An update mechanism and approach are provided for configuring a communications receiver. According to the approach, a time domain equalizer and a frequency domain equalizer in a communications receiver are dynamically updated based upon performance data that indicates the performance of a communications channel from which the communications receiver receives data. This approach accounts for changes in the communications channel attributable to changes in the transmission medium or changes in interference sources.

Patent
   RE43402
Priority
Jan 25 2001
Filed
Sep 18 2009
Issued
May 22 2012
Expiry
Jan 24 2022
Assg.orig
Entity
Large
0
15
all paid
0. 37. A method for configuring a communications receiver comprising:
updating both a time domain equalizer and a frequency domain equalizer contained in the communications receiver based upon performance of a communications channel from which the communications receiver receives data, wherein updating the frequency domain equalizer includes:
causing the frequency domain equalizer to operate with synchronization symbols;
determining an average of the synchronization symbols;
determining an updated frequency domain equalizer based upon the average of the synchronization symbols; and
determining whether a new set of time domain equalizer coefficients are used for the determined updated frequency domain equalizer and, if so, updating the frequency domain equalizer.
0. 29. A communications receiver comprising:
a time domain equalizer;
a frequency domain equalizer; and
an update mechanism configured to update both the time domain equalizer and the frequency domain equalizer based upon performance of a communications channel from which the communications receiver receives data, wherein the update mechanism is further configured to:
cause the frequency domain equalizer to operate with synchronization symbols;
determine an average of the synchronization symbols;
determine an updated frequency domain equalizer based upon the average of the synchronization symbols; and
determine whether a new set of time domain equalizer coefficients are used for the determined updated frequency domain equalizer and, if so, update the frequency domain equalizer.
0. 43. A non-transitory computer-readable medium having computer-readable instructions for configuring a communications receiver stored thereon, wherein the instructions are configured to be executed by a processor of a computing device, and wherein the instructions comprise:
instructions to update both a time domain equalizer and a frequency domain equalizer contained in the communications receiver based upon performance of a communications channel from which the communications receiver receives data, wherein instructions to update the frequency domain equalizer comprise:
instructions to cause the frequency domain equalizer to operate with synchronization symbols;
instructions to determine an average of the synchronization symbols;
instructions to determine an updated frequency domain equalizer based upon the average of the synchronization symbols; and
instructions to determine whether a new set of time domain equalizer coefficients are used for the determined updated frequency domain equalizer and, if so, updating the frequency domain equalizer.
8. An update mechanism configured to:
update both a time domain equalizer and a frequency domain equalizer in a communications receiver based upon performance of a communications channel from which the communications receiver receives data, wherein updating the time domain equalizer includes:
causing the time domain equalizer to operate with a first set of coefficients,
determining first performance data that reflects performance of the time domain equalizer when the time domain equalizer is operating with the first set of coefficients,
changing the coefficients used by the time domain equalizer so that the time domain equalizer operates with a second set of coefficients,
determining second performance data that reflects performance of the time domain equalizer when the time domain equalizer is operating with the second set of coefficients,
selecting for use by the time domain equalizer, based upon the first performance data and the second performance data, either the first set of coefficients or the second set of coefficients,
if the first set of coefficients is selected for use, then changing the coefficients used by the time domain equalizer so that the time domain equalizer operates with the first set of coefficients, and
if the second set of coefficients is selected for use, then causing the time domain equalizer to continue to operate with the second set of coefficients.
15. A method for configuring a communications receiver comprising:
updating both a time domain equalizer and a frequency domain equalizer contained in the communications receiver based upon performance of a communications channel from which the communications receiver receives data, wherein updating the time domain equalizer includes:
causing the time domain equalizer to operate with a first set of coefficients,
determining first performance data that reflects performance of the time domain equalizer when the time domain equalizer is operating with the first set of coefficients,
changing the coefficients used by the time domain equalizer so that the time domain equalizer operates with a second set of coefficients,
determining second performance data that reflects performance of the time domain equalizer when the time domain equalizer is operating with the second set of coefficients,
selecting for use by the time domain equalizer, based upon the first performance data and the second performance data, either the first set of coefficients or the second set of coefficients,
if the first set of coefficients is selected for use, then changing the coefficients used by the time domain equalizer so that the time domain equalizer operates with the first set of coefficients, and
if the second set of coefficients is selected for use, then causing the time domain equalizer to continue to operate with the second set of coefficients.
1. A communications receiver comprising:
a time domain equalizer;
a frequency domain equalizer; and
an update mechanism configured to update both the time domain equalizer and the frequency domain equalizer based upon performance of a communications channel from which the communications receiver receives data, wherein updating the time domain equalizer includes:
causing the time domain equalizer to operate with a first set of coefficients,
determining first performance data that reflects performance of the time domain equalizer when the time domain equalizer is operating with the first set of coefficients,
changing the coefficients used by the time domain equalizer so that the time domain equalizer operates with a second set of coefficients,
determining second performance data that reflects performance of the time domain equalizer when the time domain equalizer is operating with the second set of coefficients,
selecting for use by the time domain equalizer, based upon the first performance data and the secondperformance data, either the first set of coefficients or the second set of coefficients,
if the first set of coefficients is selected for use, then changing the coefficients used by the time domain equalizer so that the time domain equalizer operates with the first set of coefficients, and
if the second set of coefficients is selected for use, then causing the time domain equalizer to continue to operate with the second set of coefficients.
22. A non-transitory computer-readable medium having computer-readable instructions for configuring a communications receiver stored thereon, wherein the instructions are configured to be executed by a processor of a computing device, and wherein the computer-readable medium carrying instructions which, when processed by one or more processors, cause comprise:
updating instructions to update both a time domain equalizer and a frequency domain equalizer contained in the communications receiver based upon performance of a communications channel from which the communications receiver receives data, wherein updating instructions to update the time domain equalizer includes comprise:
causing instructions to cause the time domain equalizer to operate with a first set of coefficients,;
determining instructions to determine first performance data that reflects performance of the time domain equalizer when the time domain equalizer is operating with the first set of coefficients,;
changing the instructions to change coefficients used by the time domain equalizer so that the time domain equalizer operates with a second set of coefficients.;
determining instructions to determine second performance data that reflects performance of the time domain equalizer when the time domain equalizer is operating with the second set of coefficients,;
selecting instructions to select for use by the time domain equalizer, based upon the first performance data and the second performance data, either the first set of coefficients or the second set of coefficients,;
if the first set of coefficients is selected for use, then changing instructions to change the coefficients used by the time domain equalizer so that the time domain equalizer operates with the first set of coefficients,; and
if the second set of coefficients is selected for use, then causing instructions to cause the time domain equalizer to continue to operate with the second set of coefficients.
2. The communications receiver as recited in claim 1, wherein the update mechanism is further configured to determine the first and second performance data based upon synchronization symbols received by the communications receiver.
3. The communications receiver as recited in claim 1, wherein the communications receiver is a digital subscriber line communications receiver.
4. The communications receiver as recited in claim 1, wherein the communications receiver is part of a discrete multitone communications system.
5. The communications receiver as recited in claim 1, wherein:
the first performance data reflects one or more signal to noise ratios of data received by the communications receiver when the time domain equalizer is operating with the first set of coefficients; and
the second performance data reflects one or more signal to noise ratios of data received by the communications receiver when the time domain equalizer is operating with the second set of coefficients.
6. The communications receiver as recited in claim 1, wherein:
the communications receiver uses an initial bit allocation; and
the update mechanism is further configured to
determine an updated bit allocation based upon the first and second performance data, and
cause the communications receiver to use the updated bit allocation.
7. The communications receiver as recited in claim 1, wherein the update mechanism is further configured to perform gain adjustments on tones based upon the first and second performance data.
9. The update mechanism as recited in claim 8, wherein the update mechanism is further configured to determine the first and second performance data based upon synchronization symbols received by the communications receiver.
10. The update mechanism as recited in claim 8, wherein the communications receiver is a digital subscriber line communications receiver.
11. The update mechanism as recited in claim 8, wherein the communications receiver is part of a discrete multitone communications system.
12. The update mechanism as recited in claim 8, wherein:
the first performance data reflects one or more signal to noise ratios of data received by the communications receiver when the time domain equalizer is operating with the first set of coefficients; and
the second performance data reflects one or more signal to noise ratios of data received by the communications receiver when the time domain equalizer is operating with the second set of coefficients.
13. The update mechanism as recited in claim 8, wherein:
the communications receiver uses an initial bit allocation; and
the update mechanism is further configured to
determine an updated bit allocation based upon the first and second performance data, and
cause the communications receiver to use the updated bit allocation.
14. The update mechanism as recited in claim 8, wherein the update mechanism is further configured to perform gain adjustments on tones based upon the first and second performance data.
16. The method as recited in claim 15, further comprising determining the first and second performance data based upon synchronization symbols received by the communications receiver.
17. The method as recited in claim 15, wherein the communications receiver is a digital subscriber line communications receiver.
18. The method as recited in claim 15, wherein the communications receiver is part of a discrete multitone communications system.
19. The method as recited in claim 15, wherein:
the first performance data reflects one or more signal to noise ratios of data received by the communications receiver when the time domain equalizer is operating with the first set of coefficients; and
the second performance data reflects one or more signal to noise ratios of data received by the communications receiver when the time domain equalizer is operating with the second set of coefficients.
20. The method as recited in claim 15, wherein:
the communications receiver uses an initial bit allocation; and
the method further comprises
determining an updated bit allocation based upon the first and second performance data, and
causing the communications receiver to use the updated bit allocation.
21. The method as recited in claim 15, further comprising performing gain adjustments on tones based upon the first and second performance data.
23. The computer-readable medium as recited in claim 22, wherein the computer-readable instructions further comprising one or more additional comprise instructions which, when processed by the one or more processors, cause determining to determine the first and second performance data based upon synchronization symbols received by the communications receiver.
24. The computer-readable medium as recited in claim 22, wherein the communications receiver is a digital subscriber line communications receiver.
25. The computer-readable medium as recited in claim 22, wherein the communications receiver is part of a discrete multitone communications system.
26. The computer-readable medium as recited in claim 22, wherein:
the first performance data reflects one or more signal to noise ratios of data received by the communications receiver when the time domain equalizer is operating with the first set of coefficients; and
the second performance data reflects one or more signal to noise ratios of data received by the communications receiver when the time domain equalizer is operating with the second set of coefficients.
27. The computer-readable medium as recited in claim 22, wherein:
the communications receiver uses an initial bit allocation; and
the computer-readable medium further comprises one or more additional instructions which, when processed by the one or more processors, causes instructions further comprise:
determining instructions to determine an updated bit allocation based upon the first and second performance data, and
causing instructions to cause the communications receiver to use the updated bit allocation.
28. The computer-readable medium as recited in claim 22, wherein the computer-readable instructions further comprises one or more additional comprise instructions which, when processed by the one or more processors, causes performing to perform gain adjustments on tones based upon the first and second performance data.
0. 30. The communications receiver as recited in claim 29, wherein the update mechanism is further configured to perform gain adjustments on tones based upon the new set of time domain equalizer coefficients.
0. 31. The communications receiver as recited in claim 29, wherein determining whether the new set of time domain equalizer coefficients are used comprises conducting a threshold test.
0. 32. The communications receiver as recited in claim 31, wherein the threshold test is based on a normal approximation.
0. 33. The communications receiver as recited in claim 31, wherein the threshold test is based on signal to noise ratio determinations.
0. 34. The communications receiver as recited in claim 29, wherein updating the frequency domain equalizer further includes determining whether a current set of time domain equalizer coefficients are used and, if so, updating the frequency domain equalizer.
0. 35. The communications receiver as recited in claim 29, wherein the communications receiver is a digital subscriber line communications receiver.
0. 36. The communications receiver as recited in claim 29, wherein the communications receiver is part of a discrete multitone communications system.
0. 38. The method as recited in claim 37, wherein updating the frequency domain equalizer further includes performing gain adjustments on tones based upon the new set of time domain equalizer coefficients.
0. 39. The method as recited in claim 37, wherein determining whether the new set of time domain equalizer coefficients are used comprises conducting a threshold test.
0. 40. The method as recited in claim 39, wherein the threshold test is based on a normal approximation.
0. 41. The method as recited in claim 39, wherein the threshold test is based on signal to noise ratio determinations.
0. 42. The method as recited in claim 37, wherein updating the frequency domain equalizer further includes determining whether a current set of time domain equalizer coefficients are used and, if so, updating the frequency domain equalizer.
0. 44. The computer-readable medium as recited in claim 43, wherein updating the frequency domain equalizer further comprises determining whether a current set of time domain equalizer coefficients are used and, if so, updating the frequency domain equalizer.

This application an

The signal received by receiver 104 y(t) is the sum of the output of communications channel 106 x(t) and an additive noise signal w(t), given by
y(t)=x(t)+w(t)  (2)

where the additive noise signal w(t) consists of any form of interference introduced by communications channel 106, for example crosstalk, and an additive white Gaussian noise component.

A differential amplifier and receive filters 118 process the received signal y(t) to generate an amplified and filtered (to remove undesired components) signal y(t). An analog-to-digital converter 120 samples the amplified and filtered signal y(t) to generate a digital signal y(n) which at this point is still modulated. It should be pointed out that y(n) is not strictly a sampled version of y(t) due to the processing of receive filters 120 which modify the signal, but is represented as such herein for the purposes of explanation.

A time domain equalizer 122 processes the digital signal y(n) in the time domain to remove ISI and recover the transmitted modulated data z(n). The modulated data z(n) is processed by a serial to parallel converter 124 and then by a demodulator 126, e.g., via an FFT, to generate recovered source data 130, which ideally very closely approximates source data 108. Transmitter 102 and receiver 104 may include other components not included here for purposes of explanation, for example, an encoder and decoder, respectively.

For purposes of explanation, the process of modulation, transmission and demodulation may be described mathematically as follows. Let the lth transmitted symbol be c1. This is a vector consisting of N complex numbers: c1=(c1k)k=0N-1. For ADSL applications, N=256 downstream and N=32 upstream. Each component C1k is a point in a constellation of 2bk points. From c1, a vector d1=(d1k)k=0M-1 containing M=2N points is created having Hermitian symmetry. That is, d1O and d1N are real numbers, and d1,M-k=d1k* for 1≦k≦N−1. In ADSL applications, d1O=d1N=0 and d1k=gkc1k for 1≦k≦N−1. The real factor gk is a fine gain factor used to equalize bit error rates between tones. Modulation is achieved by taking the inverse FFT of d1. This creates the real vector x1 with components

x lr = 1 M M - 1 k = 0 d lk exp ( 2 π ⅈrk M )

Note that x1r is periodic in r, with period M. The transmitted analog signal is created by passing the vector (x1r)r=−cM-1 through a parallel to serial converter and digital to analogue converter:

x ( t ) = l M - 1 r = - c x lr p ( t - ( r + c ) T - ( M + c ) lT )

Through the periodicity of x1r, the first c samples in a block are equal to the last C an effect known as a cyclic prefix. For ADSL applications, c=32 downstream and c=4upstream. Also, 1/T=2.208 MHz upstream and 1/T=276 kHz downstream. The transmitted pulse shape p(t) includes the effect of any transmit filters.

According to the ADSL standard, data is grouped into frames. Each frame is encoded into a DMT symbol, modulated and transmitted. A synchronization symbol is transmitted after every 68 frames of data. The combination of the 68 frames of data and the synchronization symbol is known as a superframe. The synchronization symbol (sk)k=0N-1 is obtained from a pseudo-random sequence and does not change from one superframe to the next superframe. The fine gain factors are not applied to the synchronization symbol.

At the receiver, the received signal is filtered and sampled to create the discrete time signal yt, which is filtered by the time domain equalizer (TDEQ) to produce zt. If the TDEQ coefficients are φ0 . . . φp then

z t = p n = 1 φ n y t - n .
The signal ztis split into blocks of length M+c, possibly with a timing offset θ: Zms=Zθ+(s+c)+(M+c)m for −c≦s≦M. The first c samples are removed and the remainder demodulated by taking an FFT:

Z mk = M - 1 s = 0 Z m s exp ( - 2 πⅈks M ) .

The frequency domain equalizer (FDEQ) re-maps this demodulated symbol by multiplying Zmk by a complex number Fk. The result is input to a decoder to retrieve the transmitted data.

As briefly indicated herein, the approach generally involves updating a time domain equalizer and a frequency domain equalizer based upon communications channel performance data. The communications channel performance data is described hereinafter in accordance with an embodiment of the invention in the context of using synchronization symbols to evaluate the performance of the communications channel. The synchronization symbols may be used with “real” data, or with training data, depending upon the requirements of a particular application. The invention, however, is not limited to the use of synchronization symbols and any approach may be used to determine the performance of the communications channel and then adjust the time domain and frequency domain equalizers based upon the performance of the communications channel.

A synchronization symbol is data that is known to the receiver and transmitted over the communications channel with other data. Since the synchronization symbol is known to the receiver, the receiver can determine the performance of the communications channel.

FIG. 2 is a flow diagram 200 of an approach for updating time domain and frequency domain equalizers according to an embodiment of the invention. In step 202, an average of the synchronization symbols is determined. In step 204, an updated frequency domain equalizer 128 is determined based upon the average of the synchronization symbols. In step 206, the equalization matrix for time domain equalizer 122 is determined. In step 208, new coefficients are determined for time domain equalizer 122. In step 210, the signal to noise ratios are determined 210. In step 212, a determination is made which equalizer is to be used, e.g., staying with the existing equalizer coefficients, or implementing the new equalizer coefficients. In step 214, the time domain and frequency domain equalizers are updated if appropriate. In step 216, any necessary bit swaps and fine gain adjustments are made as appropriate. Each of these steps is described in more detail hereinafter.

A. Determine Average of Synchronization Symbols

For a block of n consecutive superframes, let Umk be the kth tone in the mth demodulated synchronization symbol (prior to frequency domain equalization) in this block. The synchronization symbols are averaged to obtain

U _ k = 1 n n m = 1 U mk

B. Determine Updated Frequency Domain Equalizer

Let Sk be the transmitted point on the kth tone in the synchronization symbol. Let Fk=Skk and multiply by Fk on the kth tone to perform the frequency domain equalization. It may be necessary to perform further scaling before decoding to compensate for the fine gain factors and any other constellation scaling performed by transmitter 102.

C. Calculate the Time Domain Equalization Matrix

Let the number of time domain equalizer taps be p+1. Let φ1O, . . . φ1p be the current set of coefficients for time domain equalizer 122 and let (Φ1k)k=0M-1 be the frequency response of time domain equalizer 122, where (Φ1k)k=0M-1 is the M point FFT of φ1O, . . . φ1p. Ak=Ūk1k and the inverse FFT are determined to obtain the real sequence

a t = ( 1 / M ) M - 1 k = 0 A k exp ( 2 πⅈtk / M ) .
Let (ymt)t=−cM-1 be the mth synchronization symbol prior to equalization. Thus

u mt = p j = 0 φ 1 j y t - j
is the equalized mth synchronization symbol prior to demodulation, and Umk is the FFT of umt. The (p+1)×(p+1) equalization matrix is determined with entries

G kl = 1 n n m = 1 M - 1 t = 0 ( y m , t - k - a t - k ) ( y m , t - l - a t - l ) , 0 k , l p

D. Determine New Time Domain Equalizer

The new equalizer coefficients are computed to minimize the quadratic form φ′Gφ under the constraint φO=1. If the matrix G is partitioned as

G = [ r f f F ]
where r is a scalar, ƒ is p×1 and F is p×p, then the new equalizer is φ2=(1,ζ′)′ where ζ solves Fζ=−ƒ. The time domain equalizer coefficients may also be re-scaled by multiplying by a constant. This does not affect the signal to noise ratios.

E. Determine the Signal to Noise Ratios When Using the Current and New Time Domain Equalizers

According to one embodiment of the invention, the SNRs are determined when using the current and new time domain equalizers so that a determination can be made whether to continue using the current set of time domain equalizer coefficients or switch to the new set of coefficients. This involves determining the SNR when using a time domain equalizer with the current coefficients and determining the SNR when using a time domain equalizer with the new coefficients. Consider a second block of n consecutive superframes. Using the current equalizer φ1, let Umk be the kth tone on the mth demodulated synchronization symbol as before. Calculate

U _ k = 1 n n m = 1 U mk and V k = 1 n n m = 1 U mk - U _ k 2 .

The signal to noise ratios under the current equalizer are SNR1k=|Ūk|2/Vk. To calculate the signal to noise ratios under the new equalizer, let (ymt)t=−cM-1 be the mth synchronization symbol prior to equalization. Filter ymt by φ2 to obtain

w mt = p j = 0 φ 2 j y m , t - j .
Then demodulate wmt to obtain

W mk = M - 1 t - 0 w mt exp ( - 2 πⅈkt / M ) .

Calculate

W _ k = 1 n n m = 1 W mk and X k = 1 n n m = 1 W mk - W _ k 2 .
The signal to noise ratios under the new equalizer are SNR2k=| Wk|2/Xk.

F. Determine Whether to Use the New Equalizer

Once the SNRs have been determined for the current and new sets of equalizer coefficients, a determination is made whether to use the new set of equalizer coefficients or continue to use the existing set of equalizer coefficients. Let T be the set of tones on which the fine gain factor is non-zero. According to one embodiment of the invention, this set of tones is defined during initialization and is not changed by any bit swap routines. Let K be the number of tones in T. To decide which equalizer to use, count the number of tones within T on which SNR2k>SNR1k, i.e. compute N=ΣkεTI(SNR2k>SNR1k), where I(condition) equals 1 if the condition is true, and zero otherwise. Then use the new equalizer in preference to the old if N satisfies a threshold value. According to one embodiment of the invention, the new set of equalizer coefficients is used in place of the current set of equalizer coefficients if

N > K 2 + z 2 K
where z is the upper (1−α) percentile of the normal distribution. For a 5% confidence level test z=1.64. For a 10% confidence level test z=1.28. The reasoning behind this test, which is a simple sign test, is as follows. Under the null hypothesis that the new equalizer coefficients is no better than the current equalizer coefficients, and assuming independence of signal to noise ratios between tones, N will have a binomial distribution with probability of success ½, so E(N)=K/2 and V(N)=K/4. We reject this null hypothesis in favor of the alternative, i.e., that the new equalizer coefficients are better than the current set of equalizer coefficients, if N is sufficiently large. According to one embodiment of the invention, the threshold level is determined by the normal approximation: (N−K/2)/√{square root over (K/4)}˜N(0,1), so the null hypothesis is rejected if (N−K/2)/√{square root over (K/4)}>z where P(Z>z)=α if Z ˜N(0,1). This provides the necessary test.

G. Update the Time Domain and Frequency Domain Equalizers

Based upon the foregoing test, a determination is made whether to continue to use the current set of time domain equalizer coefficients or switch to the new set of time domain equalizer coefficients. The frequency domain equalizer is updated if decision is made to use the new set of time domain equalizer coefficients. The frequency domain equalizer may also be updated if a determination is made to continue using the current set of time domain equalizer coefficients. If a decision is made to continue to use the existing time domain equalizer coefficients, then set Fk=Skk. If the new time domain equalizer coefficients are implemented, then set Fk=Sk/ Wk Fk=Sk/ Wk.

H. Perform Any Necessary Bit Swaps and Gain Adjustments

Once the time domain and frequency domain equalizers have been updated, any necessary bit swaps and gain adjustments are made in accordance with the current signal to noise ratios SNR1k or SNR2k as appropriate. According to one embodiment of the invention, the bit swaps and/or gain adjustments are made using an appropriate DSL bit swap mechanism to reallocate bits among the tones.

V. Implementation Mechanisms

The approach described herein for updating time domain and frequency domain equalizers may be implemented in a receiver, such as receiver 104, or may be implemented into a stand-alone mechanism. Furthermore, the approach may be implemented in computer software, in hardware circuitry, or as a combination of computer software and hardware circuitry. Accordingly the invention is not limited to a particular implementation. For example, FIG. 3A is a block diagram that depicts a communications receiver arrangement 300 on which embodiments of the invention may be implemented. In arrangement 302, a transmitter communicates with a receiver 304 via a communications channel 306. Receiver 304 includes a frequency domain equalizer 308, a time domain equalizer 310 and an update mechanism 312. According to one embodiment of the invention, update mechanism 312 is configured to update frequency domain equalizer 308, time domain equalizer 310, or both, using the approach described herein. As depicted in FIG. 3A update mechanism 312 is integrated into receiver 304. As depicted in FIG. 3B, in communications receiver arrangement 350, update mechanism 312 is implemented as a separate mechanism that is communicatively coupled to receiver 304.

The timing of when time domain and frequency domain equalizers are updated according the approach described herein may be based upon a variety of factors, depending upon the requirements of a particular application, and the invention is not limited to any particular approach. For example, the approach may be implemented so that the analysis and updates are performed on a periodic basis. It may be advantageous to implement the approach during a time when a communications system is known to be inactive to reduce the adverse effects on performance attributable to updating the time domain and frequency domain equalizers. As another example, the approach may be initiated based upon external factors that indicate that there has been a change in a condition of a transmission line or a change in an interference source.

FIG. 4 is a block diagram that illustrates a computer system 400 upon which an embodiment of the invention may be implemented. Computer system 400 includes a bus 402 or other communication mechanism for communicating information, and a processor 404 coupled with bus 402 for processing information. Computer system 400 also includes a main memory 406, such as a random access memory (RAM) or other dynamic storage device, coupled to bus 402 for storing information and instructions to be executed by processor 404. Main memory 406 also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by processor 404. Computer system 400 further includes a read only memory (ROM) 408 or other static storage device coupled to bus 402 for storing static information and instructions for processor 404. A storage device 410, such as a magnetic disk or optical disk, is provided and coupled to bus 402 for storing information and instructions.

Computer system 400 may be coupled via bus 402 to a display 412, such as a cathode ray tube (CRT), for displaying information to a computer user. An input device 414, including alphanumeric and other keys, is coupled to bus 402 for communicating information and command selections to processor 404. Another type of user input device is cursor control 416, such as a mouse, a trackball, or cursor direction keys for communicating direction information and command selections to processor 404 and for controlling cursor movement on display 412. This input device typically has two degrees of freedom in two axes, a first axis (e.g., x) and a second axis (e.g., y), that allows the device to specify positions in a plane.

The invention is related to the use of computer system 400 for dynamically updating time domain and frequency domain equalizers in a communications receiver based upon performance data that indicates the performance of a communications channel from which the communications receiver receives data. According to one embodiment of the invention, the dynamic updating time domain and frequency domain equalizers in a communications receiver based upon performance data that indicates the performance of a communications channel from which the communications receiver receives data is performed by computer system 400 in response to processor 404 executing one or more sequences of one or more instructions contained in main memory 406. Such instructions may be read into main memory 406 from another computer-readable medium, such as storage device 410. Execution of the sequences of instructions contained in main memory 406 causes processor 404 to perform the process steps described herein. One or more processors in a multi-processing arrangement may also be employed to execute the sequences of instructions contained in main memory 406. In alternative embodiments, hardwired circuitry may be used in place of or in combination with software instructions to implement the invention. Thus, embodiments of the invention are not limited to any specific combination of hardware circuitry and software.

The term “computer-readable medium” as used herein refers to any medium that participates in providing instructions to processor 404 for execution. Such a medium may take many forms, including but not limited to, non-volatile media, volatile media, and transmission media. Non-volatile media includes, for example, optical or magnetic disks, such as storage device 410. Volatile media includes dynamic memory, such as main memory 406. Transmission media includes coaxial cables, copper wire and fiber optics, including the wires that comprise bus 402. Transmission media can also take the form of acoustic or light waves, such as those generated during radio wave and infrared data communications.

Common forms of computer-readable media include, for example, a floppy disk, a flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-ROM, any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory chip or cartridge, a carrier wave as described hereinafter, or any other medium from which a computer can read.

Various forms of computer readable media may be involved in carrying one or more sequences of one or more instructions to processor 404 for execution. For example, the instructions may initially be carried on a magnetic disk of a remote computer. The remote computer can load the instructions into its dynamic memory and send the instructions over a telephone line using a modem. A modem local to computer system 400 can receive the data on the telephone line and use an infrared transmitter to convert the data to an infrared signal. An infrared detector coupled to bus 402 can receive the data carried in the infrared signal and place the data on bus 402. Bus 402 carries the data to main memory 406, from which processor 404 retrieves and executes the instructions. The instructions received by main memory 406 may optionally be stored on storage device 410 either before or after execution by processor 404.

Computer system 400 also includes a communication interface 418 coupled to bus 402. Communication interface 418 provides a two-way data communication coupling to a network link 420 that is connected to a local network 422. For example, communication interface 418 may be an integrated services digital network (ISDN) card or a modem to provide a data communication connection to a corresponding type of telephone line. As another example, communication interface 418 may be a local area network (LAN) card to provide a data communication connection to a compatible LAN. Wireless links may also be implemented. In any such implementation, communication interface 418 sends and receives electrical, electromagnetic or optical signals that carry digital data streams representing various types of information.

Network link 420 typically provides data communication through one or more networks to other data devices. For example, network link 420 may provide a connection through local network 422 to a host computer 424 or to data equipment operated by an Internet Service Provider (ISP) 426. ISP 426 in turn provides data communication services through the worldwide packet data communication network now commonly referred to as the “Internet” 428. Local network 422 and Internet 428 both use electrical, electromagnetic or optical signals that carry digital data streams. The signals through the various networks and the signals on network link 420 and through communication interface 418, which carry the digital data to and from computer system 400, are exemplary forms of carrier waves transporting the information.

Computer system 400 can send messages and receive data, including program code, through the network(s), network link 420 and communication interface 418. In the Internet example, a server 430 might transmit a requested code for an application program through Internet 428, ISP 426, local network 422 and communication interface 418. In accordance with the invention, one such downloaded application provides for dynamically updating time domain and frequency domain equalizers in a communications receiver based upon performance data that indicates the performance of a communications channel from which the communications receiver receives data as described herein.

The received code may be executed by processor 404 as it is received, and/or stored in storage device 410, or other non-volatile storage for later execution. In this manner, computer system 400 may obtain application code in the form of a carrier wave.

In the foregoing specification, particular embodiments have been described. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.

Wu, David, Storm, Andrew

Patent Priority Assignee Title
Patent Priority Assignee Title
5311546, Jul 26 1991 Vizio, Inc Carrier phase recovery for an adaptive equalizer
5513215, Sep 20 1993 QUARTERHILL INC ; WI-LAN INC High speed simulcast data system using adaptive compensation
5903608, Jun 30 1995 Samsung Electronics Co., Ltd. Adaptive bit swapping method and device for discrete multitone system
6097763, Oct 31 1997 Synaptics Incorporated MMSE equalizers for DMT systems with cross talk
6219378, Sep 17 1997 Texas Instruments Incorporated Digital subscriber line modem initialization
6243414, Jul 23 1999 Synaptics Incorporated Method and apparatus for data transmission using discrete multitone technology
6295326, Mar 01 2000 CALLAHAN CELLULAR L L C Kalman filter based equalization for digital multicarrier communications systems
6408022, Mar 27 1998 Telefonaktiebolaget L M Ericsson Equalizer for use in multi-carrier modulation systems
6418558, Sep 26 1994 HTC Corporation Hybrid fiber/coax video and telephony communication
6674795, Apr 04 2000 AVAYA Inc System, device and method for time-domain equalizer training using an auto-regressive moving average model
6754261, Apr 04 2000 AVAYA Inc System, device, and method for determining the sampling time for a time-domain equalizer
6829296, Sep 20 2000 MINDSPEED TECHNOLOGIES, INC Spectrally flat time domain equalizer and methods
6834109, Nov 11 1999 Tokyo Electron Limited Method and apparatus for mitigation of disturbers in communication systems
20010036225,
EP1043875,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 04 2009MURAMOTO SCIENTIFIC, LLCNinel Technology, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0258980648 pdf
Sep 18 2009Ninel Technology, LLC(assignment on the face of the patent)
Aug 26 2015Ninel Technology, LLCCALLAHAN CELLULAR L L C MERGER SEE DOCUMENT FOR DETAILS 0375290703 pdf
Date Maintenance Fee Events
Feb 25 2015M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Feb 14 2019M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
May 22 20154 years fee payment window open
Nov 22 20156 months grace period start (w surcharge)
May 22 2016patent expiry (for year 4)
May 22 20182 years to revive unintentionally abandoned end. (for year 4)
May 22 20198 years fee payment window open
Nov 22 20196 months grace period start (w surcharge)
May 22 2020patent expiry (for year 8)
May 22 20222 years to revive unintentionally abandoned end. (for year 8)
May 22 202312 years fee payment window open
Nov 22 20236 months grace period start (w surcharge)
May 22 2024patent expiry (for year 12)
May 22 20262 years to revive unintentionally abandoned end. (for year 12)