An airbag assembly is disclosed. The airbag assembly includes an inflatable cushion having a recess in its lower portion. The recess may form split sections in the lower portion of the cushion. The recess may be configured to receive a rear-facing child car seat during deployment. The airbag assembly may further include a tethering system to control deployment of the split sections of the cushion.
|
8. An airbag assembly, comprising:
an inflatable cushion having an upper portion and a lower portion and a recess formed in the lower portion, such that the inflatable cushion has split sections in its lower portion; and
a tethering system that controls deployment of the split sections of the cushion once inflated, the tethering system including a first tether having one end attached to a rear face of the cushion adjacent to the split section sections and another end attached to the rear face of the cushion above the split sections.
1. An airbag assembly, comprising:
an inflatable cushion having an upper portion and a lower portion, and a structure formed in the cushion creating a recess in the cushion, such that once inflated, the recess exists in the lower portion of the cushion forming a split section of the cushion in its lower portion,
wherein the cushion, once inflated, has a front face and a rear face and the recess extends from the front face to the rear face, and an internal tethering system configured red to control deployment of the split section of the cushion,
wherein the internal tethering system comprises a first tether segment attached adjacent to the rear face of the inflatable cushion above the split section, the first tether segment also attached adjacent to the split section and adjacent to the rear face.
0. 15. An airbag assembly, comprising:
an inflatable cushion having an upper portion and a lower portion, and a structure formed in the cushion creating a recess in the cushion, such that once inflated, the recess exists in the lower portion of the cushion forming a split section of the cushion in its lower portion,
wherein the cushion, once inflated, has a front face and a rear face and the recess extends from the front face toward the rear face but not completely through the cushion, and an internal tethering system configured to control deployment of the split section of the cushion,
wherein the internal tethering system comprises a first tether segment attached adjacent to the rear face of the inflatable cushion above the split section, the first tether segment also attached adjacent to the split section and adjacent to the rear face.
2. The airbag assembly of
3. The airbag assembly of
4. The airbag assembly of
5. The airbag assembly of
6. The airbag assembly of
7. The airbag assembly of
9. The airbag assembly of
10. The airbag assembly of
11. The airbag assembly of
12. The airbag assembly of
13. The airbag assembly of
14. The airbag assembly of
|
Notice: More than one reissue application has been filed for the reissue of U.S. Pat. No. 7,350,807. The reissue applications are U.S. patent application Ser. No. 12/750,522 (the present application), which was filed on Mar. 30, 2010, and U.S. patent application Ser. No. 12/751,026, which was filed on Mar. 31, 2010 and is a divisional of the present reissue application.
The present disclosure relates generally to the field of automotive protective systems. More specifically, the present disclosure relates to passenger airbag systems designed to minimize interaction with vehicular occupants in child car seats.
The present embodiments will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that the accompanying drawings depict only typical embodiments, and are, therefore, not to be considered to be limiting of the invention's scope, the embodiments will be described and explained with specificity and detail in reference to the accompanying drawings in which:
It will be readily understood that the components of the embodiments as generally described and illustrated in the Figures herein could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of various embodiments, as represented in the Figures, is not intended to limit the scope of the invention, as claimed, but is merely representative of various embodiments. While the various aspects of the embodiments are presented in drawings, the drawings are not necessarily drawn to scale unless specifically indicated.
The phrases “connected to,” “coupled to” and “in communication with” refer to any form of interaction between two or more entities, including mechanical, electrical, magnetic, electromagnetic, fluid, and thermal interaction. Two components may be coupled to each other even though they are not in direct contact with each other. The term “abutting” refers to items that are in direct physical contact with each other, although the items may not necessarily be attached together.
According to the embodiment depicted in
Disposed in the lower portion 106 of the cushion 102 is a recess 108 that may extend through the entire cushion 102, from its front face 110 to a rear face (not shown). Alternatively, the recess 108 may extend from the front face 110 toward the rear, but not extend completely there through. The recess 108, however, does not extend through the entire upper portion 104 of the cushion 102. The recess 108 may be created through a structure, such as stitching in the fabric of the cushion 102.
The recess 108 may be shaped to receive the upper portion of a rear-facing child car seat that is placed in the passenger seat of the vehicle 10, in order to minimize the interaction between an occupant in the child car seat and the deploying cushion 102.
The recess 108 divides the lower portion 106 of the cushion 102 into split sections 114. One of the sections is on the outboard side 14 of the vehicle 10, and the other is on the inboard 16 side of the vehicle 10. The split sections 114 are configured to minimize interaction between the cushion 102 and the head of an occupant in the rear-facing child car seat. This is accomplished by the split sections 114 deploying on either side of the child car seat, and the car seat being received by the recess 108. The deployment of the split portion 114 may optionally be controlled by a tethering system, such as an internal tethering system.
When the inflatable cushion 202 deploys, a recess (not shown in
An upper portion 204 of the inflatable cushion 202 does not have a recess disposed there through in order to provide sufficient impact protection for occupants not sitting in a child car seat 24. Furthermore, restricting the recess to the lower portion 206 may help to prevent too much penetration into the cushion 202 and possible occupant strikethrough if the recess existed in the upper portion 204 of the cushion 202.
The front face 310 may include a front panel 316 and the rear face 312 may include a rear panel 318. The panels 316, 318 may be constructed of fabric or alternative construction as known to those having skill in the art. The panels 316, 318 may be separate panels that are attached together through stitching or the like, or alternatively, may be opposite facing portions of a single fabric piece that is sewn together along its sides to form an inflatable cushion.
In a lower portion 306 of the cushion 302, a recess 308 is formed, extending from the rear panel 318 to the front panel 316. The recess 308 defines split sections 314 in the lower portion 306 of the cushion 302. The recess 308 may be formed from a structure, such as divider panels 320 that extend from the base of the cushion 302 towards the cushion top, but terminate before reaching the top, such that an upper portion 304 of the cushion 302 is not divided into split sections. The divider panels 320 may be panels that are attached to the cushion 304 through sewing, bonding, RF welding and the like, or alternatively, may be an integral part of the cushion 304 material that is folded and attached in such a manner as to form the recess 308 in the lower portion 306 of the cushion.
Top edges 322 of each of the divider panels 320 are attached to each other and merged through stitching or through alternative methods of attachment known to those having skill in the art.
The front panel 316 may span across the recess 308, interconnecting the split sections 314 in the lower portion 306 of the cushion 302, while the rear panel 318 may not span the split sections 314. Alternatively, the front panel may be shaped to allow the recess 308 to run there through, similar to the embodiment discussed in conjunction with
The divider panels 320 that define the recess 308 may be attached to the front panel 316 through various types of fastening mechanisms, such as through stitching. The top edges 322 of the divider panels 320 may also be merged through stitching to limit the recess 308 to the lower portion 306 of the cushion 302, i.e., so that the recess 308 does not extend completely through the upper portion 304 and divide the cushion 302 completely in half.
As discussed in the embodiments heretofore described, the cushion 402 has a recess (not shown) in its lower portion 406. The recess is configured to receive a portion of a rear-facing child car seat once the cushion 402 is inflated. The recess also defines split sections 414 (shown below stitching 438) in the lower portion 406 of the airbag cushion 402. In order to control the deployment of the inflating cushion 402, and particularly the inflation of the split sections 414 in the lower portion 406, the airbag assembly 400 may include a tethering system 430.
The tethering system 430 may be an internal tethering system, such that the tethers used to control the deployment of the cushion 402 are located in the interior of the cushion 402. Alternatively, tethers external to the cushion 402 could be used, or a combination of internal tethers and external tethers. Furthermore, according to other embodiments, the cushion 402 may be constructed such that no tethering system is needed.
The tethering system 430 may include a first tether 432. The first tether 432 may be internal to the airbag cushion 402 and may have a first end 434 that is attached adjacent a rear face 412 of the cushion 402. Being attached adjacent the rear face 412 indicates that the first end 434 of the first tether 432 may be attached directly to the rear face 412 through stitching, bonding, RF welding and the like, or alternatively, the first end 434 may be attached to some other structure that is next to the rear face 412 of the cushion 402. The first end 434 of the first tether 432 is attached adjacent the rear face 412 in a location above the split sections 414 disposed in the lower portion 406 of the cushion 402.
The first tether 432 has a second end 436 that is attached adjacent the rear face 414 and adjacent the split section 414. Being attached adjacent the split section 414 indicates that the second end 436 of the first tether 432 may be attached to a portion of the split section 414, or alternatively next to the split section 414, or as depicted in
Referring still to
The second tether 440 has a second end 444 that is also attached adjacent to the front face 410 and adjacent the split section 414. The second end 444 may be attached at the point where the split section 414 ends adjacent the stitching 438. Alternatively, the second end 444 may be attached to a portion of the split section 414, or next to the split section 414 as would be apparent to those having skill in the art. The second tether 440, like the first tether 432, may help control the trajectory of the deploying airbag cushion 402, particularly in keeping the bottom or lower portion 406 from bulging downward during deployment.
The tether system 430 of the airbag assembly 400 may further include a third tether 446. The third tether 446 may be internal to the inflatable cushion 402. The third tether 446 has a first end 448 that may be attached to the rear face 412 adjacent the split portion 414. The first end 448 of the third tether 446 may be attached adjacent the rear face 412 at the same location that the second end 436 of the first tether 432 is located adjacent the rear face 412.
The third tether 446 has a second end 450 that may be attached to the front face 410 adjacent the split portion 414. The second end 450 of the third tether 446 may be attached adjacent the front face 410 at the same location that the second end 444 of the second tether 440 is located adjacent the front face 410. Accordingly, the third tether 446 may interconnect the first and second tethers 432, 440. The third tether 446 may also be attached to or adjacent to the split portions 414 through stitching 438.
The first 432, second 440 and third 446 tethers may be considered first, second and third tether segments. Furthermore, the first 432, second 440 and third 446 tethers may be integrated into a single tether. For example the single tether may have a first end that is equivalent with the first end 434 of the first tether 432 and a second end that is equivalent with the first end 442 of the second tether 440. All other “ends” of each tether may be points where the single tether is attached to the front 410 or rear face 412 of the cushion 402.
Referring still to
The airbag assembly 500 may include a tethering system 530 that is of an alternative configuration from the tethering system 430 disclosed in conjunction with the embodiment described in
The first tether 532 may extend adjacent split sections 514 in a lower portion 506 of the cushion 502. The first tether 532 may be attached adjacent the split section 514 through a fastener such as stitching 538. The lower portion 506 and split section 514 of the cushion 502 is disposed below the stitching 538. Accordingly, the split section 514 of the embodiment disclosed in
The tethering systems 430, 530 and cushions 102, 202, 302, 402, 502 disclosed provide for a pocket that may receive an upper portion of a rear-facing child car seat, and the head of an occupant seated therein. By having the upper portion of the cushion not divided also provides for adequate restraint and impact protection for properly seated (in-position) occupants.
The airbags and inflatable cushions disclosed herein are examples of means for cushioning a vehicular occupant during a collision event. Furthermore, the divider panels, stitching patterns and recesses of the inflatable cushions disclosed are examples of means for dividing a lower portion of the cushioning means to permit objects such as a rear-facing child car seat to be disposed between divided sections of the cushioning means during deployment. The tethering systems disclosed herein are to be considered examples of tethering means for controlling placement of the receiving means during airbag deployment.
Without further elaboration, it is believed that one skilled in the art can use the preceding description to utilize the invention to its fullest extent. The examples and embodiments disclosed herein are to be construed as merely illustrative and not a limitation of the scope of the present invention in any way. It will be apparent to those having skill in the art that changes may be made to the details of the above-described embodiments without departing from the underlying principles of the invention. In other words, various modifications and improvements of the embodiments specifically disclosed in the description above are within the scope of the appended claims. Note that elements recited in means-plus-function format are intended to be construed in accordance with 35 U.S.C. § 112 ¶6. The scope of the invention is therefore defined by the following claims.
Schneider, David W., Choi, Changsoo, DePottey, Timothy A., Strader, Curtis W.
Patent | Priority | Assignee | Title |
10493947, | Jun 05 2012 | TRW Automotive GmbH | Adaptive knee airbag for vehicle occupant restraint device |
11066031, | Apr 04 2018 | Hyundai Mobis Co., Ltd. | Airbag device for driver's seat |
9493136, | Apr 15 2011 | TRW Vehicle Safety Systems, Inc. | Air bag with uninflated pocket |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 29 2005 | SCHNEIDER, DAVID W | Autoliv ASP, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025325 | /0535 | |
Aug 29 2005 | CHOI, CHANGSOO | Autoliv ASP, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025325 | /0535 | |
Aug 29 2005 | DEPOTTEY, TIMOTHY D | Autoliv ASP, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025325 | /0535 | |
Aug 29 2005 | STRADER, CURTIS W | Autoliv ASP, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025325 | /0535 | |
Mar 30 2010 | Autoliv ASP, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Apr 01 2012 | EXPX: Patent Reinstated After Maintenance Fee Payment Confirmed. |
May 25 2012 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 25 2012 | M1558: Surcharge, Petition to Accept Pymt After Exp, Unintentional. |
May 25 2012 | PMFP: Petition Related to Maintenance Fees Filed. |
Jul 26 2012 | PMFG: Petition Related to Maintenance Fees Granted. |
Aug 18 2015 | ASPN: Payor Number Assigned. |
Nov 13 2015 | REM: Maintenance Fee Reminder Mailed. |
Apr 01 2016 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
May 08 2015 | 4 years fee payment window open |
Nov 08 2015 | 6 months grace period start (w surcharge) |
May 08 2016 | patent expiry (for year 4) |
May 08 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 08 2019 | 8 years fee payment window open |
Nov 08 2019 | 6 months grace period start (w surcharge) |
May 08 2020 | patent expiry (for year 8) |
May 08 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 08 2023 | 12 years fee payment window open |
Nov 08 2023 | 6 months grace period start (w surcharge) |
May 08 2024 | patent expiry (for year 12) |
May 08 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |