A flexible material includes a plurality of separate resilient elements joined to a flexible, resiliently stretchable substrate. Such a material is suitable for providing protective war for human and animal bodies. Preferably, the elements includes a foam material such as a closed cell polyethylene foam and the substrate includes a knitted fabric. In an advantageous embodiment, a second flexible substrate is bonded over the elements to sandwich them between the two layers of substrate.

Patent
   RE43441
Priority
Jul 13 1999
Filed
Jul 13 2000
Issued
Jun 05 2012
Expiry
Jul 13 2020

TERM.DISCL.
Assg.orig
Entity
unknown
20
116
EXPIRED
0. 21. A method of manufacturing a flexible resiliently compressible material, the method comprising:
cutting a sheet of resiliently compressible foam with a cutter that goes completely through the foam to provide a plurality of separate individual resiliently compressible elements with side walls of adjacent elements being spaced apart at a distance of about 2 mm, the separate individual elements having a top surface and bottom surface;
holding the separate individual elements;
bonding the top surfaces of the separate individual compressible elements to a first resiliently stretchable fabric substrate while adjacent elements are held so that the distance of about 2 mm is between the side walls of the adjacent elements, the bonding selected from the group consisting of adhesively bonding and welding; and
bonding the bottom surfaces of the separate resiliently compressible elements to a second resiliently stretchable fabric substrate to provide the resiliently compressible material with the fabric substrates not bonded to each other between the separate elements while walls of adjacent elements are held about 2 mm apart and the separate elements being distributed between the substrates at a density of from about 250 to about 8000 elements/m2.
0. 33. A method of manufacturing a flexible resiliently compressible material, the method comprising:
providing a first resiliently stretchable fabric substrate;
cutting a sheet of resiliently compressible foam with a cutting grid that goes completely through the foam to provide a plurality of separate individual resiliently compressible elements, the separate individual elements having a top surface and a bottom surface;
providing a second resiliently stretchable fabric substrate;
holding the plurality of separate individual resiliently compressible elements so that adjacent separate elements are at a distance of about 2 mm after cutting the resiliently compressible foam;
bonding the top surfaces of the separate compressible elements to one of the first and second resiliently stretchable fabric substrates while the plurality of separate individual resiliently compressible elements are at a distance of about 2 mm between adjacent separate elements to provide a fabric/element combination; and
bonding one of the first and second fabric substrates to the surface of the elements of the fabric/element combination to provide the resiliently compressible material, the bonding selected from the group consisting of adhesively bonding and welding, the fabric substrates of the resiliently compressible material not bonded to each other between the adjacent separate elements and the separate elements being distributed between the substrates at a density of from about 250 to about 8000 elements/m2.
0. 15. A method of manufacturing a flexible resiliently compressible material, the method comprising:
providing a first resiliently stretchable fabric substrate;
cutting a sheet of resiliently compressible foam with a cutter that goes completely through the foam to provide a plurality of separate individual resiliently compressible elements in a spaced apart relationship, the separate elements having a top surface and bottom surface;
providing a second resiliently stretchable fabric substrate;
contacting the top surfaces and the bottom surfaces of the plurality of resiliently compressible elements with the first and second resiliently stretchable fabric substrates;
bonding the top surfaces of the plurality of separate individual compressible elements to the first resiliently stretchable fabric substrate while adjacent elements are held so that a distance between the adjacent elements is about 2 mm, the bonding selected from the group consisting of adhesively bonding and welding; and
bonding the bottom surfaces of the plurality of separate individual compressible elements to the second resiliently stretchable fabric substrate while adjacent elements are at the distance of about 2 mm, the bonding selected from the group consisting of adhesively bonding and welding, to provide the flexible resiliently compressible material with the plurality of separate resiliently compressible elements being distributed between the substrates at a density of from about 250 to about 8000 elements/m2, and the first and second substrates not bonded to each other between the adjacent elements.
0. 32. A method of manufacturing a flexible resiliently compressible material, the method comprising:
providing a first resiliently stretchable fabric substrate;
cutting a sheet of resiliently compressible foam with a cutting grid that goes completely through the foam to provide a plurality of separate individual resiliently compressible elements in a spaced apart relationship, separate individual elements of the plurality of resiliently compressible elements having top surfaces and bottom surface which are flat;
providing a second resiliently stretchable fabric substrate;
contacting top surfaces and bottom surfaces of the plurality of resiliently compressible elements with the first and second resiliently stretchable fabric substrates;
holding the separate individual resiliently compressible elements in spaced apart relation after the cutting grid cuts the resiliently compressible foam;
bonding the top surfaces of the resiliently compressible elements to the first resiliently stretchable fabric substrate while adjacent elements are held so that a distance between the elements is about 2 mm, the bonding selected from the group consisting of adhesively bonding and welding; and
bonding the bottom surfaces of the resiliently compressible elements to the second resiliently stretchable fabric substrate while adjacent elements are at a distance of about 2 mm, the bonding selected from the group consisting of adhesively bonding and welding, to provide the resiliently compressible material with the fabric substrates not bonded to each other between adjacent individual elements and to provide the flexible resiliently compressible material with the individual resiliently compressible elements being distributed between the substrates at a density of from about 250 to about 8000 elements/m2.
0. 1. A method of manufacturing a flexible material comprising the steps of
providing a sheet of a resilient material;
cutting the sheet into a plurality of spaced separate elements using a cutter which is pressed into the sheet to cut therethrough;
making one side of the plurality of spaced separate elements to stand proud of a surface of a jig provided to hold the elements in place; and
bonding a flexible resiliently stretchable substrate to one side of the separate elements by heating the substrate either to activate an adhesive applied between said one side of the separate elements and the substrate or to weld the separate elements to the substrate.
0. 2. The method as claimed in claim 1 wherein the sheet is cut into a plurality of separate elements using a cutter which acts as the jig after cutting through the resilient material to hold the elements in place while the substrate is applied thereto.
0. 3. The method as claimed in claim 2, wherein the cutter is adapted so that said one side of each of the cut elements is made to stand proud of a surface of the cutter after cutting through said sheet of resilient material.
0. 4. The method as claimed in claim 3, wherein any excess resilient material located between the plurality of spaced separate elements is retained in the cutter.
0. 5. The method as claimed in claim 3, wherein any excess resilient material is removed from between the plurality of spaced separate elements prior to the elements being bonded to the substrate.
0. 6. The method as claimed in any of claim 1, wherein the plurality of spaced separate elements comprise a foam material.
0. 7. The method as claimed in claim 1, further comprising:
bonding a second flexible substrate to an opposite side of the plurality of spaced separate elements to said one side.
0. 8. The method as claimed in claim 1, wherein at least said one side of the sheet is coated with a hot-melt adhesive prior to being cut into the plurality of spaced separate elements.
0. 9. The method as claimed in claim 1, wherein the side of the substrate adjacent said one side of the plurality of spaced separate elements is coated with a hot-melt adhesive.
0. 10. The method as claimed in claim 1, wherein a sheet of hot-melt film is interposed between said one side of the plurality of spaced separate elements and the substrate so as to provide said adhesive.
0. 11. The method as claimed in claim 1, wherein the sheet of resilient material is cut into strips in a first direction using a plurality of rolling cutters and then cut in a second direction at an angle to the first direction to form the plurality of spaced separate elements.
0. 12. The method as claimed in claim 11 wherein the rolling cutters are moved sideways after each cut to cut narrow strips of material in both directions to space the elements apart, the narrow strips of material being removed to leave the plurality of spaced separate elements spaced from one another.
0. 13. The method as claimed in claim 1 wherein the substrate is heated by a heated platen which either activates the adhesive or melts the surface and thereby bonds the substrate and the plurality of spaced separate elements together.
0. 14. The method as claimed claim 10, wherein the substrate is heated by passing the substrate and the adjacent plurality of spaced separate elements between heated nip rollers.
0. 16. The method according to claim 15 wherein the elements are distributed between the substrates at a density of from about 4000 to about 8000 elements/m2.
0. 17. The method according to claim 15 wherein the top and bottom surfaces of the elements are flat.
0. 18. The method according to claim 17 wherein the elements are distributed between the substrates at a density of from about 4000 to about 6000 elements/m2.
0. 19. The method according to claim 15 wherein the elements are comprised of layers of foam having different densities.
0. 20. The method according to claims 15 wherein the elements are comprised of polyethylene foam.
0. 22. The method according to claim 21 wherein the separate elements are distributed between the substrates at a density of from about 4000 to about 6000 elements/m2.
0. 23. The method according to claim 22 wherein the top and bottom surfaces of the separate elements are flat.
0. 24. The method according to claim 23 wherein the separate elements are comprised of layers of foam having different densities.
0. 25. The method according to claim 21 wherein the top and bottom surfaces of the separate elements are flat.
0. 26. The method according to claim 25 wherein the separate elements are comprised of layers of foam having different densities.
0. 27. The method according to claim 26 wherein the separate elements are distributed between the substrates at a density of from about 4000 to about 6000 elements/m2.
0. 28. The method of claim 26 wherein the layers of foam having different densities are closed cell foam.
0. 29. The method according to claim 21 wherein the separate elements are comprised of layers of foam having different densities.
0. 30. The method according to claim 21 wherein the separate elements are comprised of closed cell foam.
0. 31. The method according to claims 21 wherein the separate elements are comprised of polyethylene foam.

Not applicable.

Notice: multiple reissue applications have been filed for the reissue of U.S. Pat. No. 6,743,325. This application is a continuation reissue application of reissue application Ser. No. 12/642,522, filed on Dec. 18, 2009, which is a continuation reissue application of Ser. No. 11/269,919, filed on Nov. 8, 2005, now U.S. Pat. No. Re. 41,346, which is a reissue application of U.S. Pat. No. 6,743,325, filed as application Ser. No. 10/030,782 on Apr. 23, 2002, which claims priority to PCT/GB00/02687 filed Jul. 13, 2000; GB99/16291 filed Jul. 13, 1999; and GB 99/21804 filed Sep. 16, 1999; all of which are hereby fully incorporated by reference as if fully set forth herein.

Not applicable.

Not applicable.

The present invention relates to a method of manufacturing a flexible material suitable, primarily, for use as a flexible protective material to protect for human and animal bodies.

Protective material and protective wear is currently used by persons to protect themselves from knocks, abrasions and other injury. Protective wear is used during sport, rugby for example and equestrian sports and other activities where a person runs a risk of injury, for example building and other trades.

Conventional protective wear may form an integral part of an item of clothing, for example a shoulder pad, or be provided separately, for example a shin pad.

One existing arrangement comprises a moulded foam article shaped to fit a particular part of the body. There are, however, a number of problems with this arrangement. The article must be produced in different sizes to fit different people. Provision of different sizes can be expensive or inconvenient. Also, closely fitting articles can restrict movement of the wearer, especially when worn on or near joints.

In DE 43 41 722 is disclosed a cushioning material for the treatment of lymphostatic fibroses in which a plurality of foam elements with an enlarged base are disposed side-by-side with their bases touching on a foundation layer to which they are affixed. The troughs defined between the side walls of the elements enable the material to be flexed to form a pressure bandage. However, the foram elements of the bandage touch one another at their base, which restricts the stretchability of the material as a whole and is also designed to be worn with the elements in contact with the skin, which would restrict movement.

A moulded foam article can only correctly fit a joint when in one position. When the joint moves, the article will no longer fit correctly. This may reduce the protection it affords.

In U.S. Pat. No. 3,285,768 is disclosed a fabric coated with a surface deformed foam which is manufactured either by grooving or slashing a sheet of foam to a portion of its depth and then laminating it to the fabric or by laminating a foam sheet to a fabric and then grooving or slashing the form layer. However, neither of these methods enables the foam to be cut to define a plurality of spaced, separate elements, which is preferred if the fabric is to be used in protective wear for ,sports persons when considerable freedom of movement by the wearer is required in addition to comfort.

Another existing arrangement comprises a quilted material including lengths of foam sewn into pockets formed between two layers of fabric. Such materials are time consuming to produce. Also, such materials can generally only easily be flexed in a direction perpendicular to that of the strips of foam. Flexing the material in a direction along the length of the strips involves flexing the strips themselves which, depending on the type of foam used, can be difficult. A similar type of garment is disclosed in U.S. Pat. No. 5,551,082 which describes an athletic garment in which strategically placed rib-shaped gel, air or foam padding is contained in envelopes that are individually affixed to an elasticized fabric shell.

It is an object of the present invention to overcome, or at least reduce, the problems associated with the manufacture of conventional protective material and with protective wear made therefrom.

According to a first aspect of the present invention there is provided a method of manufacturing a flexible material comprising the steps of providing a sheet of a resilient material; cutting the sheet into a plurality of spaced, separate elements using a cutter which is pressed into the sheet to cut therethrough; making one side of the spaced elements to stand proud of the surface of a jig provided to hold the elements in place; and bonding a flexible, resiliently stretchable substrate to one side of the separate elements by heating the substrate either to active an adhesive applied between said one side of the separate elements and the substrate or to weld the elements to the substrate.

The separate elements are preferably bonded to the substrate with a hot melt adhesive, although they can be welded thereto using heat to fuse the elements to the substrate.

According to a second aspect of the present invention there is provided a flexible material comprising a layer of separate resilient elements joined to a flexible, resiliently stretchable substrate and manufactured according to the method of the first aspect of the present invention.

Such a flexible material can confirm more easily to the body of the wearer than conventional materials, as it is flexible in all three dimensions. It is therefore more comfortable to wear and can accommodate movement better than conventional materials. When used as a protective material or to form protective wear a single size, or a reduced number of sizes, can fit many different sized bodies.

As the elements are separate and spaced apart; this facilitates flexing of the substrate to form a curved surface and enables the material to flex in all directions without “locking up” or preventing movement in a particular direction. This is a particular advantage the flexible material of the present invention has over prior art arrangements which tend not to exhibit universal flexibility.

The elements preferably comprise a resilient foam material, for example a closed cell polyethylene, and could comprise a number of different types of foam or other materials to give desired properties, for example layers of foam of different densities.

The elements may be substantially identical, alternatively they can be of different size and shape, for example to fit comfortably part of a wearer's body, or some other article.

The elements preferably take the form of blocks. They can be of regular or irregular shape, for example hexagonal or octagonal in cross-section. The elements are preferably evenly distributed on the substrate with a density of between 100 and 8000 elements/m2, more preferably between 250 and 8000 elements/m2, and still more preferably between 4000 and 6000 elements/m2. In one embodiment, the elements comprise cubes of side 12 mm spaced apart by 2 mm. This gives a density of about 5000 cubes/m2. This allows the material to flex easily along all directions, an improvement over known quilted protective materials. Also, one type of material can be cut to many different sizes, for example to form protective wear of different sizes, without significantly affecting its ability to flex. This is in contrast to known quilted protective materials wherein due to the size of the foam strips, the size of each strip must be changed to form an article of different size without reducing flexibility.

The substrate is resiliently stretchable or elastic and preferably comprises a fabric, although a resiliently stretchable film or sheet could be used. This enables the material to adopt a greater range of configurations. Suitable fabrics include knitted nylon and polyester fabrics and more particularly those materials comprising elastane.

A second layer of a flexible substrate material is preferably bonded over the elements so that they are sandwiched between two layers. In this case, as the first substrate layer is resiliently stretchable or elastic, this helps to prevent puckering of one side of the material when it is flexed. Advantageously, both substrate layers are resiliently stretchable. However, in cases where only a single stretchable substrate layer is provided and the material is to be used in a curved configuration the material is preferably arranged so that the stretchable layer lies on the outside surface of the curve.

The material may be comprised in clothing or other wear. It is particularly suitable for incorporation into protective clothing and wear, for example shoulder pads, knee pads, shin pads, arm bands, head-guards, vests and gauntlets for both humans and animals. It will be appreciated that in these garments the blocks are provided where required and omitted from certain areas of the garment. For example, in a headguard no blocks need be positioned in the ear-flaps of the guard.

The material could also be comprised in furniture or upholstery and can be particularly useful when used with wheelchairs and hospital beds. Spaced part elements can help to reduce the incidence of bed sores. As the material is resilient, it comprises a cushioning medium, for,; example for saddles. Where the material comprises a foam layer, this provides it with good thermally insulating properties and it can be usefully incorporated into, or used to form wet suits. A foam layer can also render the material buoyant in water, in which case it can be usefully used in or to form buoyancy vests, life jackets and swimming aids. When used as a swimming aid, for example, the material can be incorporated in swimming costumes as an aid to the buoyancy of the wearer. It is possible in this case to arrange for the foam blocks to be progressively removable from the costume as the confidence and skill or the trainee swimmer increases.

The material may also be used for packaging and cladding.

As indicated above, the elements may not be distributed all over the surface of the substrate. In particular, there may be a border of substrate having no element thereon. The border may include a fastening means, for example VELCRO(™) to enable it to be affixed to itself or to another article, say a garment.

In one embodiment, the elements could comprise a series of spaced-apart strips. Such a material would have different properties when flexed in different directions.

Preferably, at least said one side of the elements are coated with the hot-melt adhesive prior to being cut into the separate elements. Alternatively or in addition, the side of the substrate adjacent said one side of the elements is coated with the hot-melt adhesive. A sheet of hot-melt film may also be interposed between said one side of the elements and the substrate to provide said adhesive layer.

Advantageously, the resilient sheet is cut into a plurality of separate elements using a cutter which acts as the jig after cutting through the resilient material to hold the elements in place while the substrate layer is applied thereto. Preferably, the cutter is adapted so that said one side of each, now cut, element are made to stand proud of the surface of the cutter grid. The sheet material may spring back slightly after cutting to accomplish this. Alternatively, means, such as ejectors, are provided to achieve this effect.

In one embodiment of the method, a sheet of a resilient material is provided and at least one side of the sheet is coated with a hot melt adhesive. The sheet is placed, adhesive side up, over a cutter grid arranged to cut the sheet into a plurality of elements, for example squares. The sheet is pressed down onto the cutter to cut through the sheet. Excess material from between the elements is then removed. A resiliently stretchable substrate is placed over the, now cut, sheet and heated to activate the adhesive to join the elements to the substrate. The substrate is then lifted away from the cutter, taking the elements with it.

It will be appreciated that in this embodiment, the cutter grid acts as a jig, holding the elements in placed while the substrate layer is applied. If the flexible material is to be cut into large pieces, in particular large irregularly shaped pieces, then these pieces may be assembled into a specially constructed jig to hold them into place before application of the substrate. Conveniently, as before the sheet of resilient material from which the elements are cut has an adhesive layer applied to one or both surfaces prior to the cutting process.

Alternatively, the sheet of resilient material is cut into strips in a first direction using a plurality of rolling cutters and then cut in a second direction at an angle to the first direction to the separate elements. Preferably, the rolling cutters are moved sideways after each cut to cut narrow strips of material in both directions to space the elements apart, the narrow strips of material being removed to leave the separate elements spaced apart from one another.

Embodiments of the various aspects of the invention will now be described by way of example with reference to the accompanying drawings.

FIG. 1 is an enlarged perspective view of part piece of flexible material according to the invention.

FIG. 2 shows a schematic view of a protective arm band formed from the type of material of FIG. 1.

FIG. 3 is a plan view of a cutter grid.

FIGS. 4 to 6 are vertical cross-sectional views of apparatus used in the manufacture of material as shown in FIG. 1 at various stages respectively throughout the manufacturing process.

FIG. 7 is a cross-sectional view through another embodiment of a flexible material according to the invention.

Referring to FIG. 1, a flexible material comprises a plurality of cubes 1 of a resilient closed-cell polyethylene foam, of side approximately 12 mm and with corners of radius approximately 2.5 mm, joined with a hot melt adhesive to a fabric substrate 2. The cubes 1 are evenly arranged, each cube being spaced from adjacent cubes by approximately 2 mm. The fabric 2 is a resiliently stretchable knitted fabric, preferably one comprising polyester or elastane fibers.

A margin of fabric 2 is provided around the periphery of the cubes 1. Along the edges of the fabric at opposite ends respectively there are strips 3 of VELCRO(™), only one of which is shown.

Referring to FIG. 2, a protective armband 4 is shown being worn on part of an arm 5. The armband 4 is formed from a generally rectangular piece of material of the type shown in FIG. 1 but which in this case comprises a fabric substrate 6 bonded to both sides thereof with a plurality of foam cubes 7 sandwiched therebetween. Margins are provided at opposite ends respectively of the substrate 6 and a strip of VELCRO(™) 8 is fastened on this margin to enable opposite ends of the material to be fastened in an overlaying relationship to form a tube. By varying the degree of overlap of the ends, the tube can be closely fitted around arms of different sizes. The provision of a substrate layer 6 on both sides of the cubes 7 prevents the latter from separating too much as the material is curved around to form a tube. Rather, the substrate 6 on the outside of the armband is forced to stretch and the edges of the cubes 7 at the inner side of the armband are compressed. The provision of a substrate layer on both sides of the material therefore enables the material to continue to provide good protection, even when tightly flexed.

FIG. 3 shows a plan view of a cutter used for manufacturing the material of FIG. 1. The cutter comprises blades defining a plurality of squares of 12 mm side with corners of radius 2.5 mm.

FIGS. 4 to 6 are vertical cross-sectional views of apparatus at various stages respectively throughout the manufacture of the flexible material shown in FIG. 1. Referring to these figures, one side of a 12 mm thick layer of closed cell polyethylene foam 10 is coated with a hot melt adhesive 11. The foam 10 is then placed onto a cutter 12, of the type shown in FIG. 3, and pressed down with a press 13 so that the cutter 12 cuts through the foam 10 to form a plurality of separate cubes. The press is then removed, whereupon owing to its resilient nature, the foam will tend to spring back slightly so that the exposed surface of each cube stands proud to lie above the surface of the cutter. Excess material from between the elements is then removed.

Next, as shown in FIG. 5, a layer of fabric is placed over the foam and cutter 12 and a heated platen 15 is brought into contact with the fabric 14. Heat is conducted through the fabric 14 to the foam and activates the adhesive, bonding the fabric 14 to the foam 10. In this arrangement, the cutter grid acts as a jig, holding the foam cubes in position whilst the fabric substrate 14 is applied thereto.

Then, as shown in FIG. 6, the fabric can be lifted away from the cutter taking the foam cubes 10 with it.

In an alternative method, ejectors are disposed in the cutter grid to eject the elements, leaving any waste material behind in the cutters.

If the foam 10 is to be cut into large pieces, in particular large irregularly shaped pieces such as may be suitable for use in an equestrian jacket, then these pieces may be assembled into a specially constructed jig to hold them into place before application of the fabric substrate 14. As described above, the sheet of resilient foam from which the elements are cut will have hot-melt adhesive applied to one or both surfaces prior to the cutting process.

In a further variation, the sheet of resilient material is cut into strips in a first direction using a plurality of rolling cutters. The sheet is cut in a second direction perpendicular to the first to form cubes. The cutters are then moved sideways to cut narrow strips of foam in both directions to space the cubes apart, the narrow strips of foam being stripped away to leave the cubes.

FIG. 7 shows another embodiment of flexible material similar to that shown in FIG. 1, but with a layer of fabric 16 bonded to each of opposite sides of tho elements 17. This embodiment may be produced in a similar way to that shown in FIG. 1 except that opposite sides of the foam layer are coated with adhesive and, after the foam cubes bonded to a first layer of fabric have been removed from the cutter, a second layer of fabric is placed over the exposed surface of the elements and pressed with a heated platen to effect a bond.

In other variations to the above methods, the hot-melt adhesive may be applied to the surface the substrate rather or in addition to the sides of the flexible material. Alternatively or in addition, a hot-melt film can be interposed between the elements and the substrate.

Also, heated nip-rollers can be used in place of a heated platen to bond the elements to the substrate, particularly when substrate is bonded to both sides of the elements, which are thereby sandwiched therebetween. This facilitates passage of the material between the rollers prior to activation of the adhesive.

Flexible materials according to the invention are more convenient to produce and more flexible and versatile that known protective materials. They may also be used in a variety of applications including protective wear and clothing.

Taylor, David Stirling

Patent Priority Assignee Title
10034498, Jul 25 2011 NIKE, Inc Articles of apparel incorporating cushioning elements
10194707, Jun 23 2009 Nike, Inc. Apparel incorporating a protective element
10390573, Aug 01 2008 NIKE, Inc Apparel with selectively attachable and detachable elements
10959476, Jul 25 2011 Nike, Inc. Articles of apparel incorporating cushioning elements
11246358, Aug 01 2008 Nike, Inc. Apparel with selectively attachable and detachable elements
11284652, Aug 01 2008 Nike, Inc. Apparel with selectively attachable and detachable elements
11311061, Aug 01 2008 Nike, Inc. Apparel with selectively attachable and detachable elements
11950644, Aug 01 2008 Nike, Inc. Apparel with selectively attachable and detachable elements
11974633, Oct 08 2019 CONVERSE INC Multi-layer textile
8683618, Sep 24 2009 Nike, Inc. Apparel incorporating a protective element
8702895, Apr 07 2010 NIKE, Inc Cushioning elements for apparel and other products and methods of manufacturing the cushioning elements
8713719, Jun 23 2009 Nike, Inc. Apparel incorporating a protective element and method of use
8719965, Sep 24 2009 NIKE, Inc Apparel incorporating a protective element
8764931, May 19 2011 NIKE, Inc Method of manufacturing cushioning elements for apparel and other products
9149084, Jun 23 2009 NIKE, Inc Apparel incorporating a protective element and method for making
9386812, Jul 25 2011 NIKE, Inc Articles of apparel incorporating cushioning elements
9398779, Feb 25 2011 NIKE, Inc Articles of apparel incorporating cushioning elements and methods of manufacturing the articles of apparel
9505203, Nov 30 2010 NIKE, Inc Method of manufacturing dye-sublimation printed elements
9675122, Jun 23 2009 Nike, Inc. Apparel incorporating a protective element
9756884, Feb 25 2011 Nike, Inc. Articles of apparel incorporating cushioning elements and methods of manufacturing the articles of apparel
Patent Priority Assignee Title
2751609,
2785739,
3020186,
3137746,
3285768,
3285800,
3293671,
3305423,
3404406,
3441638,
3465364,
3471865,
3512190,
3679263,
3746605,
3775526,
3867238,
3911185,
3914487,
3922329,
4023213, May 17 1976 Wilson Sporting Goods Co Shock-absorbing system for protective equipment
4126177, Mar 10 1977 AMCA INTERNATIONAL CORPORATION, DARTMOUTH NATIONAL BANK BLDG , HANOVER, NEW HAMPSHIRE, 03755, A CORP Dual scraped surface heat exchanger
4136222, Apr 18 1977 Minnesota Mining and Manufacturing Company Thermally insulating sheet material
4138283, Sep 01 1976 Textron Inc. Process for producing fabric-backed cushioning material
4197342, Jul 12 1974 UNIROYAL PLASTICS COMPANY, INC , WORLD HEADQUARTERS, MIDDLEBURY, CT 06749, A CORP OF Trim pads for vehicle seats
4272850, May 25 1979 W. H. Brine Company Body protective pads
4276341, May 02 1979 Kabushiki Kaisha Asahi Gomu Wet suit material and wet suit made thereof
4415622, Nov 02 1982 Crown Textile Company Fusible interlining of improved bond strength and dry cleaning resistance
4482592, Feb 23 1981 The B. F. Goodrich Company Vibration isolation pad
4485919, Aug 12 1982 Graphic Controls Corporation Sterilizable foam support tray for medical instruments
4507801, Sep 07 1982 DEPALMA, BERNARD F Protective garment
4512037, Aug 17 1982 SPORTS MARKETING, INC Protective pad assembly
4534354, Sep 29 1982 UNIVERSAL MEDICAL PRODUCTS INC, A PA CORP Bandage
4538301, Dec 31 1981 Dierk, Filmer Protective device
4581186, Dec 17 1982 Method of making foam core building panels in a continuous operation
4631221, Apr 05 1984 ARTEVA NORTH AMERICA S A R L Sheet-like sandwich molding
4646367, Jan 10 1985 Tumbling cap
4692199, Dec 13 1985 Lear Corporation Method and apparatus for bonding fabric to a foam pad
4713854, Dec 20 1982 ROHO, INC Constant force cushion
4718214, Sep 12 1986 AMERIMAX BUILDING PRODUCTS, INC Reinforced siding panel
4730761, Aug 15 1986 SCA INCONTINENCE CARE NORTH AMERICA, INC Cutting flexible formed products from foam retaining sheet
4734306, Jun 26 1986 PROJECT IVORY ACQUISITION, LLC Cold weather garment with skin foam and method of making same
4756026, May 04 1987 BEST LOGOS IN MOTION, LLC Limb protector
4809374, Jan 15 1986 CARPENTER CO Padding body constituted of individual modular elements, and its application to the production of seats and of removable cushions or back-rests
4856393, Nov 22 1985 TEKNI-PLEX, INC Method for die cutting plastic foam
4859274, Sep 20 1985 Packet-type laminator
4867826, Aug 28 1987 Shawmut Corporation Method for making laminated foam articles
4991230, Aug 25 1989 Shock absorbing body protective pads
5052053, Dec 05 1988 O NEILL, INC Garment for aquatic activities having increased elasticity and method of making same
5129295, Mar 13 1990 Ontario Die Company Limited Method of cutting compressible materials
5160785, Jun 11 1991 CARPENTER CO Padding body
5168576, Oct 03 1990 Body protective device
5188879, Jul 15 1991 Sorrento Engineering Corporation Polyimide foam filled structures
5232762, Feb 05 1990 Product of a two phase, self configuring coreless structural element for furniture and the like
5353455, May 12 1993 CARPENTER CO Padding body with individual modular elements
5360653, Dec 21 1992 Encapsulated foam pad
5405665, Jun 28 1991 Sumitomo Electric Industries, Ltd. Multi-layered foam heat-shrinkable tube
5452477, Aug 27 1991 Item of swimming wear
5534208, Sep 15 1993 FXI, INC Three dimensional surface shaping of synthetic foam pads by continuous rotary process
5551082, Jan 11 1993 Crash Pads, Inc. Protective athletic pants having diagonal protect pads around hip, buttocks and thigh areas
5594954, Mar 11 1996 Knee-pad and elbow-pad
5689836, Aug 22 1994 McDavid Knee Guard, Inc. Athletic protective undergarment
5727252, Oct 31 1996 Rollerblade, Inc. Padded knee guard
5780147, Mar 14 1995 Daiso Co., Ltd. Laminate having improved dimensional stability and heat resistance
5823981, Jun 06 1994 OSSUR HF Resilient orthopaedic support with independently stretchable layers
6054005, Aug 16 1996 Sentinel Products Corp. Polymer structures with enhanced properties
6070267, Nov 12 1999 Knee pad holder
6070273, Mar 27 1998 Body pads particulary for sports
6085353, Feb 20 1998 VANSON LEATHERS Ventilated garments
6093468, Mar 14 1997 The Procter & Gamble Company; The Procter & Gamle Company Flexible lightweight protective pad with energy absorbing inserts
6167790, Jul 09 1996 Sentinel Products Corp. Laminated foam structures with enhanced properties
6235661, Jun 23 1997 Old Town Canoe Company Fabric laminated flotation foam material for manufacturing life jackets and similar articles and articles manufactured using such materials
6253376, Jun 04 1999 Knee pad
6295654, Mar 23 1999 FARRELL SPORTS CONCEPTS, INC Protective sports garment
6301722, Jan 07 1999 Brock USA, LLC Pads and padding for sports gear and accessories
6317888, Apr 26 2000 Knee-On Australia Pty Ltd. Kneepad
6374409, Jun 08 1999 SALOMON S A Accessory providing protection against falls in sports such as in-line skating
6485448, Jan 25 2001 3M Innovative Properties Company Knee strap
6584616, Jul 10 2001 Travel Caddy, Inc. Knee pad construction
6654962, Jul 09 2001 DeMott-Steinhaus Group Protective knee pad system
6743325, Jul 13 1999 STIRLING MOULDINGS 2016 LIMITED Flexible material
6820279, Dec 04 2002 Kneepad
6841022, Aug 06 1996 Hitachi Chemical Company, Ltd. Adhesive-coated electronic parts on a connection sheet
6851124, Dec 21 2001 HERITAGE LEATHER COMPANY, INC Knee pad and method of manufacture
6968573, Aug 30 2002 MESHWEAR TECHNOLOGIES INC Convertible ventilated trousers
6969548, Aug 30 1999 Impact absorbing composite
7007356, Jun 18 1999 Phoenix Performance Products, Inc. Cushioning pads and the formation of cushioning pads
20080113143,
20100272969,
20100285299,
DE19640263,
DE202006013732,
DE3641609,
DE4341722,
DE9102039,
EP1369149,
FR2581348,
FR2635650,
GB2304539,
GB800474,
GB832101,
JP10043007,
JP10337797,
JP1316235,
JP2508289,
JP9300510,
RE41346, Jul 13 1999 STIRLING MOULDINGS 2016 LIMITED Flexible material
RE42689, Jul 13 1999 STIRLING MOULDINGS 2016 LIMITED Flexible material
WO103530,
WO115892,
WO2081202,
WO216124,
WO2006036072,
WO2006088734,
WO9733493,
WO9736740,
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 13 2000Stirling Mouldings Limited(assignment on the face of the patent)
Nov 23 2001TAYLOR, DAVID STIRLINGStirling Moulded Composites LimitedASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0510840188 pdf
Jun 30 2005Stirling Moulded Composites LimitedStirling Mouldings LimitedASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0510840467 pdf
Jun 30 2016Stirling Mouldings LimitedSTIRLING MOULDINGS 2016 LIMITEDASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0510840995 pdf
Date Maintenance Fee Events


Date Maintenance Schedule
Jun 05 20154 years fee payment window open
Dec 05 20156 months grace period start (w surcharge)
Jun 05 2016patent expiry (for year 4)
Jun 05 20182 years to revive unintentionally abandoned end. (for year 4)
Jun 05 20198 years fee payment window open
Dec 05 20196 months grace period start (w surcharge)
Jun 05 2020patent expiry (for year 8)
Jun 05 20222 years to revive unintentionally abandoned end. (for year 8)
Jun 05 202312 years fee payment window open
Dec 05 20236 months grace period start (w surcharge)
Jun 05 2024patent expiry (for year 12)
Jun 05 20262 years to revive unintentionally abandoned end. (for year 12)