The present invention is directed to a much safer and less expensive way of providing portable oxygen from a gas concentrator for patients who do not want to be tied to a stationary machine or restricted by present oxygen technology. The present invention involves a home liquid oxygen ambulatory system for supplying a portable supply of oxygen, where a portion of the gaseous oxygen output obtained from an oxygen concentrator is condensed into liquid oxygen. The system includes an oxygen concentrator which separates oxygen gas from the ambient air, a condenser in communication with the oxygen concentrator for receiving and liquefying the oxygen gas flow, a cryocooler associated with the condenser, and a first storage dewar in fluid communication with the condenser and adapted to store the oxygen liquefied by the condenser, the first storage dewar including means for transferring liquid oxygen from the first dewar to a second dewar for storing a quantity of oxygen suitable for moveable oxygen treatment.
|
0. 51. A process for supplying oxygen-enriched gas to a patient and to a portable storage container comprising the steps of:
generating an oxygen product utilizing a pressure swing adsorption system comprising a molecular sieve bed;
directing a first portion of the oxygen product to a patient;
directing a second portion of the oxygen product to a storage vessel; and
filling a portable storage container with a content of the storage vessel.
0. 65. A method of producing and storing liquid oxygen in an oxygen patient's residence, comprising:
providing a liquid oxygen producing apparatus;
placing the liquid oxygen producing apparatus in a location at which a user of liquid oxygen resides;
producing liquid oxygen at the location utilizing a pressure swing adsorption system comprising a molecular sieve bed which receives the ambient air as an input and provides an output of oxygen-enriched gas; and
delivering oxygen-enriched gas produced by the pressure swing adsorption system to a patient.
0. 75. A method for generating liquid oxygen in a home comprising:
generating a gaseous supply of oxygen for human consumption using a pressure swing adsorption system comprising a molecular sieve bed which receives the ambient air as an input and provides an output of the gaseous supply of oxygen;
monitoring a purity of the gaseous oxygen supply to determine if the level of purity is suitable for human consumption;
liquefying the gaseous supply of oxygen responsive to the level of purity being above a predetermined level;
storing the liquid oxygen in a first storage dewar;
transferring the liquid oxygen in the first storage dewar to a portable second storage.
0. 61. A method of filling a portable tank for portable transport by a patient with an oxygen product, the method comprising the steps of:
generating an oxygen product gas utilizing a pressure swing adsorption system comprising a molecular sieve bed which receives the ambient air as an input and provides an output of the oxygen product gas at a first pressure;
pressurizing the oxygen product gas to a second pressure subsequent to the generation, the second pressure being greater than the first pressure;
directing the oxygen product at the second pressure to a storage vessel; and
filling a portable tank of sufficient size for portability by a patient with a content of the storage vessel.
0. 41. A process for supplying oxygen-enriched gas to a patient and to a storage vessel comprising the steps of:
generating an oxygen product utilizing a pressure swing adsorption system comprising a molecular sieve bed;
directing a first portion of the oxygen product to a patient;
directing a second portion of the oxygen product to a storage vessel;
monitoring an oxygen concentration of the oxygen product; and
interrupting delivery of the second portion of the oxygen product to the storage vessel responsive to the oxygen concentration being below a predetermined value, wherein directing the first portion of the oxygen product to the patient continues while the delivery of the second portion of the oxygen product is interrupted.
0. 70. A home liquid oxygen ambulatory system for supplying an ambulatory portable supply of oxygen comprising:
a pressure swing adsorption system comprising a molecular sieve bed adapted to separate oxygen from ambient air for human consumption;
a liquefier adapted to receive oxygen from the pressure swing adsorption system and liquefying the oxygen;
a first storage dewar in fluid communication with the liquefier and adapted to store oxygen liquefied by the liquefier;
a second portable storage dewar adapted to store a quantity of oxygen suitable for ambulatory moveable oxygen treatment;
a monitor for measuring an oxygen concentration of oxygen from the pressure swing adsorption system; and
a controller receiving signals from the monitor, and adapted to terminate the liquefying of the oxygen responsive to the oxygen concentration being below a predetermined level.
0. 58. An apparatus for filling a portable tank with an oxygen product, comprising:
a pressure swing adsorption system comprising a molecular sieve bed adapted to generate oxygen-enriched gas;
a storage vessel;
an outlet flow line operatively coupled to the pressure swing adsorption system to direct at least a portion of the oxygen-enriched gas from the pressure swing adsorption system to the storage vessel;
a compressor to receive the oxygen-enriched gas from the pressure swing adsorption system from the outlet flow line, wherein the compressor is adapted to compress the portion of the oxygen-enriched gas prior to delivery to the storage vessel; and
a coupling operatively coupled to the storage vessel, wherein the coupling is adapted to be connected with a portable tank suitable for human transport to enable filling of the portable tank with a content from the storage vessel.
10. A method for generating liquid oxygen in a home from a home liquid oxygen ambulatory system having an oxygen concentrator a pressure swing adsorption system comprising a molecular sieve bed, a condenser, and cryocooler, a storage dewar and means for transferring liquid oxygen from the first dewar to a second dewar, comprising:
(a) generating a gaseous supply of oxygen using the oxygen concentrator pressure swing adsorption system which receives the ambient air as an input and provides an output of oxygen-enriched gas;
(b) splitting off at least a portion of the gaseous supply to be liquefied;
(c) cooling said supply of oxygen using the condenser and cryocooler to transform the gaseous oxygen to liquid oxygen;
(d) storing the liquid oxygen in the storage dewar;
(e) transferring the liquid oxygen in the storage dewar with the liquid oxygen transferring means to a second dewar by increasing the pressure in said first dewar for storing a quantity of liquid oxygen from which smaller quantities can be transferred for moveable oxygen treatment.
1. A home liquid oxygen ambulatory system for supplying a portable supply of oxygen, where a portion of the gaseous oxygen output obtained from an oxygen concentrator a pressure swing adsorption system is condensed into liquid oxygen, comprising:
(a) an oxygen concentrator a pressure swing adsorption system comprising a molecular sieve bed which separates oxygen gas from receives the ambient air as an input and provides an output of oxygen-enriched gas;
(b) a condenser in communication with said oxygen concentrator pressure swing adsorption system for receiving and liquefying the oxygen gas flow the output from the pressure swing adsorption system;
(c) a cryocooler associated with said condenser; and
(d) a first storage dewar in fluid communication with said condenser and adapted to store the oxygen liquefied by the condenser, the first storage dewar including means for transferring liquid oxygen from the first dewar to a second dewar for storing a quantity of oxygen suitable for moveable oxygen treatment, wherein said liquid oxygen transferring means is adapted to increase the pressure in said first dewar.
0. 48. An apparatus for providing oxygen-enriched gas to a patient in a home environment and an ambulatory environment comprising:
a pressure swing adsorption system comprising a molecular sieve bed adapted to generate oxygen-enriched gas;
a first outlet flow line operatively coupled to the pressure swing adsorption system to direct a first portion of the oxygen-enriched gas from the pressure swing adsorption system to a patient;
a storage vessel;
a second outlet flow line operatively coupled to the pressure swing adsorption system to direct a second portion of the oxygen-enriched gas from the pressure swing adsorption system to the storage vessel;
a compressor in fluid communication with the second outlet flow line, wherein the compressor is adapted to compress the second portion of oxygen-enriched gas prior to delivery to the storage vessel; and
a coupling operatively coupled to the storage vessel, wherein the coupling is adapted to be connected with a portable tank to enable filling of the portable tank from the storage vessel.
25. A method for generating liquid oxygen in a home from a home liquid oxygen ambulatory system having an oxygen concentrator a pressure swing adsorption system comprising a molecular sieve bed, a condenser, a cryocooler, a recuperator and a storage dewar, comprising:
(a) generating a gaseous supply of oxygen, which includes some trace impurities, using the oxygen concentrator pressure swing adsorption system which receives the ambient air as an input and provides an output of the gaseous supply of oxygen;
(b) splitting off at least a portion of the gaseous supply to be liquefied;
(c) cooling said supply of oxygen using the condenser and cryocooler to transform the gaseous oxygen to liquid oxygen;
(d) condensing less than all of the gaseous oxygen supply flowing into the condenser;
(e) freezing out the trace impurities of the gaseous supply of oxygen and venting the excess gaseous oxygen with said recuperator;
(f) storing the liquid oxygen in the storage dewar; and
(g) periodically removing accumulated frozen impurities on said recuperator by boiling-off any stored liquid oxygen and then flow purging the system until the system has reached room temperature.
19. A liquefier for a home liquid oxygen ambulatory system that is resistant to plugging, the home liquid oxygen ambulatory system having an oxygen concentrator a pressure swing adsorption system comprising a molecular sieve bed for delivering gaseous flow to the liquefier and a storage dewar having an inner vessel for storing liquid oxygen produced by the liquefier, comprising:
a condenser;
a refrigerating mechanism associated with said condenser;
means for communicating incoming gaseous flow from the oxygen concentrator pressure swing adsorption system which receives the ambient air as an input and provides an output of oxygen-enriched gas to the condenser, said communicating means having an inner surface with a dimension D;
means for venting gaseous flow not condensed from the inner vessel, said venting means having an outer surface with a dimension d and disposed within said communicating means; and
whereby the dimension D of the inner surface of the communicating means is significantly larger than the dimension d of the outer surface of the venting means to allow for the build-up of solid contaminants on the outer surface of the venting means without plugging up the communicating means.
0. 31. An apparatus for supplying oxygen-enriched gas to a patient in a home environment and for use in an ambulatory environment, comprising:
a compressor adapted to receive ambient air and produce compressed air;
a pressure swing adsorption system comprising a molecular sieve bed adapted to produce oxygen-enriched gas, the pressure swing adsorption system having an inlet adapted to receive the compressed air from the compressor and an outlet adapted to provide the oxygen-enriched gas;
a first outlet flow line operatively coupled to the outlet and adapted to deliver a first portion of the oxygen-enriched gas to a patient;
a second outlet flow line operatively coupled to the outlet and adapted to deliver a second portion of the oxygen-enriched gas to a storage vessel; and
a valve positioned and operable to terminate the delivery of the second portion of the oxygen-enriched gas to the storage vessel responsive to an oxygen concentration of the oxygen-enriched gas being below a predetermined value, wherein the first outlet flow line remains substantially unimpeded so as to maintain the delivery of the first portion of the oxygen-enriched gas to the patient even during termination of the second portion of the oxygen-enriched gas to the storage vessel.
2. The system of
3. The system of
4. The system of
0. 5. The system of
6. The system of
7. The system of
8. The system of
9. The system of
11. The method of
12. The method of
13. The method of
0. 14. The method of
15. The method of
16. The method of
17. The method of
18. The method of
20. The liquefier of
21. The liquefier of
22. The liquefier of
24. The liquefier of
0. 26. A generally vertically oriented, gravity assisted condenser for use with a refrigerating mechanism to liquefy gaseous oxygen in a home liquid oxygen ambulatory system, comprising:
a generally vertically oriented tubular member adapted to conduct heat axially to said refrigerating mechanism, the tubular member having a geometric center and outer and inner surfaces, at least one of said outer and inner surfaces having a plurality of generally vertically oriented flutes and convex fins adapted to increase the condensation rate per unit area by thinning the liquid film and drain the condensate to keep the condensate from flooding the condensation surfaces, wherein the flutes and convex fins are circumferentially spaced with respect to each other and not radially aligned with each other relative to the geometric center of the tubular member.
0. 27. The condenser of
0. 28. The condenser of
0. 29. The condenser of
0. 30. A generally vertically oriented, gravity assisted condenser for use with a refrigerating mechanism to liquefy gaseous oxygen in a home liquid oxygen ambulatory system, comprising:
a generally vertically oriented tubular member adapted to conduct heat axially to said refrigerating mechanism, the tubular member having outer and inner surfaces, at least one of said outer and inner surfaces includes means for enhancing the condensation rate per unit area by maintaining a small liquid film thickness on the condensation surfaces, said condensation enhancing means including a plurality of generally vertically oriented flutes and convex fins located on both said outer and inner surfaces.
0. 32. The apparatus of claim 31, wherein an oxygen concentration of the first portion of the oxygen-enriched gas is at least 80%.
0. 33. The apparatus of claim 31, further comprising an oxygen sensor adapted to sense a concentration of oxygen-enriched gas produced by the pressure swing adsorption system, wherein the valve closes to prevent delivery of the second portion of the oxygen-enriched gas to the storage vessel responsive to the oxygen sensor sensing that the oxygen concentration of the oxygen-enriched gas is below the predetermined value.
0. 34. The apparatus of claim 33, wherein the predetermined value is 88%.
0. 35. The apparatus of claim 33, wherein the oxygen sensor is operatively coupled to the second outlet flow line.
0. 36. The apparatus of claim 31, wherein the valve is positioned between the outlet of the pressure swing adsorption system and the storage vessel.
0. 37. The apparatus of claim 31, further comprising a third outlet flow line having (a) a first end operatively coupled to the outlet of the pressure swing adsorption system, and (b) a second end, wherein the first outlet flow line and the second outlet flow line are coupled to a second end of the third outlet flow line.
0. 38. The apparatus of claim 31, further comprising a product storage tank adapted to receive the oxygen-enriched gas from the pressure swing adsorption system, and wherein an outlet of the product tank corresponds to the outlet of the pressure swing adsorption system.
0. 39. The apparatus of claim 31, wherein the pressure swing adsorption system is an oxygen concentrator.
0. 40. The apparatus of claim 31, further comprising a liquefier adapted to liquefy at least a portion the second portion of the oxygen-enriched gas, and wherein the storage vessel stores the liquefied oxygen.
0. 42. The process of claim 41, wherein the oxygen product is an oxygen-enriched gas.
0. 43. The process of claim 41, wherein the predetermined value is 88%.
0. 44. The process of claim 41, further comprising:
liquefying at least a portion of the second portion of the oxygen product directed to the storage vessel; and
storing the liquefied oxygen product in the storage vessel.
0. 45. The process of claim 41, further including the step of pressurizing the second portion of the oxygen product directed to the storage vessel to a pressure greater than the pressure of the first portion of the oxygen product directed to the patient.
0. 46. The process of claim 41, wherein the pressure swing adsorption system is an oxygen concentrator.
0. 47. The process of claim 41, further including the step of transferring the oxygen product from the storage vessel to a portable storage vessel.
0. 49. The apparatus of claim 48, further comprising a liquefier adapted to liquefy at least a portion of the second portion of the oxygen-enriched gas directed to the storage vessel, and wherein the storage vessel stores the liquefied oxygen.
0. 50. That apparatus of claim 48, wherein the pressure swing adsorption system is an oxygen concentrator.
0. 52. The process of claim 51, wherein the oxygen product is an oxygen-enriched gas.
0. 53. The process of claim 51, further comprising:
liquefying at least a portion the second portion of the oxygen product directed to the storage vessel; and
storing the liquefied oxygen product in the storage vessel, and wherein filling the portable storage container includes providing the liquefied oxygen product as the content from the storage vessel to the portable storage container.
0. 54. The process of claim 51, wherein the pressure swing adsorption system is an oxygen concentrator.
0. 55. The process of claim 51, wherein the first portion of oxygen product is delivered simultaneously to the patient while the second portion of oxygen product is directed to the storage vessel.
0. 56. The process of claim 55, wherein the flow of the second portion of oxygen product is terminated if the oxygen product is measured to be below a predetermined concentration level.
0. 57. The process of claim 56, wherein the predetermined concentration level is 88%.
0. 59. The apparatus of claim 58, further comprising a liquefier adapted to liquefy at least a portion the oxygen-enriched gas directed to the storage vessel, and wherein the storage vessel stores the liquefied oxygen.
0. 60. The apparatus of claim 58, wherein the pressure swing adsorption system is an oxygen concentrator.
0. 62. The method of claim 61, further comprising:
liquefying at least a portion the oxygen product after the compressing step; and
storing the liquefied oxygen product in the storage vessel, and wherein filing the portable tank includes providing the liquefied oxygen product as the content from the storage vessel to the portable tank.
0. 63. The method of claim 61, wherein the pressure swing adsorption system is an oxygen concentrator.
0. 64. The method of claim 61 further including monitoring a purity of the oxygen product and terminating the direction of oxygen product to the storage vessel responsive to the purity being below a predetermined level.
0. 66. The method of claim 65, further including monitoring a purity of the oxygen-enriched gas to determine whether a level of purity is suitable for human consumption.
0. 67. The method of claim 65, wherein the delivering step is conducted while the liquid oxygen producing apparatus is producing the liquid oxygen.
0. 68. The method of claim 65, wherein producing the liquid oxygen is terminated responsive to an oxygen concentration level of the oxygen-enriched gas produced by the pressure swing adsorption system being below a predetermined level.
0. 69. The method of claim 65, further comprising storing the liquid oxygen in a dewar and transferring the liquid oxygen from the dewar to a portable storage device.
0. 71. The apparatus of claim 70, wherein the predetermined level of oxygen concentration is at least 88% oxygen purity.
0. 72. The apparatus of claim 70, further including a pressure inducer adapted to increase the pressure within the first dewar for facilitating in the transfer of liquid oxygen from the first dewar to the second portable dewar.
0. 73. The apparatus of claim 70, further comprising a flow line from the pressure swing adsorption system to a person so as to deliver oxygen from the pressure swing adsorption system to a patient simultaneous to the delivery of oxygen to the liquefier.
0. 74. The apparatus of claim 70 including a valve operationally controlled by the controller, wherein the valve terminates the flow of oxygen to the liquefier responsive to the oxygen concentration being below a predetermined level.
0. 76. The method of claim 75, wherein at least a portion of the gaseous supply of oxygen from the pressure swing adsorption system is delivered to a person for consumption.
|
This application is a continuation-in-part of U.S. patent application Ser. No. 08/876,970, filed Jun. 16, 1997 now U.S. Pat. No. 5,979,440.
The field of this invention relates to using an oxygen concentrator to create a portable supply of supplementary oxygen for ambulatory respiratory patients so that they can lead normal and productive lives—as the typical primary oxygen sources are too bulky to carry or require excessive power to operate.
There is a burgeoning need for home and ambulatory oxygen. Supplemental oxygen is necessary for patients suffering from lung disorders; for example, pulmonary fibrosis, sarcoidosis, or occupational lung disease. For such patients, oxygen therapy is an increasingly beneficial, life-giving development. While not a cure for lung disease, supplemental oxygen increases blood oxygenation, which reverses hypoxemia. This therapy prevents long-term effects of oxygen deficiency on organ systems—in particular, the heart, brain and kidneys. Oxygen treatment is also prescribed for Chronic Obstructive Pulmonary Disease (COPD), which afflicts about 25 million people in the U.S., and for other ailments that weaken the respiratory system, such as heart disease and AIDS. Supplemental oxygen therapy is also prescribed for asthma and emphysema.
The normal prescription for COPD patients requires supplemental oxygen flow via nasal cannula or mask twenty four hours per day. The average patient prescription is two liters per minute of high concentration oxygen to increase the oxygen level of the total air inspired by the patient from the normal 21% to about 40%. While the average oxygen flow requirement is two liters per minute, the average oxygen concentrator has a capacity of four to six liters of oxygen per minute. This extra capacity is occasionally necessary for certain patients who have developed more severe problems but they are not generally able to leave the home (as ambulatory patients) and do not require a portable oxygen supply.
There are currently three modalities for supplemental medical oxygen: high pressure gas cylinders, cryogenic liquid in vacuum insulated containers or thermos bottles commonly called “dewars,” and oxygen concentrators. Some patients require in-home oxygen only while others require in-home as well as ambulatory oxygen depending on their prescription. All three modalities are used for in-home use, although oxygen concentrators are preferred because they do not require dewar refilling or exchange of empty cylinders with full ones.
Only small high pressure gas bottles and small liquid dewars are portable enough to be used for ambulatory needs (outside the home). Either modality may be used for both in-home and ambulatory use or may be combined with an oxygen concentrator which would provide in-home use.
As we describe below, the above-described current methods and apparatus have proven cumbersome and unwieldy and there has been a long-felt need for improved means to supply the demand for portable/ambulatory oxygen.
For people who need to have oxygen but who need to operate away from an oxygen-generating or oxygen-storage source such as a stationary oxygen system (or even a portable system which cannot be easily carried), the two most prescribed options generally available to patients are: (a) to carry with them small cylinders typically in a wheeled stroller; and (b) to carry portable containers typically on a shoulder sling. Both these gaseous oxygen and liquid oxygen options have substantial drawbacks. But from a medical view, both have the ability to increase the productive life of a patient.
The major drawback of the gaseous oxygen option is that the small cylinders of gaseous oxygen can only provide gas for a short duration. Oxygen conserving devices that limit the flow of oxygen to the time of inhalation may be used. However, the conserving devices add to the cost of the service and providers have been reluctant to add it because there often is no health insurance reimbursement. Indeed, the insurance reimbursement for medical oxygen treatment appears to be shrinking.
Another drawback of the gaseous oxygen option is the source of or refill requirement for oxygen once the oxygen has been depleted from the cylinder. These small gas cylinders must be picked up and refilled by the home care provider at a specialized facility. This requires regular visits to a patient's home by a provider and a substantial investment in small cylinders for the provider because so many are left at the patient's home and refilling facility. Although it is technically possible to refill these cylinders in the patient's home using a commercial oxygen concentrator that extracts oxygen from the air, this task would typically require an on-site oxygen compressor to boost the output pressure of the concentrator to a high level in order to fill the cylinders. Additionally, attempting to compress the oxygen in pressurized canisters in the home is dangerous, especially for untrained people. This approach of course presents several safety concerns for in-home use. For example, in order to put enough of this gas in a portable container, it must typically be compressed to high pressure (˜2000 psi). Compressing oxygen from 5 psi (the typical output of an oxygen concentrator) to 2000 psi will produce a large amount of heat. (Enough to raise the temperature 165° C. per stage based on three adiabatic compression stages with intercooling.) This heat, combined with the oxygen which becomes more reactive at higher pressures, sets up a potential combustion hazard in the compressor in the patient's home. Thus, utilizing and storing a high pressure gas system in the patient's home is dangerous and not a practical solution.
The convenience and safety issues are not the only drawbacks of this compressed oxygen approach. Another drawback is that the compressors or pressure boosters needed are costly because they require special care and materials needed for high pressure oxygen compatibility. For example, a Rix Industries, Benicia, Calif., ⅓ hp unit costs about $10,000 while a Haskel International, Burbank, Calif., air-powered booster costs about $2200 in addition to requiring a compressed air supply to drive it. Litton Industries and others also make oxygen pressure boosters.
Turning now to the liquid oxygen storage option, its main drawback is that it requires a base reservoir—a stationary reservoir base unit about the size of a standard beer keg—which has to be refilled about once a week. The liquid oxygen can then be obtained from a base unit and transferred to portable dewars which can be used by ambulatory patients. Also, with the liquid oxygen option, there is substantial waste, as a certain amount of oxygen is lost during the transfer to the portable containers and from evaporation. It is estimated that 20% of the entire contents of the base cylinder will be lost in the course of two weeks because of losses in transfer and normal evaporation. These units will typically boil dry over a period of 30 to 60 days even if no oxygen is withdrawn.
There are other complications. Typically, supplemental oxygen is supplied to the patient by a home care provider, in exchange for which it receives a fixed monetary payment from insurance companies or Medicare regardless of the modality. Oxygen concentrators for use in the home are preferred and are the least expensive option for the home care provider. For outside the home use however, only small high pressure gas bottles and small liquid dewars are portable enough to be used for ambulatory needs. One of these two modalities may be used for both in-home and ambulatory use or may be combined with an oxygen concentrator which would provide in-home use. In either case, the home care provider must make costly weekly or biweekly trips to the patient's home to replenish the oxygen. One of the objects of this invention is to eliminate these costly “milk runs.”
Portable oxygen concentrators are commercially available for providing patients with gaseous oxygen. These devices are “portable” solely in the sense that they can be carried to another point of use such as in an automobile or in an airplane. At present, there are no home oxygen concentrators commercially available that can provide liquid oxygen. One type of medical oxygen concentrator takes in air and passes it through a molecular sieve bed, operating on a pressure swing adsorption cycle, which strips most of the nitrogen out, producing a stream of ˜90% oxygen, for example, as shown in U.S. Pat. Nos. 4,826,510 and 4,971,609 (which are incorporated herein by reference). While, as set out in the Information Disclosure Statement, complex oxygen liquefaction systems have been disclosed for use by the military in jet aircraft, and while large-scale commercial plants have been disclosed, this technology has not yet found its way into the home to help individual patients and to benefit the general public. A truly portable oxygen concentrator has not yet been perfected and this event is unlikely, at least in the near future, because the power requirements are too large to be provided by a lightweight battery pack.
Since liquid oxygen requires periodic delivery and home oxygen concentrators are not commercially available that would create liquid oxygen, there has existed a long-felt need for a device or method having the capability to concentrate oxygen from the air, liquefy it, and transfer it into portable dewars in a home environment, and for a home oxygen concentrator unit which allows excess flow capacity from the concentrator to be stored by either compression or liquefaction for later use.
An aspect of the present invention involves a home liquid oxygen ambulatory system for supplying a portable supply of oxygen, where a portion of the gaseous oxygen output obtained from an oxygen concentrator is condensed into liquid oxygen. The system includes an oxygen concentrator which separates oxygen gas from the ambient air, a condenser in communication with the oxygen concentrator for receiving and liquefying the oxygen gas flow, a cryocooler associated with the condenser, and a first storage dewar in fluid communication with the condenser and adapted to store the oxygen liquefied by the condenser, the first storage dewar including means for transferring liquid oxygen from the first dewar to a second dewar for storing a quantity of oxygen suitable for moveable oxygen treatment.
In an embodiment of the above aspect of the invention, the liquid oxygen transferring means is adapted to increase the pressure in the first dewar.
In a further embodiment of the above aspect of the invention, the liquid transferring means includes a heater immersed within the liquid oxygen in the first dewar.
In a still further embodiment of the above aspect of the invention, the first dewar includes an inner vessel in which the liquid oxygen reside, and liquid transferring means includes a heater attached to the outer surface of inner vessel.
In another embodiment of the above aspect of the invention, the condenser is in communication with the concentrator through a line, and the liquid transferring means includes a compressor located in the line between the condenser and the concentrator.
In an additional embodiment of the above aspect of the invention, the liquid transferring means includes a high-pressure compressor in communication with the concentrator for delivering high-pressure air thereto.
In another embodiment of the above aspect of the invention, the liquid transferring means includes a vaporizer loop associated with the first dewar.
In a further embodiment of the above aspect of the invention, the liquid transferring means includes a controllable heat leak associated with the first dewar.
In a still further embodiment of the above aspect of the invention, the liquid transferring means includes a gravity-assisted dispensing mechanism.
In an additional embodiment of the above aspect of the invention, the system further includes the second storage dewar and the second storage dewar is adapted to be filled at a pressure below 20 psig.
An additional aspect of the invention involves a home liquid oxygen ambulatory system for supplying a portable supply of oxygen, where a portion of the gaseous oxygen output obtained from an oxygen concentrator is condensed into liquid oxygen. The system includes an oxygen concentrator which separates oxygen gas from the ambient air, a condenser in communication with the oxygen concentrator for receiving and liquefying the oxygen gas flow, a cryocooler associated with the condenser, and a portable dewar adapted to interface with the condenser and adapted to store the oxygen liquefied by the condenser.
Another aspect of the present invention involves a method for generating liquid oxygen in a home from a home liquid oxygen ambulatory system having an oxygen concentrator, a condenser, and cryocooler, a storage dewar and means for transferring liquid oxygen from the first dewar to a second dewar. The method includes generating a gaseous supply of oxygen using the oxygen concentrator; splitting off at least a portion of the gaseous supply to be liquefied; cooling the supply of oxygen using the condenser and cryocooler to transform the gaseous oxygen to liquid oxygen; storing the liquid oxygen in the storage dewar; and transferring the liquid oxygen in the storage dewar with the liquid oxygen transferring means to a second dewar for storing a quantity of liquid oxygen from which smaller quantities can be transferred for moveable oxygen treatment.
In an embodiment of the above aspect of the invention, transferring the liquid oxygen includes increasing the pressure in the first dewar.
In an additional embodiment of the above aspect of the invention, the liquid transferring means includes a heater immersed within the liquid oxygen in the first dewar and transferring the liquid oxygen includes heating the liquid oxygen in the first dewar so that the pressure is increased in the first dewar.
In another embodiment of the above aspect of the invention, the first dewar includes an inner vessel in which the liquid oxygen reside, the liquid transferring means includes a heater attached to the outer surface of inner vessel, and transferring the liquid oxygen includes heating the liquid oxygen in the first dewar so that the pressure is increased in the first dewar.
In a further embodiment of the above aspect of the invention, the condenser is in communication with the concentrator through a line, and the liquid transferring means includes a compressor located in the line between the condenser and the concentrator, and transferring the liquid oxygen includes increasing the pressure of gaseous oxygen entering the condenser and the dewar with the compressor.
In a still further embodiment of the above aspect of the invention, the liquid transferring means includes a high-pressure compressor in communication with the concentrator for delivering high-pressure air thereto, and transferring the liquid oxygen includes increasing the pressure of gaseous oxygen entering the condenser and the dewar with the compressor.
In an additional embodiment of the above aspect of the invention, the liquid transferring means includes a vaporizer loop associated with the first dewar, and transferring the liquid oxygen includes heating the liquid oxygen in the first dewar with the vaporizer loop so that the pressure is increased in the first dewar.
In another embodiment of the above aspect of the invention, the liquid transferring means includes a controllable heat leak associated with the first dewar, and transferring the liquid oxygen includes heating the liquid oxygen in the first dewar so that the pressure is increased in the first dewar.
In a further embodiment of the above aspect of the invention, the liquid transferring means includes a gravity-assisted dispensing mechanism.
In a still further embodiment of the above aspect of the invention, the system further includes the second storage dewar, the second storage dewar is adapted to filled at a pressure below 20 psig.
Another aspect of the present invention involves a liquefier for a home liquid oxygen ambulatory system that is resistant to plugging. The home liquid oxygen ambulatory system includes an oxygen concentrator for delivering gaseous flow to the liquefier and a storage dewar having an inner vessel for storing liquid oxygen produced by the liquefier. The liquefier includes a condenser, a refrigerating device associated with the condenser, means for communicating incoming gaseous flow from the oxygen concentrator to the condenser, the communicating means having an inner surface with a dimension D, means for venting gaseous flow not condensed from the inner vessel, the venting means having an outer surface with an dimension d, and whereby the dimension D of the inner surface of the communicating means is significantly larger than the dimension d of the outer surface of the venting means to allow for the build-up of solid contaminants on the outer surface of the venting means without plugging up the communicating means.
In an embodiment of the above aspect of the invention, the venting means includes a recuperator comprised of a helical coil of tubing, the tubing having the outer surface with a diameter of the dimension d, whereby the incoming gas stream flows over the outer surface of the helical coil of tubing and a vent stream flows inside the helical coil of tubing.
In another embodiment of the above aspect of the invention, the outer surface of the helical coil of tubing has a cold surface to freeze out trace impurities of solid contaminants such as H2O, CO2 and hydrocarbons.
In a further embodiment of the above aspect of the invention, the communicating means is comprised of a neck tube having the inner surface with a diameter of the dimension D.
In a still further embodiment of the above aspect of the invention, the liquefier further includes a liquid withdrawal tube located central to the refrigerating device, recuperator and condenser for removing liquid oxygen from the storage dewar.
In an additional embodiment of the above aspect of the invention, the refrigerating device is integral with the condenser.
In another embodiment of the above aspect of the invention, the refrigerating device, condenser and recuperator are integral with the storage dewar.
Another aspect of the invention involves a method for generating liquid oxygen in a home from a home liquid oxygen ambulatory system having an oxygen concentrator, a condenser, a cryocooler, a recuperator and a storage dewar. The method includes generating a gaseous supply of oxygen, which includes some trace impurities, using the oxygen concentrator; splitting off at least a portion of the gaseous supply to be liquefied; cooling the supply of oxygen using the condenser and cryocooler to transform the gaseous oxygen to liquid oxygen; condensing less than all of the gaseous oxygen supply flowing into the condenser; freezing out the trace impurities of the gaseous supply of oxygen and venting the non-condensed nitrogen, argon and oxygen with the recuperator; storing the liquid oxygen in the storage dewar; and periodically removing accumulated frozen impurities on the recuperator by boiling-off any stored liquid oxygen and then flow purging the system until the system has reached room temperature.
Another aspect of the invention involves a generally vertically oriented, gravity assisted condenser for use with a refrigerating device to liquefy gaseous oxygen in a home liquid oxygen ambulatory system. The condenser includes a generally vertically oriented tubular member adapted to conduct heat axially to the refrigerating device, the tubular member having outer and inner surfaces, at least one of the outer and inner surfaces having a plurality of generally vertically oriented flutes and convex fins adapted to increase the condensation rate per unit area by thinning the liquid film and drain the condensate to keep the condensate from flooding the condensation surfaces.
In an embodiment of the above aspect of the invention, the fins have a hyperbolic cosine profile.
In an additional embodiment of the above aspect of the invention, the flutes have a profile selected from the group consisting of concave, generally V-shaped, generally rectilinear.
In another embodiment of the above aspect of the invention, the plurality of generally vertically oriented flutes and convex fins are located on both the outer and inner surfaces.
Another aspect of the invention involves a generally vertically oriented, gravity assisted condenser for use with a refrigerating device to liquefy gaseous oxygen in a home liquid oxygen ambulatory system. The condenser includes a generally vertically oriented tubular member adapted to conduct heat axially to the refrigerating device, the tubular member having outer and inner surfaces, at least one of the outer and inner surfaces includes means for enhancing the condensation rate per unit area by maintaining a small liquid film thickness on the condensation surfaces.
In an embodiment of the above aspect of the invention, the condensation enhancing means includes a plurality of generally vertically oriented flutes and convex fins.
In an additional embodiment of the above aspect of the invention, the fins have a hyperbolic cosine profile.
In a further embodiment of the above aspect of the invention, the flutes have a profile selected from the group consisting of concave, generally V-shaped, generally rectilinear.
In a still further embodiment of the above aspect of the invention, the plurality of generally vertically oriented flutes and convex fins are located on both the outer and inner surfaces.
A flow chart of the preferred embodiment of the invention is set out in
Controller 16 may be equipped with a microprocessor, adequate memory, software and ancillary equipment comprising a computer which can be used to monitor and control the operation of the system. The controller 16 may be provided with signals from liquid level sensor 17, oxygen sensor 18, pressure transducer 9, and temperature sensor 10 via lines 53, 59, 55 and 56, respectively. These signals are sensed and processed by the computer, with the controller operating valve 19, valve 25, heater 21, and cryocooler 12, in accordance with predetermined programs.
The controller also provides output indicators for the patient. The liquid level in the dewar is continuously displayed and the patient is alerted when the oxygen concentration is low and when the system is ready for them to transfer liquid to a portable dewar. A modem or wireless link may be included to enable remote monitoring of the key parameters of the system by the home care provider as well as information which is useful for repair, maintenance, billing, and statistical studies of patients for the medical oxygenation market. Key system parameters of interest include the number of liquid transfers performed, the oxygen concentration history, number of run hours on the cryocooler, and time of the last boil-dry as well as number of boil dries performed. The controller may include a computer and/or a microprocessor located either integrally with the liquefaction system claimed herein or remotely therefrom but in communication therewith using either a modem and telephone lines or with a wireless interface. The computer and/or microprocessor may include memory having a database, or may be remotely connected to a memory or database using a network. An Optimal Liquefaction Schedule for optimal operation of the liquefaction system is set out in
Dewar 14 is equipped with a dip tube 20 and heater 21. Heater 21 is used to build pressure in the dewar in order to expel liquid out the dip tube 20 when so desired. A quick disconnect valve 22 or other flow control means is located on the end of the dip tube. This allows connection of a portable LOX dewar 23, which can then be carried by the patient requiring a mobile/ambulatory supply of oxygen.
In another embodiment of this system shown in
In operation, in the preferred embodiment of
Even though 88% oxygen is adequate as supplemental oxygen therapy, if this was liquefied, as will be described below, the initial revaporized stream may have a reduced oxygen content because of the close boiling points of the components of the mixture. The temperature of the split gas stream entering the recuperator 15 is about room temperature. It is cooled to about 270 K (or colder) by the vent gas from the dewar flowing through the other side of the recuperator via line 52. The recuperator 15 reduces the load on the cryocooler by using the cold vent gas to pre-cool the oxygen-rich gas stream flowing into the condenser 13. From the recuperator 15 the high oxygen concentration stream flows through a line 57 to the condenser 13, which is cooled to ˜90 K by the cryocooler 12.
The condenser 13 provides cold surfaces to further cool and condense the flow. It is important to note that the gas passing through the condenser 13 is a mixture of oxygen, argon, and nitrogen. The normal boiling points of these components are: 90.18 K, 87.28 K, and 77.36 K respectively. Because of the close boiling points of the components of this mixture, there was initial skepticism because of the concern that all the nitrogen and argon would condense along with the oxygen. If this concern was realized, when this liquid mixture was revaporized, the lower boiling point components; i.e., nitrogen and argon, would boil off first, resulting in flow with high concentrations of nitrogen, argon and a much lower oxygen concentration than that which was supplied to the condenser—which would make the process of oxygen treatment ineffective or a failure.
This concern is explained in
Because of the aforementioned mixture problem, it is important and even critical not to let the amount of argon and nitrogen in the liquid become too high or when it is revaporized, the oxygen concentration will initially be much lower than that conventionally used in supplemental oxygen therapy (>85%). This can be accomplished by selecting the proper condenser temperature, which is a function of pressure, and by not condensing all of the incoming flow. If only part of the incoming flow (20-99%) is liquefied, the remainder of the flow will purge the vapor with higher impurity concentration from the system. A condenser temperature of about 90 K (for ˜17 psia) minimizes the amount of argon and nitrogen liquefied without overly diminishing the yield of oxygen. Hence there will be both liquid and vapor leaving the condenser. The liquid will fall into the dewar 14 and collect. The vapor which has not condensed is vented to the atmosphere through line 52 and the recuperator 15.
The amount of incoming flow liquefied is controlled by setting the mass flow rate relative to the cooling capacity of the cryocooler. The parameters of the condenser and/or cryocooler can be stored in the memory of the controller and/or computer and the controller regulating the incoming flow depending on the parameters stored and/or sensed. Having a mass flow rate which exceeds the cooling capacity of the cryocooler/condenser combination, prevents the incoming flow from being completely liquefied. The mass flow rate is controlled by the amount of flow restriction between inlet valve 19 and flow control valve 25. This includes the flow losses of the valves themselves as well as those in the recuperator, condenser, and all of the interconnecting plumbing.
The pressure in the dewar 14 is maintained slightly above ambient pressure while the cryocooler is operating by valve 25. It is desirable to keep the pressure in the condenser as high as possible because this increases the condensation temperature (as shown in
This pressure regulating function of the solenoid on-off valve 25 is accomplished by the pressure transducer 9 and controller 16. Alternately, a back pressure regulating valve (such as a Tescom BB-3 series) or a suitable servomechanism may be used in lieu of the actively controlled solenoid. Liquid keeps accumulating in the dewar 14 until the liquid level sensor 17 signals the controller that the dewar is full or until the oxygen sensor 18 signals that the oxygen concentration of fluid exiting the oxygen concentrator 11 is too low.
In the best mode, operating parameters for optimal operation of the system for the condenser should be that the condenser surface temperature should be in the range from 69.2-109.7 K and pressure should be in the range from 5-65 psia. The gas concentrations into the condenser for medical use should have oxygen in the range of 80-100%, nitrogen from 0-20%, and argon from 0-7%.
In order to transfer liquid from the dewar 14; e.g. to fill a portable LOX dewar 23, the pressure in the dewar 14 must be increased so that liquid can be forced up the dip tube 20. As shown in
With reference to
An alternative means for transferring liquid by raising the pressure in the dewar 14 includes adding a compressor 300 between the oxygen concentrator 11 and the condenser 13. The compressor 300 is preferably added in line 51, either before or after valve 19. The compressor 300 increases the pressure in the storage dewar 14 so that when the portable dewar 23 is engaged, liquid is forced up the dip tube 20 and into the portable dewar 23. An additional benefit of adding a compressor 300 at this location is that it increases the pressure during liquefication in the dewar 14, which increases the saturation temperature. An increased saturation temperature eases the cooling requirements on the cryocooler 12.
A further means for transferring liquid by raising the pressure in the dewar 14 includes using a high-pressure compressor 302 within the oxygen concentrator 11 instead of the typical low-pressure compressor. The high-pressure compressor 302 has the effect of increasing the pressure in the storage dewar 14 so that when the portable dewar 23 is engaged, liquid is forced up the dip tube 20. In addition to easing the cooling requirements on the cryocooler 12, a compressor 302 at this location slightly enhances the PSA cycle.
A still further means for transferring liquid by raising the pressure in the dewar 14 includes using a vaporizer loop 304. In this embodiment, the dewar 14 preferably remains at low pressure while liquid is being produced. When transfer of liquid out of the dewar 14 is desired, a valve 306 is opened to allow some liquid to flow into a coil 308 to be vaporized. This would increase the pressure in the dewar 14 so that liquid could be transferred to the portable dewar 23.
Another means for transferring liquid by raising the pressure in the dewar 14 includes a controllable heat leak such as a conductive strap 310 between ambient and the inner vessel of the dewar 14. When transfer of liquid out of the dewar 14 is desired, the heat leak is controlled so that heat from the ambient is transferred to the liquid, causing it to vaporize. This would increase the pressure in the dewar 14 so that liquid could be transferred to the portable dewar 23.
Another means for transferring liquid by raising the pressure in the dewar 14 includes a controllable pump 312 that is actuated when transfer of liquid out of the dewar 14 is desired.
An additional means for transferring liquid without raising the pressure in the dewar 14 includes incorporating a gravity-assisted dispensing mechanism 314 such as a controllable spigot (analogous to those used to dispense liquids from a large insulated cooler) near the bottom of the dewar 14. Unlike the alternative means for transferring liquid from the storage dewar 14 described above, which expel liquid out of the dip tube 20, the gravity-assisted dispensing mechanism eliminates the need for the dip tube 20. The gravity-assisted dispensing mechanism 314 preferably includes a quick disconnect valve 316 or other flow control means, similar to disconnect valve 22 described above, located on the end of the mechanism 314 to allow for connection of a portable dewar 23.
An additional means for transferring liquid without raising the pressure in the dewar 14 includes incorporating a portable dewar 23 adapted to be filled from a pressure less than 20 psig, which is the standard for currently available home stationary liquid dewars. For example, the portable dewar 23 may be adapted to be filled from a pressure such as 5 psig.
A further means for transferring liquid without raising the pressure in the dewar 14 involves replacing the storage dewar 14 with a specially designed portable dewar 23 such as that described above with respect to
In order to eliminate accumulation of solid water and hydrocarbons which may be supplied in trace amounts from the oxygen concentrator, the dewar 14, recuperator 15, and condenser 13 will be warmed to room temperature periodically (preferably after about 30 fillings of a portable dewar, or every two months). This procedure is accomplished most economically when the inventory of liquid in the storage dewar is low; e.g. shortly after liquid transfer and a portable dewar has been filled. In this “boil-dry” mode, valve 19 will be closed, the cryocooler 12 is turned-off, valve 25 is open, and heater 21 is energized until all the liquid has boiled-off as evidenced by, for example, the temperature sensor 10 being above 125 K. The heater will boil-off the remaining liquid in the dewar 14 and with it any trace amounts of water and hydrocarbons which are condensed and solidified in the liquid oxygen or on the cold surfaces. Once valve 19 is re-opened, the flow of concentrated oxygen gas purges and removes most of the water vapor and hydrocarbons from the liquefier. The heater 21 will remain turned on until the dewar temperature, measured by temperature sensor 10, has warmed to about 300 K. Any remaining water vapor will be flushed out by gaseous oxygen during the subsequent cooldown.
The dewpoint/frostpoint of the gas stream provided by the oxygen concentrator is below −55° C. Although the mass of water flowing into the liquefier is quite small, the ice/frost formed at such a cold temperature has a very low density and hence, can take a appreciable volume of space that can lead to plugging of the liquefier. Therefore, the design of the recuperator 15 and/or condenser 13 must be able to allow for accumulation of frost without plugging.
With reference to
Oxygen from the gaseous flow condenses into liquid oxygen at the condenser 74. The condenser 74 is shown in conjunction with a vapor compression cycle cryocooler 86 (evaporator 88, tube-in-tube heat exchanger 90, compressor 92) as its associated refrigerating mechanism. It will be readily understood by those skilled in the art that other refrigerating mechanisms may be used in conjunction with the condenser such as, but not by way of limitation, pulse tube, Stirling, etc. For example, with reference to
Excess gaseous flow not condensed becomes vent gas that is removed from the liquefier 70 via the recuperator 76. Vent gas enters the recuperator 76 through inlet 112, as shown by the arrows, flows through the helical recuperator 76 (providing the aforementioned pre-cooling) and preferably exits to the atmosphere through outlet 114.
The dewar 14 may include a central liquid withdrawal tube 116 for withdrawing liquid oxygen from the dewar 14. The central liquid withdrawal tube 116 may include an integral liquid level sensor 118 for monitoring the level of the liquid oxygen in the dewar 14. A heater 21 may be attached to the outer surface of the inner vessel of the dewar 14 to assist in transferring liquid oxygen from the dewar 14.
A getter cup 120 such as those used in commercial cryogenic dewars may be attached to the inner vessel of the dewar 14 to maintain a high vacuum in the dewar 14.
At initial start-up or after a periodic boil-dry phase, the dewar, condenser, recuperator, and all associated hardware are at room temperature and must be cooled down. This is accomplished in the “start-up” mode, where valve 19 (see
The higher density gas will have better heat transfer with the dewar walls and associated hardware. It is noted that higher flow rates will enhance the convection heat transfer but may exceed the cooling capacity. Based on the cooling characteristics of the cryocooler between room temperature and 90 K, the flow rate can be changed to minimize the cool-down time.
The dewar 14 is equipped with at least one relief valve 26 as a safety feature. Another relief valve 29 is provided and in communication with the inlet gas stream 51, before flowing into the recuperator 15. This serves as a back-up for relief valve 26 as well as providing a means to eliminate accumulated water from the recuperator 15 during periods when the cryocooler 12 is off, if valve 25 is closed. A check valve 27 is also provided to prevent backflow into the oxygen concentrator in the event of a malfunction.
For example,
Once the system attains a cool enough temperature, steady state or normal operational condense mode is used. As shown in
The transfer mode in
The double inlet pulse tube refrigerator as shown in
It is noted that with this type of cryocooler, it may be possible to remove some of the heat from the oxygen stream at a temperature warmer than Tc.
One possible geometry of the generally vertically oriented, gravity assisted condenser 13 in
In an alternative embodiment of the invention, the flutes 114 may have a profile that is other than convex such as, but not by way of limitation, generally rectilinear or generally V-shaped.
In a further embodiment of the invention, the fins 112 and flutes 114 may exist on only the exterior side 116 or interior side 118 of the condenser 110. Alternatively, the condenser 110 may have fins 112 and flutes 114 on the interior and/or the exterior and the condenser 110 is used in conjunction with another condensing device such as another condenser located within the interior 118 and/or around the exterior 116 of the condenser 110.
Prior art (U.S. Pat. Nos. 4,253,519, 4,216,819) has been limited to horizontal externally fluted tubes with purely radial conduction through the tube wall. In contrast, the condenser 110 of the present invention may include fins 112 and flutes 114 on both sides 116, 118. Also, heat is conducted axially in the condenser 110 of the present invention.
Thus, an improved home/ambulatory liquid oxygen system is disclosed. While the embodiments and applications of this invention have been shown and described, and while the best mode contemplated at the present time by the inventors has been described, it should be apparent to those skilled in the art that many more modifications are possible, including with regard to scaled-up industrial applications, without departing from the inventive concepts therein. Both product and process claims have been included and in the process claims it is understood that the sequence of some of the claims can vary and still be within the scope of this invention. The invention therefore can be expanded, and is not to be restricted except as defined in the appended claims and reasonable equivalence departing therefrom.
Hill, Charles C., Hill, Theodore B., Honkonen, Scott C., Walker, Graham, Walker, legal representative, Ann Valentine
Patent | Priority | Assignee | Title |
10130783, | Dec 04 2012 | Mallinckrodt Hospital Products IP Limited | Cannula for minimizing dilution of dosing during nitric oxide delivery |
10207068, | Oct 18 2013 | Covidien LP | Methods and systems for leak estimation |
10207069, | Mar 31 2008 | Covidien LP | System and method for determining ventilator leakage during stable periods within a breath |
10343000, | Oct 30 2015 | Oxygen concentrating self-rescuer device | |
10556082, | Dec 04 2012 | Mallinckrodt Hospital Products IP Limited | Cannula for minimizing dilution of dosing during nitric oxide delivery |
10918819, | Dec 04 2012 | Mallinckrodt Hospital Products IP Limited | Cannula for minimizing dilution of dosing during nitric oxide delivery |
11027080, | Mar 31 2008 | Covidien LP | System and method for determining ventilator leakage during stable periods within a breath |
11235114, | Oct 18 2013 | Covidien LP | Methods and systems for leak estimation |
11305135, | Oct 30 2015 | Oxygen concentrating self-rescuer device | |
11833297, | Dec 31 2011 | Covidien LP | Methods and systems for adaptive base flow and leak compensation |
11873757, | May 24 2022 | System for delivering oxygen to an internal combustion engine of a vehicle | |
8418691, | Mar 20 2009 | Covidien LP | Leak-compensated pressure regulated volume control ventilation |
8424521, | Feb 27 2009 | Covidien LP | Leak-compensated respiratory mechanics estimation in medical ventilators |
8434480, | Mar 31 2008 | Covidien LP | Ventilator leak compensation |
8448641, | Mar 20 2009 | Covidien LP | Leak-compensated proportional assist ventilation |
8746248, | Dec 12 2008 | Covidien LP | Determination of patient circuit disconnect in leak-compensated ventilatory support |
8770199, | Dec 04 2012 | MALLINCKRODT CRITICAL CARE FINANCE INC ; Therakos, Inc; MALLINCKRODT PHARMA IP TRADING DAC | Cannula for minimizing dilution of dosing during nitric oxide delivery |
8973577, | Mar 20 2009 | Covidien LP | Leak-compensated pressure regulated volume control ventilation |
8978650, | Mar 20 2009 | Covidien LP | Leak-compensated proportional assist ventilation |
9032959, | Dec 04 2012 | MALLINCKRODT CRITICAL CARE FINANCE INC ; Therakos, Inc; MALLINCKRODT PHARMA IP TRADING DAC | Cannula for minimizing dilution of dosing during nitric oxide delivery |
9421338, | Mar 31 2008 | Covidien LP | Ventilator leak compensation |
9550039, | Dec 04 2012 | MALLINCKRODT CRITICAL CARE FINANCE INC ; Therakos, Inc; MALLINCKRODT PHARMA IP TRADING DAC | Cannula for minimizing dilution of dosing during nitric oxide delivery |
9556029, | Dec 22 2008 | Koninklijke Philips Electronics N V | Liquid oxygen production device and method |
9675771, | Oct 18 2013 | Covidien LP | Methods and systems for leak estimation |
9795756, | Dec 04 2012 | MALLINCKRODT CRITICAL CARE FINANCE INC ; Therakos, Inc; MALLINCKRODT PHARMA IP TRADING DAC | Cannula for minimizing dilution of dosing during nitric oxide delivery |
9841228, | Sep 29 2009 | Koninklijke Philips N.V. | System and method for liquefying a fluid and storing the liquefied fluid |
9889269, | Sep 23 2008 | CAIRE INC | Systems and methods for generating liquid oxygen for portable use |
Patent | Priority | Assignee | Title |
1454053, | |||
1782409, | |||
1796510, | |||
1821080, | |||
1867163, | |||
1957006, | |||
2017676, | |||
2194654, | |||
2210031, | |||
2318206, | |||
2384714, | |||
2434519, | |||
2440245, | |||
2751199, | |||
2797554, | |||
2905447, | |||
2909903, | |||
2919555, | |||
2937079, | |||
2943454, | |||
2944627, | |||
2945354, | |||
2958204, | |||
2960834, | |||
2964919, | |||
2969957, | |||
2970452, | |||
2993682, | |||
3055643, | |||
3097497, | |||
3117426, | |||
3152589, | |||
3183678, | |||
3186406, | |||
3199303, | |||
3205670, | |||
3313091, | |||
3318307, | |||
3354664, | |||
3400758, | |||
3552392, | |||
3570481, | |||
3572048, | |||
3707078, | |||
3710854, | |||
3714942, | |||
3730178, | |||
3749155, | |||
3797262, | |||
3807396, | |||
3831594, | |||
3837396, | |||
3864928, | |||
3898047, | |||
3903962, | |||
3924968, | |||
3935715, | Jun 26 1974 | YORK INTERNATIONAL CORPORATION, 631 SOUTH RICHLAND AVENUE, YORK, PA 17403, A CORP OF DE | Vapor condenser for a refrigeration system |
3964866, | Sep 13 1974 | Helium reclamation | |
3983861, | Aug 21 1975 | Westman Manufacturing Company | Solar energy conversion device |
4013429, | Jun 04 1975 | Air Products and Chemicals, Inc. | Fractionation of air by adsorption |
4017284, | May 14 1973 | Cryox Corporation | Air distillation apparatus comprising regenerator means for producing oxygen |
4098303, | Sep 17 1976 | Robert Brown Associates | Vapor recovery system for loading backs and storage tanks |
4181126, | Jan 23 1978 | Cryogenic, underwater-breathing apparatus | |
4194890, | Nov 26 1976 | XORBOX CORPORATION | Pressure swing adsorption process and system for gas separation |
4194891, | Dec 27 1978 | UOP, DES PLAINES, IL , A NY GENERAL PARTNERSHIP; KATALISTIKS INTERNATIONAL, INC | Multiple bed rapid pressure swing adsorption for oxygen |
4198213, | Jan 26 1978 | The Garrett Corporation | Self adjusting oxygen enrichment system |
4211086, | Oct 11 1977 | MINNESOTA VALLEY ENGINEERING, INC , A DE CORP | Cryogenic breathing system |
4222750, | Aug 16 1976 | DEVILBISS HEALTH CARE, INC ; PFAUDEVIL HOLDINGS CO | Oxygen enrichment system for medical use |
4253519, | Jun 22 1979 | UOP, DES PLAINES, IL , A NY GENERAL PARTNERSHIP; KATALISTIKS INTERNATIONAL, INC | Enhancement for film condensation apparatus |
4263018, | Nov 26 1976 | XORBOX CORPORATION | Pressure swing adsorption process and system for gas separation |
4279127, | Mar 02 1979 | APD CRYOGENICS INC | Removable refrigerator for maintaining liquefied gas inventory |
4331455, | May 11 1979 | Osaka Oxygen Industries, Ltd. | Method of producing oxygen rich gas utilizing an oxygen concentrator having good start-up characteristics |
4349357, | Jun 23 1980 | FIRST INTERSTATE COMMERCIAL CORPORATION A CA CORP | Apparatus and method for fractionating air and other gaseous mixtures |
4360059, | Oct 01 1977 | Funke Warmeaustauscher Apparatebau KG | Tube type heat exchanger |
4404005, | Aug 18 1980 | Normalair-Garrett (Holdings) Limited | Molecular sieve type gas separation systems |
4428372, | Jul 31 1980 | NORMALAIR-GARRETT LIMITED, YEOVIL SOMERSET BA20 2YD ENGLAND | Process and apparatus for providing breathing gas |
4449990, | Sep 10 1982 | INVACARE RESPIRATORY CORP , | Method and apparatus for fractioning oxygen |
4465436, | |||
4493368, | Jun 22 1981 | Norsk Hydro A.S. | Helical flow heat exchanger having individually adjustable baffles |
4510760, | Mar 02 1984 | Messer Griesheim Industries, Inc. | Compact integrated gas phase separator and subcooler and process |
4513587, | Sep 14 1981 | Sueddeutsche Kuehlerfabrik Julius Fr. Behr GmbH & Co., KG | Evaporator particularly suitable for air conditioners in automotive vehicles |
4516424, | Jul 09 1982 | CREDITANSTALT-BANKVEREIN | Oxygen concentrator monitor and regulation assembly |
4529411, | Mar 12 1982 | Amoco Corporation | CO2 removal from high CO2 content hydrocarbon containing streams |
4542010, | Jun 30 1982 | BEND RESEARCH, INC | Method and apparatus for producing oxygen and nitrogen and membrane therefor |
4545790, | Aug 11 1983 | Bio-Care, Incorporated | Oxygen concentrator |
4552571, | Apr 05 1984 | COMMAND U S INC | Oxygen generator with two compressor stages |
4561287, | Jul 09 1982 | CREDITANSTALT-BANKVEREIN | Oxygen concentrator |
4575386, | Mar 29 1984 | U S PHILIPS CORPORATION, A CORP OF DELAWARE | Method of liquefying a gas and liquefier for carrying out the method |
4576616, | Jul 27 1982 | Proto-Med. Inc. | Method and apparatus for concentrating oxygen |
4583364, | Aug 19 1985 | Sunpower, Inc. | Piston centering method and apparatus for free-piston Stirling engines |
4587967, | Jul 09 1985 | Respironics, Inc | Oxygen enriched reciprocating piston respirator |
4591365, | Oct 15 1983 | Linde Aktiengesellschaft | Semipermeable membrane gas separation system |
4602174, | Dec 01 1983 | Sunpower, Inc. | Electromechanical transducer particularly suitable for a linear alternator driven by a free-piston stirling engine |
4610700, | Nov 04 1983 | UOP, DES PLAINES, IL , A NY GENERAL PARTNERSHIP; KATALISTIKS INTERNATIONAL, INC | Adsorbent composition useful in retarding corrosion in mufflers |
4627860, | Jul 09 1982 | COOLTEL INC | Oxygen concentrator and test apparatus |
4636226, | Aug 26 1985 | COMMAND U S INC | High pressure oxygen production system |
4640031, | Nov 12 1982 | N V W A HOEK S MACHINE | Gas cylinder identification device |
4670223, | Jan 26 1983 | Le Masne S.A. | Apparatus for producing sterile air for medical use |
4673415, | May 22 1986 | COMMAND U S INC | Oxygen production system with two stage oxygen pressurization |
4698075, | Jun 05 1986 | INTERNATIONAL OXYGEN COMPANY, INC , A CORP OF CT | Control system for fluid absorption systems and the like |
4701187, | Nov 03 1986 | Air Products and Chemicals, Inc. | Process for separating components of a gas stream |
4704146, | Jul 31 1986 | Kryos Energy Inc. | Liquid carbon dioxide recovery from gas mixtures with methane |
4706664, | Apr 11 1986 | Puritan-Bennett Corporation | Inspiration oxygen saver |
4717406, | Jul 07 1986 | Liquid Air Corporation | Cryogenic liquified gas purification method and apparatus |
4765804, | Oct 01 1986 | The BOC Group, Inc. | PSA process and apparatus employing gaseous diffusion barriers |
4822394, | Sep 14 1987 | BOW VALLEY RESOURCE SERVICES, INC , A CORP OF DE | Method and apparatus for the production and liquefaction of gases |
4826510, | Jan 13 1988 | The John Bunn Company | Portable low profile DC oxygen concentrator |
4827643, | Dec 31 1984 | AGA GAS, INC | Identification device for a container |
4841732, | Dec 28 1987 | System and apparatus for producing and storing liquid gases | |
4844059, | Jan 22 1986 | Draegerwerk AG | Method and apparatus for enriching respiratory gas with oxygen and delivering it to a patient |
4848447, | Jul 06 1983 | Tube-type heat exchanger and liquid distributor head therefor | |
4850426, | Oct 29 1987 | SGL TECHNIC | Gas/liquid heat exchanger with condensation |
4867766, | Sep 12 1988 | PRAXAIR TECHNOLOGY, INC | Oxygen enriched air system |
4869733, | May 22 1986 | OXYTECH, INC | Super-enriched oxygen generator |
4870960, | Oct 07 1985 | CARLETON LIFE SUPPORT SYSTEMS, INC | Backup breathing gas supply for an oxygen concentrator system |
4880443, | Dec 22 1988 | The United States of America as represented by the Secretary of the Air | Molecular sieve oxygen concentrator with secondary oxygen purifier |
4899810, | Oct 22 1987 | Lockheed Martin Corporation | Low pressure drop condenser/heat pipe heat exchanger |
4905685, | Apr 14 1987 | SIEMENS AKTIENGESELLSCHAFT, MUNICH, A GERMAN CORP | Inhalation anaesthesia equipment |
4922900, | May 19 1988 | Dragerwerk Aktiengesellschaft | Pumping arrangement for supplying a ventilating apparatus with breathing gas |
4948391, | May 12 1988 | Vacuum Optics Corporation of Japan | Pressure swing adsorption process for gas separation |
4957107, | May 10 1988 | DRIBMED, LTD | Gas delivery means |
4971609, | Feb 05 1990 | Portable oxygen concentrator | |
4979882, | Mar 13 1989 | WIPF, STEFAN L | Spherical rotary machine having six rotary pistons |
4983190, | May 21 1985 | Pall Corporation | Pressure-swing adsorption system and method for NBC collective protection |
4991616, | Nov 01 1988 | Desarrollos, Estudios Y Patentes, S.A. | Installation for the supply of oxygen in hospitals and the like |
5002591, | Oct 14 1988 | OXYTECH, INC | High efficiency PSA gas concentrator |
5048600, | Oct 10 1990 | T & G Technologies, Inc.; T & G TECHNOLOGIES, INC ; T & G TECHNOLOGIES INC | Condensor using both film-wise and drop-wise condensation |
5060480, | Oct 30 1990 | L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des | Process and apparatus for the liquefaction of a flow of gaseous oxygen |
5071453, | Sep 28 1989 | CARLETON LIFE SUPPORT SYSTEMS, INC | Oxygen concentrator with pressure booster and oxygen concentration monitoring |
5076823, | Mar 20 1990 | Air Products and Chemicals, Inc.; AIR PRODUCTS AND CHEMICALS, INC , A CORP OF DE | Process for cryogenic air separation |
5078757, | May 24 1989 | L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des | Process for the production of gaseous oxygen under pressure |
5144945, | Apr 20 1989 | Nippon Sanso Kabushiki Kaisha | Portable oxygen-enriching air inhaler |
5154737, | Jan 12 1990 | OXYTECH, INC | System for eliminating air leakage and high purity oxygen of a PSA oxygen concentrator |
5158584, | Oct 23 1987 | Teijin Limited | Oxygen enriching module and oxygen enriching apparatus using same |
5163297, | Jan 15 1991 | Iwatani International Corporation | Device for preventing evaporation of liquefied gas in a liquefied gas reservoir |
5163978, | Oct 08 1991 | PRAXAIR TECHNOLOGY, INC | Dual product pressure swing adsorption process and system |
5195874, | Jun 19 1990 | Tokico Ltd. | Multistage compressor |
5199423, | Feb 10 1990 | Normalair-Garrett (Holdings) Ltd. | Oxygen-rich gas breathing systems for passenger carrying aircraft |
5207806, | Oct 08 1991 | PRAXAIR TECHNOLOGY, INC | Dual product pressure swing adsorption and membrane operations |
5231835, | Jun 05 1992 | PRAXAIR TECHNOLOGY, INC | Liquefier process |
5237987, | Jun 07 1990 | NELLCOR PURITAN BENNETT, INC | Human lung ventilator system |
5248320, | Nov 11 1991 | The BOC Group plc; BOC GROUP PLC, THE | Compressing oxygen |
5271231, | Aug 10 1992 | L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des; Liquid Air Engineering Corporation | Method and apparatus for gas liquefaction with plural work expansion of feed as refrigerant and air separation cycle embodying the same |
5342176, | Apr 05 1993 | Sunpower, Inc. | Method and apparatus for measuring piston position in a free piston compressor |
5354361, | May 28 1993 | COBHAM MISSION SYSTEMS DAVENPORT LSS INC | Energy recovering pressure balance scheme for a combination pressure swing absorber with a boost compressor |
5388413, | Jan 22 1993 | Portable nitrogen source | |
5405249, | Nov 11 1992 | ULTRA ELECTRONICS LIMITED | Gas supply apparatus |
5454429, | May 18 1993 | Rods and mandrel turbulators for heat exchanger | |
5458190, | Jul 29 1986 | Showa Denko K K | Condenser |
5461859, | Sep 08 1994 | SUNPOWER, INC | Centering system with one way valve for free piston machine |
5474595, | Apr 25 1994 | CAIRE INC | Capacity control system for pressure swing adsorption apparatus and associated method |
5477689, | Sep 01 1993 | L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des | Process and installation for the production of gaseous oxygen and/or gaseous nitrogen under pressure |
5490871, | Jan 28 1994 | BOC GROUP PLC, THE | Gas separation |
5496153, | Apr 05 1993 | Sunpower, Inc. | Method and apparatus for measuring piston position in a free piston compressor |
5499623, | Feb 22 1992 | Dragerwerk AG | Gas mask and breathing equipment with liquefied respiration gas |
5525845, | Mar 21 1994 | Sunpower, Inc. | Fluid bearing with compliant linkage for centering reciprocating bodies |
5531807, | Nov 30 1994 | CAIRE INC | Apparatus and method for supplying oxygen to passengers on board aircraft |
5539188, | Dec 20 1991 | Gemplus Card International | System for the identification of containers, notably gas cylinders |
5555655, | Sep 26 1994 | AGA Ab | Identification device for a container |
5558086, | Dec 16 1992 | Freedom Air Services | Method and apparatus for the intermittent delivery of oxygen therapy to a person |
5558139, | Feb 13 1995 | SOUTHWEST BANK OF ST LOUIS | Liquid oxygen system |
5572880, | Apr 21 1995 | SCOTT TECHNOLOGIES, INC | Apparatus for providing a conditioned airflow inside a microenvironment and method |
5584194, | Oct 31 1995 | Method and apparatus for producing liquid nitrogen | |
5584669, | Apr 15 1993 | KNF Neuberger GmbH | Two-stage positive displacement pump |
5593291, | Jul 25 1995 | CITIBANK, N A , AS ADMINISTRATIVE AND COLLATERAL AGENT | Fluid pumping apparatus |
5593478, | Sep 28 1994 | CAIRE INC | Fluid fractionator |
5634517, | Jan 27 1994 | Maquet Critical Care AB | Device for reducing the relative humidity of a flowing gas |
5678536, | Sep 05 1995 | NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, REPRESENTED BY THE ADMINISTRATOR OF, UNITED STATES OF AMERICA, THE | Liquid air mixing system |
5689968, | Apr 21 1995 | SCOTT TECHNOLOGIES, INC | Apparatus for providing a conditioned airflow inside a microenvironment and method |
5697228, | Nov 17 1995 | BOC GROUP PLC, THE | Gas manufacture |
5704964, | Dec 27 1994 | Nippon Sanso Corporation | Pressure swing adsorption process |
5709203, | May 07 1992 | NIWOT TECHNOLOGIES, LLC | Self contained, cryogenic mixed gas single phase storage and delivery system and method for body cooling, gas conditioning and utilization |
5726908, | Mar 20 1995 | SCOTT TECHNOLOGIES, INC | Liquid quantity sensor and method |
5730778, | Sep 28 1994 | CAIRE INC | Fluid fractionator |
5823186, | Jun 20 1996 | DRÄGERWERK AG & CO KGAA | Respirator |
5827358, | Nov 08 1996 | Impact MST, Incorporated | Rapid cycle pressure swing adsorption oxygen concentration method and apparatus |
5858062, | Feb 10 1997 | Respironics, Inc | Oxygen concentrator |
5875783, | Apr 09 1997 | DRÄGERWERK AG & CO KGAA | Gas delivery means for respirators and anesthesia apparatus |
5893275, | Sep 04 1997 | In-x Corporation | Compact small volume liquid oxygen production system |
5893944, | Sep 30 1997 | CHUNG HO PRECISION CO , LTD | Portable PSA oxygen generator |
5901758, | Apr 30 1997 | The BOC Group, Inc. | Method of filling gas containers |
5979182, | Mar 13 1997 | Kabushiki Kaisha Kobe Seiko Sho | Method of and apparatus for air separation |
5979440, | Jun 16 1997 | Respironics, Inc | Methods and apparatus to generate liquid ambulatory oxygen from an oxygen concentrator |
5988165, | Oct 01 1997 | Invacare Corporation | Apparatus and method for forming oxygen-enriched gas and compression thereof for high-pressure mobile storage utilization |
6004378, | Mar 01 1991 | Bayer Aktiengesellschaft | Oxygen enrichment process |
6012453, | Apr 20 1995 | SCOTT TECHNOLOGIES, INC | Apparatus for withdrawal of liquid from a container and method |
6029473, | Apr 30 1998 | L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des | Process and installation for filling a reservoir under pressure |
6035894, | Jul 30 1996 | Weh GmbH Verbindungstechnik | Coupling device for rapid connection |
6079459, | Feb 11 1998 | Welding Company of America | Controller for tank-filling system |
6089226, | Nov 22 1996 | Aerospace Design & Development, Inc.; AEROSPACE DESIGN & DEVELOPMENT, INC | Self contained, cryogenic mixed gas single phase storage and delivery |
609499, | |||
6132177, | Aug 14 1997 | KULTHORN KIRBY PUBLIC COMPANY LIMITED | Two stage reciprocating compressors and associated HVAC systems and methods |
6212904, | Nov 01 1999 | Respironics, Inc | Liquid oxygen production |
621536, | |||
621537, | |||
6230516, | Feb 04 2000 | Andonian Family Nominee Trust | Apparatus for mixing a multiple constituent liquid into a container and method |
6230518, | Sep 23 1998 | Linde Aktiengesellschaft | Process and liquefier for the production of liquid air |
6289981, | May 30 1997 | Keihin Thermal Technology Corporation | Multi-bored flat tube for use in a heat exchanger and heat exchanger including said tubes |
6302107, | Oct 01 1997 | Invacare Corporation | Apparatus and method for forming oxygen-enriched gas and compression thereof for high-pressure mobile storage utilization |
6314957, | Apr 13 1999 | AIR LIQUIDE SANTE INTERNATIONAL | Portable home oxygen therapy medical equipment |
6342090, | May 16 2000 | CARLETON LIFE SUPPORT SYSTEMS, INC | Gas generating system with multi-rate charging feature |
6393802, | Dec 22 1999 | DeVilbiss Healthcare LLC | Cylinder filler for use with an oxygen concentrator |
6422237, | May 18 1999 | Dräger Medizintechnik GmbH | Respirator with a breathing circuit |
6446630, | Feb 11 1999 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Cylinder filling medical oxygen concentrator |
6513521, | May 07 1992 | NIWOT TECHNOLOGIES, LLC | Cryogenic mixed gas single phase storage and delivery |
6520176, | May 25 2000 | L AIR LIQUIDE SOCIETE ANONYME A DIRECTOIRE ET CONSEIL DE SURVEILLANCE POUR L ETUDE ET L EXPLOITATION DES PROCEDES GEORGES CLAUDE | Portable oxygen concentrator |
6530421, | Dec 16 1997 | York International Corporation | Counterflow evaporator for refrigerants |
6651658, | Aug 03 2000 | CAIRE INC | Portable oxygen concentration system and method of using the same |
665912, | |||
6681764, | Jun 16 1997 | Respironics, Inc | Methods and apparatus to generate liquid ambulatory oxygen from an oxygen concentrator |
6719019, | Jun 28 2002 | COBHAM MISSION SYSTEMS DAVENPORT LSS INC | Deployable oxygen charging system |
6805122, | Oct 01 1997 | Invacare Corporation | Oxygen conserving device utilizing a radial multi-stage compressor for high-pressure mobile storage |
6889726, | Oct 25 2002 | Invacare Corporation | Method and apparatus for filling portable high pressure cylinders with respiratory oxygen |
6904913, | Oct 24 2002 | Respironics, Inc | Method and system for delivery of therapeutic gas to a patient and for filling a cylinder |
6923180, | Oct 01 1997 | Invacare Corporation | Oxygen conserving device utilizing a radial multi-stage compressor for high-pressure mobile storage |
707633, | |||
718572, | |||
879302, | |||
881176, | |||
948835, | |||
20050072423, | |||
20050115630, | |||
20050136299, | |||
20050274142, | |||
20060000474, | |||
EP247365, | |||
19031, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 01 2006 | Respironics, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Aug 31 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
May 22 2015 | 4 years fee payment window open |
Nov 22 2015 | 6 months grace period start (w surcharge) |
May 22 2016 | patent expiry (for year 4) |
May 22 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 22 2019 | 8 years fee payment window open |
Nov 22 2019 | 6 months grace period start (w surcharge) |
May 22 2020 | patent expiry (for year 8) |
May 22 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 22 2023 | 12 years fee payment window open |
Nov 22 2023 | 6 months grace period start (w surcharge) |
May 22 2024 | patent expiry (for year 12) |
May 22 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |