun 26 1996 | Ozontech Ltd. | Ozone applications for disinfection, purification and deodorization |
6403034, | Oct 31 1995 | Aptim Intellectual Property Holdings, LLC | Method of reducing the concentration of recalcitrant organic contamination in a soil matrix |
6428694, | Nov 17 1999 | KOMEX H2O SCIENCE, INC | Solar powered environmental remediation devices |
6436285, | Dec 22 1999 | KERFOOT TECHNOLOGIES, INC | Laminated microporous diffuser |
6447676, | Dec 22 1999 | KERFOOT TECHNOLOGIES, INC | Springbox for water remediation |
6488850, | Dec 17 1996 | GLOBAL BIOSCIENCES, INC | Method and apparatus for anaerobically degrading pollutants with alkanes |
6533499, | Mar 13 2001 | Soil and groundwater remediation system | |
6582611, | Jul 06 2000 | KERFOOT TECHNOLOGIES, INC | Groundwater and subsurface remediation |
6596161, | Dec 22 1999 | KERFOOT TECHNOLOGIES, INC | Laminated microporous diffuser |
6596177, | Jun 03 1999 | REACTION 35, LLC | Method of improving the quality of diesel fuel |
6623211, | May 24 2000 | Rutgers, The State University of New Jersey | Remediation of contaminates including low bioavailability hydrocarbons |
6645450, | Mar 03 2000 | Steen Research, LLC | Method and apparatus for use of reacted hydrogen peroxide compounds in industrial process waters |
6733207, | Mar 14 2002 | Environmental remediation system and method | |
6736379, | Dec 05 1998 | NSM PACKTEC GMBH | Device for generating an aerosol |
6745815, | Mar 15 2000 | Method and apparatus for producing an oil, water, and/or gas well | |
6773609, | Oct 28 1999 | Advanced water treatment system and advanced water treatment method | |
6780329, | Dec 22 1999 | KERFOOT TECHNOLOGIES, INC | Treating an aquifer or soil formations |
6787038, | Feb 05 2002 | Cerestar Holding B.V. | Extraction of pollutants from underground water |
6805798, | May 18 2001 | KERFOOT TECHNOLOGIES, INC | Environmental remediation method and apparatus |
6818136, | Dec 05 2002 | RSS LLC | Groundwater remediation system |
6827861, | May 05 1995 | KERFOOT TECHNOLOGIES, INC | Gas-gas-water treatment system for groundwater and soil remediation |
6866781, | Jun 06 2001 | REMEDIATION TECHNOLOGIES, INC | Direct oxygen injection groundwater remediation method and system |
6872318, | May 05 1995 | KERFOOT TECHNOLOGIES, INC | Microporous diffusion apparatus |
6913251, | Feb 12 2003 | KERFOOT TECHNOLOGIES, INC | Deep well sparging |
6921477, | Apr 08 2002 | Groundwater treatment system and method | |
6984329, | Dec 22 1999 | KERFOOT TECHNOLOGIES, INC | Coated microbubbles for treating an aquifer or soil formations |
7022241, | May 05 1995 | KERFOOT TECHNOLOGIES, INC | Gas-gas-water treatment system for groundwater and soil remediation |
7033492, | Jul 06 2000 | KERFOOT TECHNOLOGIES, INC | Groundwater and subsurface remediation |
7131638, | Feb 12 2003 | KERFOOT TECHNOLOGIES, INC | Deep well sparging |
7156984, | May 18 2001 | KERFOOT TECHNOLOGIES, INC | Environmental remediation apparatus |
7208090, | Dec 23 2003 | Evoqua Water Technologies LLC | Wastewater treatment control |
7264747, | Dec 22 1999 | KERFOOT TECHNOLOGIES, INC | Coated microbubbles for treating an aquifer or soil formations |
7300039, | May 18 2001 | KERFOOT TECHNOLOGIES, INC | Environmental remediation method and apparatus |
7442313, | Aug 27 2003 | KERFOOT TECHNOLOGIES, INC | Environmental remediation method and system |
7537706, | May 05 1995 | KERFOOT TECHNOLOGIES, INC | Microporous diffusion apparatus |
20020029493, | |||
20020109247, | |||
20030029792, | |||
20030222359, | |||
20040045911, | |||
20050067356, | |||
20060243668, | |||
DE3805200, | |||
EP402158, | |||
EP546335, | |||
GB2005655, | |||
GB2185901, | |||
JP1304838, | |||
JP3267196, | |||
JP40931314, | |||
JP4171036, | |||
JP6023378, | |||
JP7178391, | |||
RE34890, | Aug 06 1981 | W L GORE & ASSOCIATES, INC | Waterproof shoe construction |
WO226640, | |||
WO235908, | |||
WO2005063367, | |||
WO9821152, | |||
WO9954258, | |||
WO9956894, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 06 2009 | KERFOOT, WILLIAM B | KERFOOT TECHNOLOGIES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 029849 | /0615 | |
Mar 06 2009 | KERFOOT TECHNOLOGIES, INC | ThinkVillage-Kerfoot, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 029849 | /0751 | |
Jul 30 2010 | Think Village-Kerfoot, LLC | (assignment on the face of the patent) | / | |||
Apr 23 2015 | ThinkVillage-Kerfoot, LLC | KERFOOT TECHNOLOGIES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035834 | /0089 |
Date | Maintenance Fee Events |
Jun 12 2013 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Aug 28 2017 | REM: Maintenance Fee Reminder Mailed. |
Feb 12 2018 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
May 08 2015 | 4 years fee payment window open |
Nov 08 2015 | 6 months grace period start (w surcharge) |
May 08 2016 | patent expiry (for year 4) |
May 08 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 08 2019 | 8 years fee payment window open |
Nov 08 2019 | 6 months grace period start (w surcharge) |
May 08 2020 | patent expiry (for year 8) |
May 08 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 08 2023 | 12 years fee payment window open |
Nov 08 2023 | 6 months grace period start (w surcharge) |
May 08 2024 | patent expiry (for year 12) |
May 08 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |