A lighting system includes a central controller and multiparameter lights, including IPLDs. A display of the multiparameter lights at the central controller includes the IPLDs and their image parameters, which are used to evoke a display of graphics tools at the central controller for originating images. images originating at the central controller are transmitted to the IPLDs either by or under control of the central controller. The graphics tools may also be able to manipulate images. The central controller is provided with one or more image editors, which include the graphics tools. The outputs of the image editors, which are referred to as “image banks,” are routed to multiple multiparameter lights (including IPLDs) in accordance with assignments made by the operator of the central controller. The central controller also uses a collage display screen of a collage generator to allow the operator to select an image to collage.
|
1. A method of controlling a lighting system having at least a plurality of IPLDs, comprising:
displaying a first plurality of parameters of a first one of the IPLDs at a central controller, the first plurality of parameters including a first image parameter;
displaying a first plurality of images at the central controller; and
establishing at the central controller at least one first image for the first image parameter from the first plurality of images.
9. A method of controlling a lighting system having at least a plurality of IPLDs, comprising:
displaying a first plurality of parameters of a first one of the IPLDs at a central controller, the first plurality of parameters including a first image parameter;
displaying a first plurality of images at the central controller in response to an operator selection of the first image parameter; and
originating from the central controller at least one first image for the first image parameter from the first plurality of images.
0. 103. A stage lighting controller for controlling a plurality of addressable lighting devices, comprising:
a communications port for communicating instructions to the addressable lighting devices;
a first input for receiving content, including a first video image;
means for generating a plurality of sectional images from the first video image; and
means for communicating with the plurality of addressable lighting devices to cause the addressable lighting devices to display the respective sectional images to form a representation of the first video image.
0. 87. A stage lighting controller for controlling a plurality of dmx controllable lighting devices, comprising:
means for communicating dmx signals to the dmx controllable lighting devices;
a first input for receiving content, including a first video image;
means for generating a plurality of sectional images from the first video image; and
means for communicating with the plurality of dmx controllable lighting devices to cause the plurality of dmx controllable lighting devices to display the respective sectional images to form a representation of the first video image.
44. A method of operating a lighting system that includes a central controller and a plurality of image projection lighting devices (“IPLDs”), comprising:
displaying a plurality of parameters for each of the IPLDs at the central controller, the parameters including at least one image parameter;
evoking a graphics tool at the central controller in response to selection of one of the IPLDs by operator action;
displaying a plurality of images for the graphics tool at the central controller and;
originating an image from the central controller for the image parameter of the selected IPLD, in response to operator action with the graphics tool, from the plurality of images.
0. 136. A stage lighting controller for controlling a plurality of addressable multiparameter lights having remotely variable pan and tilt parameters, a first plurality of the multiparameter lights being without light valves and a second plurality of the multiparameter lights respectively comprising light valves, comprising:
a first display device;
a first input device;
wherein the display device displays a first fixture identifier for the first plurality of multiparameter lights and a second fixture identifier for the second plurality of multiparameter lights; and
wherein the first and second fixture identifiers are displayed on the display device during a set up phase.
22. A method of operating a lighting system that includes a central controller and a plurality of image projection lighting devices (“IPLDs”), comprising:
originating a first image from the central controller for a first one of the IPLDs;
projecting the first image from the first IPLD;
originating a second image from the central controller for a second one of the IPLDs, the second image being different than the first image; and
projecting the second image from the second IPLD;
wherein the first image and the second image are selected from a plurality of images stored at the central controller, the plurality of images having an identifying scheme for operator visualization of the images.
18. A method of operating a lighting system that includes a central controller and a plurality of image projection lighting devices (“IPLDs”), comprising:
maintaining a plurality of parameters for each of the IPLDs at the central controller, the parameters for each of the IPLDs including at least one image parameter;
originating a first image from the central controller for a first one of the IPLDs, the first image being defined by the image parameter of the first IPLD; and
originating a second image from the central controller for a second one of the IPLDs, the second image being defined by the image parameter of the second IPLD;
wherein the first image and the second image are different.
0. 134. A stage lighting controller for controlling a plurality of addressable multiparameter lights having remotely variable pan and tilt parameters, a first plurality of the multiparameter lights being without light valves and a second plurality of the multiparameter lights respectively comprising light valves, comprising:
a first display device;
a first input device;
means for selecting a first one of a plurality of collage types, each collage type representing a predetermined plurality of sectional images that form a collage type and
means for selecting which one of the plurality of addressable multiparameter lights to be involved in forming the first one of the selected plurality of collage types.
34. A method of operating a lighting system that includes a central controller and a plurality of image projection lighting devices (“IPLDs”), comprising:
maintaining a plurality of parameters for each of the IPLDs at the central controller, the parameters for each of the IPLDs including at least one image parameter;
originating a first image from the central controller for a first one of the IPLDs, the first image being defined by the image parameter of the first IPLD; and
originating a second image from the central controller for a second one of the IPLDs, the second image being defined by the image parameter of the second IPLD;
wherein the first image and the second image are first and second sections of a collage.
0. 68. A stage lighting controller for controlling a plurality of addressable multiparameter lights having remotely variable pan and tilt parameters, a first plurality of the multiparameter lights being without light valves and a second plurality of the multiparameter lights respectively comprising light valves, comprising:
a first display device;
a first input device;
an image library comprising a plurality of library images;
a collage generator responsive to operation of the first input device by an operator for selecting a first image of the plurality of library images to collage, wherein the selected first image is separable into a plurality of sectional images; and
means for varying the pan and tilt parameters for the multiparameter lights.
0. 135. A stage lighting controller for controlling a plurality of addressable multiparameter lights comprising a light valve and having remotely variable pan and tilt parameters, comprising:
a first input device;
means for varying the pan and tilt parameter of at least a portion of the plurality of addressable multiparameter lights by the first input device;
a first image; and
a first display device for displaying a final image and a plurality of thumbnail images;
wherein the first image is altered by applying effects to the first image by a first one of the plurality of addressable multiparameter lights; and
wherein the final image displays a likeness of a projected image projected by the first one of the plurality of addressable multiparameter lights.
24. A method of operating a lighting system that includes a central controller and a plurality of image projection lighting devices (“IPLDs”), comprising:
originating a first image from the central controller for a first one of the IPLDs, the first image resulting from a crossfade between two different images;
projecting the first image from the first IPLD;
originating a second image from the central controller for a second one of the IPLDs, the second image being different than the first image and resulting from a crossfade between two different images; and
projecting the second image from the second IPLD;
wherein the first image and the second image are respectively formed from a crossfade between at least two of a plurality of images stored at the central controller.
0. 140. A stage lighting controller for controlling a plurality of addressable multiparameter lights having remotely variable pan and tilt parameters, a first plurality of the multiparameter lights being without light valves and a second plurality of the multiparameter lights respectively comprising light valves, comprising:
a first display device;
a first input device;
an image editor for forming an edited image from one or more images, the image editor comprising a plurality of thumbnails, including a first thumbnail of a still image, a second thumbnail of a continuous video image, and a third thumbnail of a camera image;
wherein the plurality of thumbnails can be scrolled by operation of the first input device; and
means for varying the pan and tilt parameters for the multiparameter lights.
0. 130. A stage lighting controller for controlling a plurality of addressable multiparameter lights comprising a light valve and having remotely variable pan and tilt parameters, comprising:
a first display device;
a first input device;
an image library comprising a plurality of library images;
wherein:
at least a portion of the plurality of library images comprise images of a first image type, the first image type images being video movies; and
at least a portion of the plurality of library images comprise images of a second image type, the second image type images being sectional images of a collage;
means for selecting which ones of the plurality of addressable multiparameter lights to involve in displaying a collage; and
means for varying the pan and tilt parameters of at least a portion of the plurality of addressable multiparameter lights with the first input device.
0. 147. A stage lighting system comprising a plurality of addressable multiparameter lights having valves and remotely variable pan and tilt parameters, comprising:
means for operation of a central controller to determine a first collage from a list or collection of different collage types;
means for operation of the central controller to determine a first image for use with the first collage from a plurality of images in a library;
means for operation of the central controller to determine a plurality of sectional images that comprise the first image;
means for operation of the central controller to determine the multiparameter lights to respectively project the sectional images; and
means for operation of the central controller to determine a first projected image in the likeness of the first image that is comprised by assembly of the plurality of sectional images on a projection surface.
25. A central controller for controlling a lighting system comprising a plurality of image projection lighting devices (“IPLDs”), each having a plurality of parameters including an image parameter, the central controller comprising:
a display screen;
a memory containing a plurality of images;
a first programmable component for creating a first display on the display screen of at least some of the images;
a second programmable component for forming a first image from the first display, under operator control, for an image parameter of a first one of the IPLDs;
a third programmable component for creating a second display on the display screen of at least some of the images; and
a fourth programmable component for forming a second image from the second display, under operator control, for an image parameter of a second one of the IPLDs;
wherein the first image and the second image are different.
37. A method of operating a lighting system that includes a central controller, a plurality of first-type multiparameter lights having a plurality of parameters except for an image parameter, and a plurality of second-type multiparameter lights having a plurality of parameters including an image parameter, comprising:
varying the parameters for each of the first-type multiparameter lights at the central controller;
varying the parameters for each of the second-type multiparameter lights at the central controller, wherein for each of the second-type multiparameter lights, varying the particular image parameter thereof comprises:
originating a first image from the central controller for a first scene, the first image being defined by the particular image parameter; and
originating a second image from the central controller for a second scene, the second image being defined by the particular image parameter.
0. 141. A stage lighting control system for controlling an image protection device, comprising:
a first input for receiving content, including a first and second continuous video image;
means for dmx communication;
means for mixing the first continuous video image with the second continuous video image;
means for applying effects to the first or second continuous video image;
means for storage of the first and second continuous video image in an image library;
means for generating a plurality of sectional images from the first continuous video image;
means for determining with an operator display means a first one of the sectional images to be projected by an image projection device; and
means for furnishing the first sectional image to the image projection device for projection by the first image protection device as a component of a collage that forms a likeness of the first continuous video image.
0. 76. A stage lighting controller for controlling a plurality of addressable multiparameter lights having remotely variable pan and tilt parameters, a first plurality of the multiparameter lights being without light valves and a second plurality of the multiparameter lights respectively comprising light valves, comprising:
a first display device;
a first input device;
an image library comprising a plurality of images of different image types including a camera image type, a still image type, and a continuous video image type;
means for displaying a collection of thumbnails representative of the images in the image library on the first display device in response to action by an operator, the thumbnails being displayed in accordance with an identifying scheme that identifies the image type to an operator viewing the first display device, and
means for varying the pan and tilt parameters for the multiparameter lights.
0. 122. A stage lighting controller for controlling a first plurality of addressable multiparameter lights comprising a light valve and having remotely variable pan and tilt parameters, comprising:
a first display device:
a first input device;
an image library comprising a plurality of library images; and
a mixed image at least partially comprising two or more or the plurality of library images;
wherein at least a portion of the plurality of library images comprise images of a first image type, the first image type images being video movies;
wherein the plurality of library images are displayed on the first display device as a plurality of thumbnail images, the plurality of thumbnail images being likenesses of the plurality of library images; and
wherein a first one of the plurality of thumbnail images displayed on the first display device is moveable to multiple locations on the first display device under control of an operator using the first input device.
23. A method of controlling a lighting system comprising a plurality of multiparameter lights, including gobo-type multiparameter lights and IPLD-type multiparameter lights, controllable from a central controller, comprising:
storing at least one image library at the central controller;
displaying at the central controller an identifier and a plurality of parameters for each of the multiparameter lights, wherein the parameters for each of the IPLD-type multiparameter lights includes an image parameter;
displaying an image editor at the central controller in response to an operator selection of any of the IPLD-type multiparameter lights, the image editor including an image library area having a plurality of images, a mixer area, and an image area;
selecting at least two of the plurality of images from the image library in response to an operator action;
mixing the selected images in the mixer area to obtain an output image;
displaying the output image in the image area; and
transmitting the output image from the central controller to the IPLD.
29. A method of controlling a lighting system, the lighting system having a central controller and at least a plurality of IPLDs and each of the IPLDs having a plurality of parameters including an image parameter, the method comprising:
selecting a first one of the IPLDs at the central controller;
editing the image parameter of the first IPLD at the central controller to visualize a first image on a visual display device of the central controller;
establishing a first effect for the first image;
visualizing a first final image on the visual display device, the first final image comprising the first image with the first effect as being projected by the first IPLD;
selecting a second one of the IPLDs at the central controller;
editing the image parameter of the second IPLD at the central controller to visualize a second image on the visual display device;
establishing a second effect for the second image; and
visualizing a second final image on the visual display device, the second final image comprising the second image with the second effect as being projected by the second IPLD.
50. A method of operating a lighting system that includes a central controller and a plurality of image projection lighting devices (“IPLDs”), comprising:
displaying a plurality of parameters for each of the IPLDs at the central controller, the parameters including at least one image parameter;
evoking a first graphics tool at the central controller in response to selection of a first one of the IPLDs thereof by operator action;
displaying a plurality of images for the first graphics tool at the central controller;
originating an image from the central controller for the image parameter of the first IPLD, in response to operator action with the first graphics tool, from the plurality of images;
evoking a second graphics tool at the central controller in response to selection of a second one of the IPLDs by operator action;
displaying a plurality of images for the second graphics tool at the central controller;
and originating an image from the central controller for the image parameter of the second IPLD, in response to operator action with the second graphics tool, from the plurality of images for the second graphics tool.
0. 82. A stage lighting controller for controlling a plurality of addressable multiparameter lights having remotely variable pan and tilt parameters, a first plurality of the multiparameter lights being without light valves and a second plurality of the multiparameter lights respectively comprising light valves, comprising:
a first input device;
an image library comprising a plurality of library images; and
a display device for displaying information comprising:
identifying information for at least a portion of the library images in the image library;
a first output area for displaying a visual of a first mixed image derived from two or more of the library images;
means for sending the first mixed image to a first one of the second plurality of multiparameter lights, in response to operation of the first input device by an operator; and
a second output area for displaying a visualization of a final image for projection by the first one of the second plurality of multiparameter lights, the visual of the final image depicting the mixed image with manipulation with effects by the first one of the second plurality of multiparameter lights.
60. A method of operating a lighting system that includes a central controller and a plurality of image projection lighting devices (“IPLDs”), comprising:
displaying a plurality of parameters for each of the IPLDs at the central controller, the parameters including at least one image parameter;
evoking a first graphics tool at the central controller in response to selection of a first one of the IPLDs by operator action;
displaying a plurality of images for the first graphics tool at the central controller;
originating a first sectional image of a collage from the central controller for the image parameter of the first IPLD, in response to operator action with the first graphics tool, from the plurality of images;
evoking a second graphics tool at the central controller in response to selection of a second one of the IPLDs by operator action;
displaying a plurality of images for the second graphics tool at the central controller, including a second sectional image of the collage; and
originating a second sectional image of the collage from the central controller for the image parameter of the second IPLD, in response to operator action with the second graphics tool, from the plurality of images for the second graphics tool.
0. 63. A stage lighting controller for controlling a plurality of addressable multiparameter lights having remotely variable pan and tilt parameters, a first plurality of the multiparameter lights being without light valves and a second plurality of the multiparameter lights respectively comprising light valves, comprising:
a first display device;
a first input device;
an image library comprising a plurality of library images including a first camera image, a first still image, and a first continuous video image;
a first image editor for forming an edited image from one or more of the library images, the first image editor comprising a plurality of thumbnails of the library images, including a first thumbnail of the still image, a second thumbnail of the continuous video image, and a third thumbnail of the camera image; wherein:
the first thumbnail has a first identifying scheme for displaying to an operator on the first display device that the first thumbnail represents a still image; and
the second thumbnail has a second identifying scheme for displaying to an operator on the first display device that the second thumbnail represents a continuous video image; and
a final image area for displaying to an operator on the first display device a visualization of a final image for projection by a first one of the second plurality of multiparameter lights, the final image resulting from operation of the first input device by the operator to apply effects to the edited image.
2. The method of
displaying a second plurality of parameters of a second one of the IPLDs at a central controller, the second plurality of parameters including a second image parameter;
displaying a second plurality of images at the central controller; and
establishing at the central controller at least one second image for the second image parameter from the second plurality of images.
3. The method of
the first image establishing step comprises establishing at the central controller a plurality of images for the first image parameter from the first plurality of images; and
the second image establishing step comprises establishing at the central controller a plurality of images for the second image parameter from the second plurality of images.
4. The method of
furnishing the first image established in the first image establishing step to the first IPLD from the central controller;
and furnishing the second image established in the second image establishing step to the second IPLD from the central controller.
5. The method of
furnishing the first image established in the first image establishing step to the first IPLD from a computer other than the central controller, under control of the central controller;
and furnishing the second image established in the second image establishing step to the second IPLD from a computer other than the central controller, under control of the central controller.
6. The method of
the first image parameter is a number, word or symbol;
and the second image parameter is a number, word or symbol.
7. The method of
displaying a first image editor at the central controller; and
mixing at least two images from the first plurality of images with the first image editor at the central controller to establish the first image.
8. The method of
displaying a first image editor at the central controller; and
mixing at least two images from the first plurality of images with the first image editor at the central controller to establish the first image;
and wherein the second image establishing step comprises:
displaying a second image editor at the central controller; and
mixing at least two images from the second plurality of images with the second image editor at the central controller to establish the second image.
10. The method of
selecting at least one of the first plurality of images at the central controller to obtain the first image; and
transmitting the first image to the first IPLD.
11. The method of
selecting at least two of the first plurality of images at the central controller to obtain selected images;
manipulating the selected images to obtain the first image; and
transmitting the first image to the first IPLD.
12. The method of
13. The method of
14. The method of
displaying an identifier for the first IPLDs at the central controller; and
effecting the operator selection of the first image parameter in response to a selection event for the identifier.
15. The method of
displaying a second plurality of parameters of a second one of the IPLDs at a central controller, the second plurality of parameters including a second image parameter;
displaying a second plurality of images at the central controller in response to an operator selection of the second image parameter; and
originating from the central controller at least one second image for the second image parameter from the second plurality of images.
16. The method of
the step of displaying the first plurality of parameters of the first IPLD comprises displaying the first plurality of parameters on a first display screen of the central controller;
the step of displaying the second plurality of parameters of the second IPLD comprises displaying the second plurality of parameters on the first display screen of the central controller;
the step of displaying the first plurality of images comprises displaying the first plurality of images on a second display screen of the central controller; and
the step of displaying the second plurality of images comprises displaying the second plurality of images on the second display screen of the central controller.
17. The method of
the step of displaying the first plurality of parameters of the first IPLD comprises displaying the first plurality of parameters on a first display screen of the central controller;
the step of displaying the second plurality of parameters of the second IPLD comprises displaying the second plurality of parameters on the first display screen of the central controller;
the step of displaying the first plurality of images comprises displaying the first plurality of images on the first display screen of the central controller; and
the step of displaying the second plurality of images comprises displaying the second plurality of images on the first display screen of the central controller.
19. The method of
forming the first image from a plurality of images; and
forming the second image from a plurality of images.
20. The method of
mixing a plurality of images to form the first image; and
mixing a plurality of images to form the second image.
21. The method of
forming the first image from a plurality of images, including a live camera image; and
forming the second image from a plurality of images, including a live camera image.
26. The central controller of
a fifth programmable component for furnishing the first image to the first IPLD, and
a sixth programmable component for furnishing the second image to the second IPLD.
27. The central controller of
the second programmable component comprises a component for forming the first image from a combination of at least two of the images in the first display; and
the fourth programmable component comprises a component for forming the second image from a combination of at least two of the images in the second display.
28. The central controller of
the combination of the images in the first display is a crossfade combination; and
the combination of the images in the second display is a crossfade combination.
30. The method of
applying the first effect to the first image at the central controller; and
applying the second effect to the second image at the central controller.
31. The method of
applying the first effect to the first image at the first IPLD; and
applying the second effect to the second image at the second IPLD.
32. The method of
the first image and the first final image are visualized as separate images on the visual display device; and
the second image and the second final image are visualized as separate images on the visual display device.
33. The method of
the first image and the first final image are visualized as one image on the visual display device; and
the second image and the second final image are visualized as one image on the visual display device.
35. The method of
36. The method of
38. The method of
the first scene comprises a plurality of sections of a collage;
the first image originated for a first one of the second-type multiparameter lights in the first image originating step is a first one of the sections of the collage;
and the first image originated for a second one of the second-type multiparameter lights in the first image originating step is a second one of the sections of the collage.
39. The method of
40. The method of
41. The method of
projecting the first section of the collage from the first second-type multiparameter light; and
projecting the second section of the collage from the second second-type multiparameter light.
42. The method of
the first image for each of the second-type multiparameter lights is unique; and
the second image for each of the second-type multiparameter lights is unique.
43. The method of
45. The method of
46. The method of
the image parameter of the first IPLD is an image bank;
the step of evoking a graphics toot comprises displaying an image editor for the image bank on a display screen of the central controller; and
the step of displaying a plurality of images comprises displaying an image library.
47. The method of
the central controller comprises a first display screen and a second display screen;
the IPLD parameter displaying step comprises displaying the parameters for each of the IPLDs on the first display screen;
the evoking step comprises displaying the graphics toot on the second display screen;
and the images displaying step comprises displaying the images for the graphics tool on the second display screen.
48. The method of
the central controller comprises only one display screen;
the IPLD parameter displaying step comprises displaying the parameters for each of the IPLDs on the display screen;
the evoking step comprises displaying the graphics tool on the display screen;
and the images displaying step comprises displaying the images for the graphics tool on the display screen.
49. The method of
providing for selection of at least one parameter of the gobo-type multiparameter light at the central controller; and
varying the selected parameter.
51. The method of
the image parameter of the first IPLD is a first image bank;
the step of evoking a first graphics tool comprises displaying an image editor for the first image bank on a display screen of the central controller;
the step of displaying a plurality of images for the first graphics tool comprises displaying a first image library;
the image parameter of the second IPLD is a second image bank;
the step of evoking a second graphics tool comprises displaying an image editor for the second image bank on a display screen of the central controller; and
the step of displaying a plurality of images for the second graphics tool comprises displaying a second image library.
52. The method of
53. The method of
54. The method of
acquiring the images for the first graphics tool from image storage local to the central controller; and
acquiring the images for the second graphics tool from image storage local to the central controller.
55. The method of
acquiring the images for the first graphics tool from image storage remote from the central controller; and
acquiring the images for the second graphics tool from image storage remote from the central controller.
56. The method of
the central controller comprises a first display screen and a second display screen;
the IPLD parameter displaying step comprises displaying the parameters for each of the IPLDs on the first display screen;
the first graphics tool evoking step comprises displaying the first graphics tool on the second display screen;
the step of displaying images for the first graphics tool comprises displaying images for the first graphics tool on the second display screen;
the second graphics tool evoking step comprises displaying the second graphics tool on the second display screen; and
the step of displaying images for the second graphics tool comprises displaying images for the second graphics tool on the second display screen.
57. The method of
the central controller comprises only one display screen;
the IPLD parameter displaying step comprises displaying the parameters for each of the IPLDs on the display screen;
the first graphics tool evoking step comprises displaying the first graphics tool on the display screen;
the step of displaying images for the first graphics tool comprises displaying images for the first graphics tool on the display screen;
the second graphics tool evoking step comprises displaying the second graphics tool on the display screen;
and the step of displaying images for the second graphics tool comprises displaying images for the second graphics tool on the display screen.
58. The method of
providing for selection of at least one parameter of the gobo-type multiparameter light at the central controller; and
varying the selected parameter.
59. The method of
the step of displaying images for the first graphics tool comprises displaying at least a first sectional image of a collage;
the step of displaying images for the second graphics tool comprises displaying at least a second sectional image of the collage;
the step of originating an image for the image parameter of the first IPLD comprises furnishing the first sectional image to the first IPLD; and
the step of originating an image for the image parameter of the second IPLD comprises furnishing the second sectional image to the second IPLD.
61. The method of
0. 64. The stage lighting controller of claim 63 further comprising a first camera input.
0. 65. The stage lighting controller of claim 63 wherein the first camera image is derived from the first one of the second plurality of multiparameter lights.
0. 66. The stage lighting controller of claim 63 comprising means for controlling routing of an image from the first one of the second plurality of multiparameter lights to a second one of the second plurality of multiparameter lights.
0. 67. The stage lighting controller of claim 63 further comprising means for mimicking the effects applied to the first image by the first one of the second plurality of multiparameter lights, to achieve the final image.
0. 69. The stage lighting controller of claim 68 further comprising means for displaying the library images as thumbnail images by the first display device, wherein:
the library images include still images and continuous video images; and
the thumbnail images include likenesses of the still images and the continuous video images, and have an identifying scheme for displaying to an operator on the first display device a still image identifier for the thumbnails of the still images, and a continuous video image identifier for the continuous video images.
0. 70. The stage lighting controller of claim 68 wherein:
the library images include camera images; and
the thumbnail images include likenesses of the camera images, and have an identifying scheme for displaying to the operator on the first display device a camera image identifier for the thumbnails of the camera images.
0. 71. The stage lighting controller of claim 68 further comprising a first camera input.
0. 72. The stage lighting controller of claim 71 wherein the first image is a camera image that is derived from the first camera input.
0. 73. The stage lighting controller of claim 68 wherein the first image is a camera image that is derived from one of the second plurality of multiparameter lights.
0. 74. The stage lighting controller of claim 68 further comprising means for updating the image library by the addition of the plurality of sectional images.
0. 75. The stage lighting controller of claim 68 further comprising means for identifying a first one of the plurality of sectional images with a first identifier, and a second one of the plurality of sectional images with a second identifier, the first and second identifiers being different.
0. 77. The stage lighting controller of claim 76 wherein the identifying scheme comprises a color scheme.
0. 78. The stage lighting controller of claim 76 wherein the identifying scheme comprises a border scheme.
0. 79. The stage lighting controller of claim 76 wherein the identifying scheme comprises written identification in proximity to the thumbnails.
0. 80. The stage lighting controller of claim 76 further comprising means for selecting a first thumbnail and dragging the selected first thumbnail.
0. 81. The stage lighting controller of claim 76 further comprising means for selecting a first thumbnail and dropping the selected first thumbnail.
0. 83. The stage lighting controller of claim 82 further comprising means for mimicking application of the effects to the mixed image by the first one of the second plurality of multiparameter lights to achieve the final image.
0. 84. The stage lighting controller of claim 82 further comprising a communications port for transmitting the mixed image to the first one of the second plurality of multiparameter lights.
0. 85. The stage lighting controller of claim 82 further comprising means for scrolling the plurality of library images.
0. 86. The stage lighting controller of claim 82 further comprising means for selecting two or more of the library images to derive the mixed image by dropping representations of the library images.
0. 88. The stage lighting controller of claim 87 further comprising:
an image library comprising a second video image; and
means for storing the first video image in the image library with the second video image.
0. 89. The stage lighting controller of claim 87 wherein the sectional images generating means is a collage generator comprising means for enabling an operator to specify a number of the sectional images that form the representation of the first video image.
0. 90. The stage lighting controller of claim 89 further comprising a display device for enabling an operator to interact with the collage generator.
0. 91. The stage lighting controller of claim 88 further comprising:
a display device; and
means for displaying the first and second video images in the image library as thumbnail images by the first display device.
0. 92. The stage lighting controller of claim 88 further comprising means for scrolling the image library.
0. 93. The stage lighting controller of claim 88 further comprising means for layering the image library.
0. 94. The stage lighting controller of claim 90 further comprising a final image area for displaying a visualization of a final image to an operator by the display device.
0. 95. The stage lighting controller of claim 88 further comprising means for providing a scene notation for display.
0. 96. The stage lighting controller of claim 87 further comprising means for specifying a number of the dmx controllable lighting devices to be involved in making the representation of the first video image.
0. 97. The stage lighting controller of claim 88 further comprising means for mixing the first video image and the second video image.
0. 98. The stage lighting controller of claim 87 further comprising means for sizing the first video image to fit a particular aspect ratio.
0. 99. The stage lighting controller of claim 87 further comprising means for cropping and trimming the first video image.
0. 100. The stage lighting controller of claim 87 further comprising means for operating with a network hub.
0. 101. The stage lighting controller of claim 87 wherein the first input is a network port.
0. 102. The stage lighting controller of claim 87 wherein the first input is a peripheral port.
0. 104. The stage lighting controller of claim 103 further comprising:
an image library comprising a second video image; and
means for storing the first video image in the image library with the second video image.
0. 105. The stage lighting controller of claim 103 wherein the sectional images generating means is a collage generator comprising means for enabling an operator to specify a number of the sectional images that form the representation of the first video image.
0. 106. The stage lighting controller of claim 105 further comprising a display device for enabling an operator to Interact with the collage generator.
0. 107. The stage lighting controller of claim 104 further comprising:
a display device; and
means for displaying the first and second video images in the image library as thumbnail images by the first display device.
0. 108. The stage lighting controller of claim 104 further comprising means for scrolling the image library.
0. 109. The stage lighting controller of claim 104 further comprising means for layering the image library.
0. 110. The stage lighting controller of claim 106 further comprising means for providing a scene notation for display by the display device.
0. 111. The stage lighting controller of claim 103 further comprising means for specifying a number of the addressable lighting devices to be involved in making the representation of the first video image.
0. 112. The stage lighting controller of claim 104 further comprising means for mixing the first video image and the second video image.
0. 113. The stage lighting controller of claim 103 further comprising means for sizing the first video image to fit a particular aspect ratio.
0. 114. The stage lighting controller of claim 103 further comprising means for cropping the first video image.
0. 115. The stage lighting controller of claim 103 further comprising means for operating with a network hub.
0. 116. The stage lighting controller of claim 103 wherein the first input is a network port.
0. 117. The stage lighting controller of claim 103 wherein the first input is a peripheral port.
0. 118. The stage lighting controller of claim 103 wherein the first video image is a camera image.
0. 119. The stage lighting controller of claim 103 further comprising a display device, wherein images shown on the display device can be positioned on the display device by an operator.
0. 120. The stage lighting controller of claim 103 further comprising means for selecting which ones of the plurality of addressable lighting devices to involve in making the collage.
0. 121. The stage lighting controller of claim 103 further comprising a means for communicating a dmx signal.
0. 123. The stage lighting controller of claim 122 wherein at least a portion of the plurality of library images comprise images of a second image type, the second image type images being camera images.
0. 124. The stage lighting controller of claim 122 wherein the first one of the plurality of thumbnail images displayed on the first display device is moveable to multiple locations on the first display device by dragging.
0. 125. The stage lighting controller of claim 122 wherein the first one of the plurality of thumbnail images displayed on the first display device is moveable to multiple locations on the first display device by dropping.
0. 126. The stage lighting controller of claim 122 wherein the first one of the plurality of thumbnail images displayed on the first display device is moveable to multiple locations on the first display device by scrolling.
0. 127. The stage lighting controller of claim 122 wherein the image library comprises means for sourcing images from the memories of any of the plurality of addressable multiparameter lights.
0. 128. The stage lighting controller of claim 122 comprising means for controlling routing of an image from the first one of the plurality of addressable multiparameter lights to a second one of the plurality of addressable multiparameter lights.
0. 129. The stage lighting controller of claim 122 further comprising a means for producing sectional images from a first one of the library images to be displayed as a collage by a portion of the plurality of addressable multiparameter lights.
0. 131. The stage lighting controller of claim 130 wherein the image library comprises means for sourcing images from the memories of any of the plurality of addressable multiparameter lights.
0. 132. The stage lighting controller of claim 130 comprising means for controlling routing of an image from a first one of the plurality of addressable multiparameter lights to a second one of the plurality of addressable multiparameter lights.
0. 133. The stage lighting controller of claim 130 further comprising means for selecting a type of collage from a list of predefined collages.
0. 137. The stage lighting controller of claim 136 further comprising means for defaulting parameter values for the second plurality of multiparameter light fixture types.
0. 138. The stage lighting controller of claim 136 further comprising means for evoking an image editor when a first one of the second plurality of multiparameter light identifiers is selected.
0. 139. The stage lighting controller of claim 136 further comprising means for manipulation of a camera image.
0. 142. The stage lighting controller of claim 141 further comprising means for an operator to specify how many sectional images comprise the collage.
0. 143. The stage lighting controller of claim 142 wherein a number of image projection devices make up the collage, further comprising means for displaying a plurality of tiles equal in number to the number of image projection devices that make up the collage.
0. 144. The stage lighting controller of claim 141 further comprising:
a display device; and
means for displaying the first and second continuous video images in the image library as thumbnail images by the first display advice.
0. 145. The stage lighting controller of claim 141 further comprising means for sizing the first continuous video image to fit a particular aspect ratio.
0. 146. The stage lighting controller of claim 141 further comprising means for cropping the first continuous video image.
|
1. Field of the Invention
The present invention relates to lighting systems, and more particularly to the control of images in a lighting system that includes multiparameter lights having an image projection lighting parameter.
2. Description of the Related Art
Lighting systems are formed typically by interconnecting many light fixtures by a communications system and providing for operator control from a central controller. Such lighting systems may contain multiparameter light fixtures, which illustratively are light fixtures having individually remotely adjustable parameters such as beam size, color, shape, angle, and other light characteristics. Multiparameter light fixtures are widely used in lighting industry because they facilitate significant reductions in overall lighting system size and permit dynamic changes to the final lighting effect. Applications and events in which multiparameter light fixtures are used to great advantage include showrooms, television lighting, stage lighting, architectural lighting, live concerts, and theme parks. Illustrative multiparameter light devices are disclosed in the product brochure entitled “The High End Systems Product Line 2001” and are available from High End Systems, Inc. of Austin, Tex.
To program the multiparameter lights, the operator inputs to a keyboard of the lighting central controller (or central controller) to send commands over the communications system to vary the parameters of the lights. When the operator of the lighting central controller has set the parameters of the multiparameter lights to produce the desired effect, the operator has produced a “scene.” Each scene with its corresponding parameter values is then stored in the memory of the central controller for later recall by the operator or as an automated recall. As many as 100 or more scenes may be put together to make a “show”.
Prior to the advent of relatively small commercial digital controllers, remote control of light fixtures from a central controller was done with either a high voltage or low voltage current; see, e.g., U.S. Pat. No. 3,706,914, issued Dec. 19, 1972 to Van Buren, and U.S. Pat. No. 3,898,643, issued Aug. 5, 1975 to Ettlinger. With the widespread use of digital computers, digital serial communications has been adopted as a way to achieve remote control; see, e.g., U.S. Pat. No. 4,095,139, issued Jun. 13, 1978 to Symonds et al., and U.S. Pat. No. 4,697,227, issued Sep. 29, 1987 to Callahan.
A multiparameter light has several parameters that can be adjusted by remote control. A central controller is used in combination with a communication system to remotely control the multiparameter lights. Typically, the central controller is programmed in advance by an operator to control the lighting system. An example of a widely used central controller for multiparameter lights is the Whole Hog II, which is manufactured by Flying Pig Systems of 53 Northfield Road, London W13 9SY, and disclosed in a product brochure entitled “Whole Hog II, Lighting Control Workstation” available from Flying Pig Systems. Examples of some of the parameters that can be remotely controlled are position, color, pattern, iris, dimming, and shutter to name a few. Multiparameter lights can have over 12 parameters that are controlled by the central controller. Each multiparameter light can be set to respond to a specific address in the protocol used over the digital serial communication system. Typically the multiparameter light is first addressed by an operator of the central controller and next a parameter of the multiparameter light is adjusted from the central controller by the operator.
Multiparameter lights typically use metal or glass masks to act as a slide for the projection of an image. The metal or glass masks made for the lights are referred to in the industry as “gobos”. Typically a gobo is placed into the light path within the housing of the multiparameter light by a motor or other type of actuator. The actuator turns a wheel referred to as a “gobo wheel” that contains multiple apertures, and each aperture contains a gobo that can be placed into the light path. The actuator is controlled by the electronic system of the multiparameter light in response to commands received over the communication system from the central controller. Each gobo aperture in some multiparameter lights can rotate the gobo itself in the path of the light. Additional description of gobo technology can be found in my U.S. Pat. No. 5,402,326 entitled “Gobo holder for a lighting system,” which issued Mar. 28, 1995.
A type of advanced multiparameter light fixture which is referred to herein as an image projection lighting device (“IPLD”) uses a light valve to project images onto a stage or other projection surface. A light valve, which is also known as an image gate, is a device such as a digital micro-mirror (“DMD”) or a liquid crystal display (“LCD”) that forms the image that is projected. Other types of light valves are LCOS and MEMS. U.S. Pat. No. 6,057,958, issued May 2, 2000 to Hunt, discloses a pixel based gobo record control format for storing gobo images in the memory of a light fixture. The gobo images can be recalled and modified from commands sent by the control console. U.S. Pat. No. 5,829,868, issued Nov. 3, 1998 to Hutton, discloses storing video frames as cues locally in a lamp, and supplying them as directed to the image gate to produce animated and real-time imaging. A single frame can also be manipulated through processing to produce multiple variations. Alternatively, a video communication link can be employed to supply continuous video from a remote source.
U.S. Pat. No. 5,828,485, issued Oct. 27, 1998 to Hewlett, discloses the use of a camera with a DMD equipped lighting fixture for the purpose of following the shape of the performer and illuminating the performer using a shape that adaptively follows the performer's image. The camera acquiring the image preferably is located at the lamp illuminating the scene in order to avoid parallax. The image can be manually investigated at each lamp or downloaded to some central processor for this purpose. This results in a shadowless follow spot.
Since multiparameter light fixtures of the type that project an image using a gobo typically use gobo wheels to place various gobos into the light path, and since a gobo wheel typically has several positions, it is common for the central controller to display to the operator a position number of the gobo wheel on some type of visual display device. The visual display device may be a CRT monitor or LCD touch screen or the like. The gobo parameter selectively varied with the use of the gobo wheel of the prior art typically is referred to as the gobo parameter or gobo position parameter.
Multiparameter lights 120 and 122 have several parameters that can be adjusted from the central controller 110. For simplification, lights 120 and 122 are considered the same fixture type and include the following variable parameters: pan, tilt, color, gobo, gobo rotate, and intensity. The operator of the central controller sets the correct fixture type within the central controller software, and sets up the central controller to control the two lights 120 and 122.
The parameter information shown on the visual display screen 200 is condensed for simplicity. Typically, a display would include many more fixtures of different fixture types. It is also known to display the duration time of a scene and any crossfade time between scenes. For example the time that a first scene fades into a second scene.
A typical example of bow the visual display of the gobo wheel position number may be used by the operator during advanced programming of the central controller is as follows. The operator first selects the operating address of one of the multiparameter light fixtures to modify a parameter. Next the operator modifies the chosen parameter. For example, the operator sees on the display device screen a list of parameters that can be selected for modification of the particular light chosen, and then selects a parameter to modify such as “color wheel.” If the color wheel happens to have ten apertures to choose from, the operator may choose aperture 3 which happens to be green. The operator may continue the programming by addressing other multiparameter lights and change the color parameter to aperture 3 or even other apertures. The operator typically sees the aperture number on the visual display device screen, but might instead see the colors of the apertures instead of just numbered apertures if the central controller has in its memory the “fixture type” for the particular light being controlled. Central controllers like the Whole Hog II are capable of prestoring “fixture types” in the controllers memory. A fixture type is all the particular attributes of a specific manufacturers brand or model of multiparameter light.
Unfortunately, one problem with displaying aperture colors from information pre-stored at the central controller arises when, for example, a service technician removes the green color filter of aperture 3 of a specific fixture type and replaces it with a custom color. Now unless the fixture type information is updated at the central controller, the visual display device screen at the central controller will still show green for aperture 3 instead of the custom color.
Gobo wheel aperture selection in the prior art has problems similar to those involved in color wheel aperture selection as described above. The gobos that are mounted to the gobo wheel apertures of a particular fixture type do not change unless a service technician exchanges a gobo from one of the apertures with a custom gobo that may have been specified by the operator or show lighting designer. The gobo pattern images of the prior art cannot be changed to different patterns electronically like images can be changed when IPLD lighting devices change images using light valves.
The use of IPLDs in a lighting system avoids some of the problems with the types of multiparameter lights that use color wheels and gobos but introduces new problems. Unlike multiparameter lights that have a fixed number of gobos that the operator can easily choose from when programming an IPLD from a central controller, IPLD lighting devices are capable of being used to project a wide range of different images, some of which may be pre-stored internally but some of which may not be pre-stored. The techniques used by conventional central controllers to program multiparameter lights do not work as effectively as might be desired for programming IPLD lighting devices. Moreover, while the type of light fixture that provides a shadowless follow spot function and other types of light fixture that similarly store images internally for projection have value in the lighting industry, these types of light fixtures and/or the lighting systems in which they operate all limit the operator of the lighting system to carrying out image projection operations on the basis of individual light fixtures. Moreover, having to store images at the light fixture is very limiting to the user of the device, since the operator must upload images to the light fixture from a computer before placing the light fixture into service.
An example of a type of stage lighting projection system that uses a double mirror orbital head and a video projector is disclosed in International Publication No. WO 02/21832, published Mar. 14, 2002. The system uses an image processor to correct for the expected rotation and other distortion effects that would otherwise result from an image passing through the double mirror head. Image data from an image store is provided to the image processor along a video link. Orientation of the double mirror head is effected by a signal from a computer controller to the head over a DMX link. The controller then directs a DMX processing signal to the image processor, which processes the image data so as to introduce a correction for the expected rotation and other distortion effects. The controller also directs a DMX signal to the head to effect a desired focus and zoom. The processed image data from the image processor then is provided via a video link to the image projector, so that the image is projected with desired orientation, focus, zoom and appearance. A similar system known as the Catalyst™ system is available from High End Systems, Inc. of Austin, Tex., and is described in the Catalyst system brochure. While the Catalyst system has met with some success, use of the image store is cumbersome and generally unfamiliar to many operators of lighting systems, and increases the setup complexity of the lighting system.
A multiprojector system in which an image is projected by plural projectors is disclosed in U.S. Pat. No. 5,988,817. The multiprojector system uses a number of “image-inputting” devices, one for each image that is to be projected by the projectors. The images to be projected are furnished to a multiple video processor, from which they are directed to the projectors. Where an image is to be enlarged and projected by two, four or more projectors, the image is enlarged in the multiple video processor before being supplied to the projectors. Disadvantageously, the use of multiple image-inputting devices and a multiple video processor is generally unfamiliar to many operators of lighting systems, and increases the setup complexity of the lighting system.
A need exists for a central controller that can more easily program the image parameter of IPLD lights from the central controller, yet provide a wide range of images.
A need exists for a central controller that is compatible with multiparameter lights with fixed gobo wheels as well as IPLDs with infinitely variable images, and that is reasonably intuitive to the operator of the lighting system.
A need exists for a method of programming of the IPLDs by an operator that is reasonably expedient and flexible so as to reduce labor time and allow creativity.
A need exists generally to improve the various problems described above in the “Background” section, as well as other problems in the prior art.
Advantageously, a central controller and lighting system in accordance with the present invention is capable of operating multiple IPLDs as well as other types of multiparameter lights. Advantageously, the structure of the programming screen is similar to that of earlier programming screens to help the operator of the central controller learn quickly. Advantageously, a central controller of the present invention may be designed to accommodate any of a variety of digital communications system.
One or more of these perceived needs is/are addressed by each of the various embodiments of the present invention. One embodiment of the present invention is a method of controlling a lighting system having at least a plurality of IPLDs, comprising displaying a first plurality of parameters of a first one of the IPLDs at a central controller, the first plurality of parameters including a first image parameter; displaying a first plurality of images at the central controller; and establishing at the central controller at least one first image for the first image parameter from the first plurality of images.
Another embodiment of the present invention is a method of controlling a lighting system having at least a plurality of IPLDs, comprising displaying a first plurality of parameters of a first one of the IPLDs at a central controller, the first plurality of parameters including a first image parameter; displaying a first plurality of images at the central controller in response to an operator selection of the first image parameter; and originating from the central controller at least one first image for the first image parameter from the first plurality of images.
A further embodiment of the present invention is a method of operating a lighting system that includes a central controller and a plurality of image projection lighting devices (“IPLDs”), comprising maintaining a plurality of parameters for each of the IPLDs at the central controller, the parameters for each of the IPLDs including at least one image parameter; originating a first image from the central controller for a first one of the IPLDs, the first image being defined by the image parameter of the first IPLD; and originating a second image from the central controller for a second one of the IPLDs, the second image being defined by the image parameter of the second IPLD. The first image and the second image are different.
Another embodiment of the present invention is a method of operating a lighting system that includes a central controller and a plurality of image projection lighting devices (“IPLDs”), comprising originating a first image from the central controller for a first one of the IPLDs; projecting the first image from the first IPLD; originating a second image from the central controller for a second one of the IPLDs, the second image being different than the first image; and projecting the second image from the second IPLD. The first image and the second image are selected from a plurality of images stored at the central controller, the plurality of images having have an identifying scheme for operator visualization of the images.
Another embodiment of the present invention is a lighting system comprising a plurality of multiparameter lights, including at least first and second image projection lighting devices (“IPLDs”); a central controller; and a communications system interconnecting the central controller with the multiparameter lights. The central controller comprises a memory containing a plurality of images; and a programmable component for selecting a first one of the images for projection by the first IPLD and for selecting a second one of the images for projection by the second IPLD.
A further embodiment of the present invention is a method of operating a lighting system that includes a central controller and a plurality of image projection lighting devices (“IPLDs”), comprising originating a first image from the central controller for a first one of the IPLDs, the first image resulting from a crossfade between two different images; projecting the first image from the first IPLD; originating a second image from the central controller for a second one of the IPLDs, the second image being different than the first image and resulting from a crossfade between two different images; and projecting the second image from the second IPLD. The first image and the second image are respectively formed from a crossfade between at least two of a plurality of images stored at the central controller.
Another embodiment of the present invention is a central controller for controlling a lighting system comprising a plurality of image projection lighting devices (“IPLDs”), each having a plurality of parameters including an image parameter. This central controller comprises a display screen; a memory containing a plurality of images; a first programmable component for creating a first display on the display screen of at least some of the images; a second programmable component for forming a first image from the first display, under operator control, for an image parameter of a first one of the IPLDs; a third programmable component for creating a second display on the display screen of at least some of the images; and a fourth programmable component for forming a second image from the second display, under operator control, for an image parameter of a second one of the IPLDs. The first image and the second image are different.
Another embodiment of the present invention is a method of controlling a lighting system, the lighting system having a central controller and at least a plurality of IPLDs and each of the IPLDs having a plurality of parameters including an image parameter. This method comprises selecting a first one of the IPLDs at the central controller; editing the image parameter of the first IPLD at the central controller to visualize a first image on a visual display device of the central controller; establishing a first effect for the first image; visualizing a first final image on the visual display device, the first final image comprising the first image with the first effect as being projected by the first IPLD; selecting a second one of the IPLDs at the central controller; editing the image parameter of the second IPLD at the central controller to visualize a second image on the visual display device; establishing a second effect for the second image; and visualizing a second final image on the visual display device, the second final image comprising the second image with the second effect as being projected by the second IPLD.
A further embodiment of the present invention is a method of operating a lighting system that includes a central controller and a plurality of image projection lighting devices (“IPLDs”), comprising maintaining a plurality of parameters for each of the IPLDs at the central controller, the parameters for each of the IPLDs including at least one image parameter; originating a first image from the central controller for a first one of the IPLDs, the first image being defined by the image parameter of the first IPLD; and originating a second image from the central controller for a second one of the IPLDs, the second image being defined by the image parameter of the second IPLD. The first image and the second image are first and second sections of a collage.
Another embodiment of the present invention is a method of operating a lighting system that includes a central controller, a plurality of first-type multiparameter lights having a plurality of parameters except for an image parameter, and a plurality of second-type multiparameter lights having a plurality of parameters including an image parameter. This method comprises varying the parameters for each of the first-type multiparameter lights at the central controller and varying the parameters for each of the second-type multiparameter lights at the central controller. For each of the second-type multiparameter lights, varying the particular image parameter thereof comprises originating a first image from the central controller for a first scene, the first image being defined by the particular image parameter; and originating a second image from the central controller for a second scene, the second image being defined by the particular image parameter.
A further embodiment of the present invention is a method of operating a lighting system that includes a central controller and a plurality of image projection lighting devices (“IPLDs”). This method comprises displaying a plurality of parameters for each of the IPLDs at the central controller, the parameters including at least one image parameter; evoking a graphics tool at the central controller in response to selection of one of the IPLDs by operator action; displaying a plurality of images for the graphics tool at the central controller; and originating an image from the central controller for the image parameter of the selected IPLD, in response to operator action with the graphics tool, from the plurality of images.
Another embodiment of the present invention is a method of operating a lighting system that includes a central controller and a plurality of image projection lighting devices (“IPLDs”). This method comprises displaying a plurality of parameters for each of the IPLDs at the central controller, the parameters including at least one image parameter; evoking a first graphics tool at the central controller in response to selection of a first one of the IPLDs thereof by operator action; displaying a plurality of images for the first graphics tool at the central controller; originating an image from the central controller for the image parameter of the first IPLD, in response to operator action with the first graphics tool, from the plurality of images; evoking a second graphics tool at the central controller in response to selection of a second one of the IPLDs by operator action; displaying a plurality of images for the second graphics tool at the central controller; and originating an image from the central controller for the image parameter of the second IPLD, in response to operator action with the second graphics tool, from the plurality of images for the second graphics tool.
A further embodiment of the present invention is a method of operating a lighting system that includes a central controller and a plurality of image projection lighting devices (“IPLDs”). This method comprises displaying a plurality of parameters for each of the IPLDs at the central controller, the parameters including at least one image parameter; evoking a first graphics tool at the central controller in response to selection of a first one of the IPLDs by operator action; displaying a plurality of images for the first graphics tool at the central controller; originating a first sectional image of a collage from the central controller for the image parameter of the first IPLD, in response to operator action with the first graphics tool, from the plurality of images; evoking a second graphics tool at the central controller in response to selection of a second one of the IPLDs by operator action; displaying a plurality of images for the second graphics tool at the central controller, including a second sectional image of the collage; and originating a second sectional image of the collage from the central controller for the image parameter of the second IPLD, in response to operator action with the second graphics tool, from the plurality of images for the second graphics tool.
Another embodiment of the present invention is a method of controlling a lighting system comprising a plurality of multiparameter lights, including gobo-type multiparameter lights and IPLD-type multiparameter lights, controllable from a central controller. This method comprises storing at least one image library at the central controller; displaying at the central controller an identifier and a plurality of parameters for each of the multiparameter lights, wherein the parameters for each of the IPLD-type multiparameter lights includes an image parameter; displaying an image editor at the central controller in response to an operator selection of any of the IPLD-type multiparameter lights, the image editor including an image library area having a plurality of images, a mixer area, and an image area; selecting at least two of the plurality of images from the image library in response to an operator action; mixing the selected images in the mixer area to obtain an output image; displaying the output image in the image area; and transmitting the output image from the central controller to the IPLD.
A lighting system includes a central controller and a plurality of image projection lighting devices, or “IPLDs.” The central controller is preferably microprocessor-based and programmable, and includes at least one visual display device. One type of display at the central controller is the image parameters for the IPLDs, and this display is used to evoke a display of graphics tools at the central controller for originating images. Images originating at the central controller are transmitted to the IPLDs without necessarily being stored in the IPLDs for later recall. An image is considered as originating from the central controller if it is created from one or more images selected from a plurality of images displayed in a graphical form at the central controller. Transmission of the image file for the final image may be performed by or controlled by the central controller. The process of creating the final image may, if desired, involve manipulating the selected image or images used to create the final image, by or under control of the central controller. The sources of the selected images may be local to the central controller, such as from a hard drive or other memory of the central controller, from peripherals of the central controller such as a video disk player, CD-ROM drive, DVD drive, tape drive, and so forth, from networked devices such as servers, cameras, and large capacity storage devices, from the Internet, or from any combination of the foregoing. The central controller is provided with one or more image editors. The image editors include tools for selecting one or more images from one or more image libraries and for manipulating the selected image or images in various ways, such as in any one or more of the following: mixing two or more images, adding special effects, trimming, resizing, and so forth. The outputs of the image editors, which are referred to as “image banks,” are routed to multiple multiparameter lights (including IPLDs) in accordance with assignments made by the operator of the central controller. The central controller may have only one visual display device, or may have two or more visual display devices for displaying the image editors and to provide other information and visual feedback to the operator. Suitable visual display devices include CRT screens, LCD and TFT screens, personal viewing devices, display projectors, and other types of devices capable of showing information to the operator. The image-editing central controller allows the operator to control all types of multiparameter lights, including conventional gobo light fixtures as well as IPLDs, from a single point with intuitiveness and expediency, thereby enabling the operator to be both more productive as well as more creative.
Preferably the central controller is provided with sufficient processing power and memory capability to store and manipulate a great many image files to the desired degree of resolution. However, in an alternative embodiment, the image files may be stored on a physically separate computer or server that is suitably networked to the central controller. In this alternative embodiment, the full image files or reduced image files are rapidly transmitted to the central controller for selection and possibly manipulation by the operator using the graphics tools at the central controller. The final full resolution image may be created at and transmitted from the central controller, or may be created at and transmitted from the separate computer or server in accordance with commands from the central computer based on operator actions with the graphics tools. The separate computer or server in this alternative embodiment preferably operates completely transparently to the operator.
The central controller also uses a collage display screen of a collage generator to allow the operator to select an image to collage as well as determine how many sectional images will be involved in a collage. The term “collage” as used herein means a single image made from multiple projections from IPLDs. The sectional images for the multiple projections may be any type of images, but preferably images originating from one image library. They may be created by the operator using the collage generator, or may be predefined. Several IPLDs are collaborated to project a single image from the several sectional images. Each IPLD projects a separate sectional image, or a partial image of the final image. In this way one very large projection can be made using multiple sectional images from multiple IPLDs. This is an advantage as several IPLD can act together to project one larger image, and the total luminous output of the single image is multiplied by the number of IPLDs.
Illustratively, multiparameter lights 320 and 322 are of the IPLD type. Communication line 316 communicates with a network hub 318 that in turn relays communication via lines 319 and 321 to the IPLDs 320 and 322 respectively. Communication line 116 extends from the central controller 310 to the multiparameter light 120, and communication line 121 extends between the multiparameter light 120 and the multiparameter light 122. Although the central controller 310 is shown as having two communication lines 116 and 316 which may use two different communication systems, alternative central controller may be restricted to just one communication line, or may be expanded to include more than two communication systems or signal lines to various individual or groups of lighting fixtures. For example, each IPLD may, if desired, be linked to the central controller over a dedicated communications line. Moreover, the lighting system 300 may include other types of lighting devices, including the DMD equipped lighting fixtures with attached camera used for following the shape of the performer as disclosed in the aforementioned Hewlett patent.
The display screen 400 arises from the set up phase. During the set up phase for the central controller 310, the operator inputs to the central controller the fixture types to be used and the number of each fixture type. For example, for the lights used in
The image editor of the display screen 500 is associated with Image Bank 1. This association is shown at 502 in
The image editor display screen 500 shows a main output area 505 of the Image Bank 1. This is what the operator first looks at to determine what the selected IPLD image parameter is assigned to. The areas 510 and 512 contain images that have been selected from a number of images shown below them in areas 530, 532, 534, 536, 538 and 540, which are thumbnail representations of full images contained in an image library. Any of the images in the image library of an image editor can be visualized by the operator. The areas 510 and 512 are used to indicate which images from the image library are selected and placed into a premixed state, and are herein referred to as premix windows. Images may be selected from the image library by dragging them into the premix windows with a mouse or trackball as is well known in the computer arts, or from an input from one of the input devices of the central controller. For convenience, one of the premix windows, for example the premix window 510, is referred to as the “A” window and is so designated by screen notation 562. The other one of the premix windows, for example the premix window 512, is referred to as the “B” window and is so designated by screen notation 564. A graphical bar-shaped “slider” cursor 560C is moved between the “A” and “B” screen notations to vary the amounts of image A and B in the premix that is sent to the main output window 505. The slider 560C is shown moved to the B notation so that the B image is fully shown on the main output area 505. This image is the image that is available as the Image Bank 1, Scene 1 image when the image parameter of the IPLD is selected to Image Bank 1 on 400 of
The image library for a particular image bank, for example, images 530, 532, 534, 536, 538 and 540 for the Image Bank 1, can be placed into the image editor by the operator in advance of doing a show and operating the fixtures. New images can be added during a show, including images acquired from cameras mounted on the IPLDs or even images downloaded from the Internet. Although the image library shown in display screen 500 of
Images that are particularly suitable for inclusion in an image library include stills, video (including movies and animations), and camera stills and movies. The image editor may mix images located in the premix windows that are still, animated (video) or from a camera. The still images may be pictures, graphics, or masks. Identifiers for the type of library image may be in the form of written identification as shown under the images 530, 532, 534, 536, 538 and 540 in the display screen 500 of
The image library may use any suitable image source such as computer files, graphic generators, networked servers and storage devices, the memories of IPLDs in the lighting system, and external inputs to the central controller such as cameras, magnetic tape, video disks, video games, CD-ROM, DVD, or the like. The image library may be set up to contain images unique to various image banks, as well as images common to two or more image banks. In this way a complete set of images or a change of some of the images is available for different image banks assigned to different IPLDs.
The central controller 310 uses image data selected by an operator from the image library to originate and send images to the IPLDs. It will be appreciated that in addition to originating image data, the central controller 310 may operate in other ways. For example, the central controller 310 may control the routing of an image from one IPLD to another or from a separate image server to an IPLD while entirely bypassing the central controller 310. When the central controller 310 originates an image, the IPLD that is projecting the image need not store the image, although it may buffer the image for communication purposes or for display purposes in a display buffer in a manner well known in the art. Buffering may also take place in a communication line during an image transfer, as is well known in the communications arts.
Although separate graphics and text display screens 350 and 375 respectively are described for the parameter adjustment of the lighting fixtures (400 of
The image library of the image editor of Image Bank 2 shown as 700 in
A display screen 800 of
The image from the Image Bank (the operator selects an image bank to vary the image parameter of an IPLD) can be further modified at the central controller, or preferably modified at the IPLD, or both. For example and as shown in display screen 400 of
Since the image from an image bank can be further manipulated with special effects preformed locally at the projecting IPLD, many variances of the original image can be commanded by the operator of the central controller. It would however be an advantage to the operator of the central controller to be able to visualize the effects that have been added to the image from the image bank on a particular IPLD on the central controller. Preferably, this would involve an additional area in the image editor, or someplace on the central controller that displays the final image as projected by the IPLD with the addition of the additional effects that have been commanded by the central controller. The effect “Image Rotate” for example has been shown as one effect for the TYPE 1 IPLD as shown in the programming display screen 400 (
Many suitable techniques may be used to end up with a final image shown at the central controller when adding effects to an image originating from the central controller. One way is to have the central controller mimic the effects added to the image that are being preformed at the IPLD and show the final image. In this technique, whatever effects are commanded by the operator of the central controller for the particular IPLD to be preformed on the main output image from the image bank are duplicated by the central controller, and the end result image displayed in the final image area.
The central controller may also be used to form a collage, and provides a collage display screen to allow the operator to select an image to collage as well as determine which and how many sectional images and which IPLDs are to be involved in making the collage.
The output image 1105 has been determined by the operator by first selecting the original image 1130 from the image library 1125 of
Also shown in
Collage sectional images may be predefined or may be created by the operator on the central controller using a collage generator display. An illustrative collage generator display 1202 is shown in
For ease of operation during programming or editing of the central controller, the operator may inquire about a collage sectional image located in an image library of an image bank by clicking on the collage sectional image itself (or by using any input device) to bring up the collage generator display that created that particular image. For example, if the operator clicks on the sectional image 1130 located in the image library 1125 of the image editor display screen 1100, the collage generator display 1202 is brought up for review.
The collage generator may be provided with a variety of additional functions. For example, suitable manipulation of an image to be placed into the collage output area of the collage generator display may include stretching the image or squeezing the image in different directions to obtain a best fit into the collage output area. Techniques for performing manipulations of images such as stretching and squeezing are well known in the computer graphic arts. Varying the proportions of an image by stretching and squeezing allows images to be placed into collage output windows that normally would have not fit because they originally did not have the correct aspect. Also the images may be cropped or trimmed as known in the art to fit a collage output area.
The description of the invention and its applications as set forth herein is illustrative and is not intended to limit the scope of the invention as set forth in the following claims. Variations and modifications of the embodiments disclosed herein are possible, and practical alternatives to and equivalents of the various elements of the embodiments are known to those of ordinary skill in the art. These and other variations and modifications of the embodiments disclosed herein may be made without departing from the scope and spirit of the invention.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3706914, | |||
3898643, | |||
4095139, | May 18 1977 | VARI-LITE, INC , A CORP OF DE | Light control system |
4697227, | Nov 19 1982 | Control system for variable parameter fixtures | |
5329431, | Jul 17 1986 | Vari-Lite, Inc. | Computer controlled lighting system with modular control resources |
5402326, | Nov 12 1993 | ELECTRONIC THEATRE CONTROLS, INC | Gobo holder for a lighting system |
5828485, | Feb 07 1996 | PRODUCTION RESOURCE GROUP, L L C | Programmable light beam shape altering device using programmable micromirrors |
5829868, | Apr 30 1991 | Vari-Lite, Inc. | High intensity lighting projectors |
5988817, | Feb 28 1997 | RDS Corporation; Tokyo Butai Shomei Co., Ltd.; Meiko-Multi Art Inc. | Multiprojection system |
6057958, | Sep 17 1997 | PRODUCTION RESOURCE GROUP, L L C | Pixel based gobo record control format |
6188933, | May 12 1997 | PRODUCTION RESOURCE GROUP, L L C | Electronically controlled stage lighting system |
6249091, | May 08 2000 | ELECTRONIC THEATRE CONTROLS, INC | Selectable audio controlled parameters for multiparameter lights |
6331756, | Sep 10 1999 | ELECTRONIC THEATRE CONTROLS, INC | Method and apparatus for digital communications with multiparameter light fixtures |
6459217, | Sep 10 1999 | ELECTRONIC THEATRE CONTROLS, INC | Method and apparatus for digital communications with multiparameter light fixtures |
6466357, | Sep 17 1997 | PRODUCTION RESOURCE GROUP, L L C | Pixel based gobo record control format |
6570348, | Sep 10 1999 | ELECTRONIC THEATRE CONTROLS, INC | Apparatus for digital communications with multiparameter light fixtures |
6605907, | Sep 10 1999 | ELECTRONIC THEATRE CONTROLS, INC | Method, apparatus and system for image projection lighting |
6664745, | Sep 10 1999 | ELECTRONIC THEATRE CONTROLS, INC | Apparatus for digital communications with multiparameter light fixtures |
6765544, | Sep 08 2000 | Wynne Willson Gottelier Limited | Image projection apparatus and method with viewing surface dependent image correction |
6930456, | Jul 26 2002 | Method and apparatus for controlling images with image projection lighting devices | |
WO221832, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
Nov 02 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Nov 03 2015 | STOL: Pat Hldr no Longer Claims Small Ent Stat |
Date | Maintenance Schedule |
Jun 19 2015 | 4 years fee payment window open |
Dec 19 2015 | 6 months grace period start (w surcharge) |
Jun 19 2016 | patent expiry (for year 4) |
Jun 19 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 19 2019 | 8 years fee payment window open |
Dec 19 2019 | 6 months grace period start (w surcharge) |
Jun 19 2020 | patent expiry (for year 8) |
Jun 19 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 19 2023 | 12 years fee payment window open |
Dec 19 2023 | 6 months grace period start (w surcharge) |
Jun 19 2024 | patent expiry (for year 12) |
Jun 19 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |