An optical fiber terminating assembly has an outer body (10), a first member (11) locatable in the outer body (10) and which carries a protruding length of optical fiber (36) which locates an alignment structure (44, 45) and a housing (12) locatable in alignment with the first member (11). The housing (12) has an access opening for receiving an optical fiber (52, 53) to be terminated so that the fiber can be located in the alignment structure in abutment with the optical fiber length (35). The housing has a compartment (47) which receives a heat responsive adhesive element (57), a saddle (58) and a resistor (59). When a current is passed through the resistor, the heat generated is transmitted by the saddle to the adhesive which melts and flows around the optical fiber (52, 53) to secure it in position in abutment with the optical fiber length (35).

Patent
   RE43542
Priority
Jun 11 2001
Filed
Jun 11 2001
Issued
Jul 24 2012
Expiry
Jun 11 2021
Assg.orig
Entity
Large
14
110
all paid
0. 29. An optical fiber terminating assembly comprising:
a housing which can receive an optical fiber to be terminated so that it is located in alignment with a length of another optical fiber, or an optoelectronic device, the housing including a compartment through which the optical fiber to be terminated can extend; an adhesive element; and a flow-causing element, said compartment for receiving said adhesive element and said flow-causing element, said flow-causing element causing the adhesive element to flow around the optical fiber to be terminated to secure it in position.
1. An optical fiber terminating assembly comprising: a housing which can receive an optical fiber to be terminated so that it is located in alignment with a length of another optical fiber, or an optoelectronic device, the housing including a compartment through which the optical fiber to be terminated can extend; a heat responsive adhesive element; and a thermally conductive element, said compartment for receiving said heat responsive adhesive element and said thermally conductive element, said thermally conductive element being coupleable to a source of energy so that heat in the thermally conductive element causes the adhesive to melt and flow around the optical fiber to secure it in position.
0. 30. An optical fiber terminating assembly comprising:
an outer body member, a first member locatable within said body member, said first member carrying a length of optical fiber which protrudes therefrom, a housing locatable in alignment with the first member, an optical fiber alignment means for receiving the end of the length of optical fiber which protrudes from the first member, said housing having an access opening for receiving an optical fiber to be terminated so that said optical fiber can be located in the alignment means so as to be aligned and abutted with the optical fiber length, said housing including a compartment through which the optical fiber to be terminated extends, said compartment being designed to receive an adhesive element and a flow-causing element which causes the adhesive to flow around the optical fiber to be terminated to secure it in position.
20. A method of terminating an optical fiber or fibers using an assembly with a housing which can receive the optical fiber to be terminated in alignment with a length of another optical fiber, or an optoelectronic device, the housing including a compartment through which the optical fiber to be terminated can extend, a heat responsive adhesive element and a thermally conductive element, the method comprising:
positioning an end of the optical fiber to be terminated in the housing so it is in alignment with the length of the other optical fiber, or optoelectronic device;
heating said thermally conductive element such that the adhesive assumes the state in which it can flow around the optical fiber to be terminated and secured in position in alignment with the optical fiber length, wherein the compartment accommodates the heat responsive adhesive element and the thermally conductive element.
11. An optical fiber terminating assembly comprising an outer body member, a first member locatable within said body member, said first member carrying a length of optical fiber which protrudes therefrom, a housing locatable in alignment with the first member, an optical fiber alignment means for receiving the end of the length of optical fiber which protrudes from the first member, said housing having an access opening for receiving an optical fiber to be terminated so that said fiber can be located in the alignment means so as to be aligned and abutted with the optical fiber length, said housing including a compartment through which the optical fiber to be terminated extends, said compartment being designed to receive a heat responsive adhesive element and a thermally conductive element, which can be coupled to a source of energy so that heat in the thermally conductive element causes the adhesive to melt and flow around the optical fiber to secure it in position.
0. 24. A fiber optic device comprising:
a plug assembly including a first end positioned opposite from a second end, the first end of the plug assembly being adapted to receive a first optical fiber;
the plug assembly including a first member through which a second optical fiber extends, the first member having an end face located at the second end of the plug assembly, the second optical fiber having a first end and a second end, the first end of the of the second optical fiber being substantially flush with the end face of the first member;
the plug assembly including a housing part positioned between the first and second ends of the plug assembly, the housing part defining one or more internal compartments, the one or more internal compartments including a first compartment and a second compartment;
an alignment component positioned within the second compartment, the alignment component for use in aligning the first and second optical fibers such that the second end of the second optical fiber abuts with an end of the first optical fiber;
an adhesive positioned within the first compartment; and
a flow-causing element carried by the plug assembly, the flow-causing element having at least a portion located within the first compartment, the first and second compartments being in fluid communication with one another such that the flow-causing element can selectively cause the adhesive to flow from the first compartment to the second compartment to secure the first and second optical fibers together within the alignment component.
2. The assembly according to claim 1, wherein said compartment accommodates said heat responsive adhesive, said thermally conductive element, and an electrically conductive element, said electrically conductive element being mounted such that when an electrical current is passed through the electrically conductive element the heat in the thermally conductive element melts the adhesive.
3. The assembly according to claim 1, wherein said compartment accommodates said heat responsive adhesive and said thermally conductive element, said compartment having access for a heat source to be coupled with the thermally conductive element.
4. The assembly according to claim 2, wherein said electrically conductive element is a resistor.
5. The assembly according to claim 1, wherein the thermally conductive element is a metallic element.
6. The assembly according to claim 1, wherein said thermally conductive element is a saddle which straddles the adhesive element.
7. The assembly according to claim 1, wherein the thermally conductive element is a ceramic saddle provided with resistive portions to which an electrical current can be applied.
8. The assembly according to claim 1, wherein the housing is formed to terminate more than one optical fiber.
9. The assembly according to claim 1, wherein the optical fiber includes a sleeve, said compartment is configured to receive a portion of the sleeve, so that the heat in said thermally conductive element causes the adhesive to melt and flow around the sleeve to secure it in position.
10. The assembly according to claim 9, wherein said compartment includes at least one groove configured to receive the portion of the sleeve of the optical fiber.
12. The assembly according to claim 11, wherein said compartment accommodates said heat responsive adhesive, said thermally conductive element, and an electrically conductive element, said electrically conductive element being mounted such that when an electrical current is passed through the electrically conductive element the heat in the thermally conductive element melts the adhesive.
13. The assembly according to claim 11, wherein said compartment accommodates said heat responsive adhesive and said thermally conductive element, said compartment having access for a heat source to be coupled with the thermally conductive element.
14. The assembly according to claim 12, wherein said electrically conductive element is a resistor.
15. The assembly according to claim 12, wherein the thermally conductive element is a metallic element.
16. The assembly according to claim 11, wherein said thermally conductive element is a saddle which straddles the adhesive element.
17. The assembly according to claim 11, wherein the thermally conductive element is a ceramic saddle provided with resistive portions to which an electrical current can be applied.
18. The assembly according to claim 11, wherein the outer body member includes one or more openings located to allow either connection of an electrical power source to said electrically conductive element, or the application of an external energy source.
19. The assembly according to claim 11, wherein the housing is formed to terminate more than one optical fiber.
21. The method according to claim 20, including sensing alignment of the optical fiber to be terminated with the optical fiber length by passing radiation along the fibers and observing the level of radiation detectable at the junction of the optical fiber and the optical fiber length.
22. The method according to claim 20, further comprising positioning a portion of a sleeve of the optical fiber in the compartment so that the step of heating causes the adhesive to flow around the sleeve to secure it in position.
23. The method according to claim 22, wherein the compartment includes at least one groove configured to receive the portion of the sleeve of the optical fiber.
0. 25. The fiber optic device of claim 24, wherein the alignment component defines a v-groove, the v-groove having a cross-sectional shape that enlarges at opposite ends of the v-groove to form funnels.
0. 26. The fiber optic device of claim 24, wherein the plug assembly includes an outer body into which the housing part and the first member can be inserted, the outer body including a resilient catch.
0. 27. The fiber optic device of claim 24, wherein the flow-causing element is a thermally conductive element.
0. 28. The fiber optic device of claim 27, wherein the thermally conductive element is in contact with a resistor.

This invention relates to an assembly for use in terminating an optical fiber or optical fibers.

The use of optical fibers as a signal-carrying medium for communications is now extremely widespread and continues to increase. Optical fibers are used not only in cables which interconnect geographically separated locations, but also within buildings themselves. As such there is a need for an optical fiber termination which can be used in the field in order to terminate an optical fiber or fibers.

According to a first aspect of the present invention there is provided an assembly for use in terminating an optical fiber comprising a housing which can receive the optical fiber to be terminated so that it is located in alignment with a length of another optical fiber, or an optoelectronic device, the housing including a compartment through which the optical fiber to be terminated can extend, the compartment being designed to receive a heat responsive adhesive element and a thermally conductive element, which can be coupled to a source of energy so that heat in the thermally conductive element causes the adhesive to melt and flow around the optical fiber to secure it in position.

According to a second aspect of the present invention there is provided an assembly for use in terminating an optical fiber comprising an outer body member, a first member locatable within the body member, the first member carrying a length of optical fiber which protrudes therefrom, a housing locatable in alignment with the first member, an optical fiber alignment means for receiving the end of the length of optical fiber which protrudes from the first member, the housing having an access opening for receiving an optical fiber to be terminated so that such fiber can be located in the alignment means so as to be aligned and abutted with the optical fiber length, the housing including a compartment through which the optical fiber to be terminated extends, the compartment being designed to receive a heat responsive adhesive element and a thermally conductive element, which can be coupled to a source of energy so that heat in the thermally conductive element causes the adhesive to melt and flow around the optical fiber to secure it in position. By heat responsive adhesive is meant a material which in the presence of heat can assume a condition in which it can flow or be caused to flow and subsequently harden again on cooling in order to secure an optical fiber in position.

The compartment may accommodate the heat responsive adhesive, the thermally conductive element, and an electrically conductive element.

The compartment may accommodate the heat responsive adhesive and the thermally conductive element, with access to the compartment being provided for a heat source. The electrically conductive element may be a resistor.

The thermally conductive element may be a metallic element. The thermally conductive element may be a saddle which straddles the adhesive element.

The outer body member may include one or more openings so located as to allow connection of an electrical power source to the electrically conductive element or thermal contact to an external heat source.

The plug assembly may be used to terminate more than one optical fiber. The assembly may include a plurality of optical fiber alignment elements. The alignment element or elements may comprise a sleeve or sleeves, a V groove or grooves, ceramic or metal ferrules, glass capillary triple rod aligners or a combination of these.

A third aspect of the present invention provides a method of terminating an optical fiber or fibers using an assembly such as described, which comprises positioning the end of an optical fiber to be terminated in the housing so it is in alignment with the length of the other optical fiber, or optoelectronic device, heating the thermally conductive element such that the adhesive assumes the state in which it can flow around the optical fiber to be terminated and secured in position in alignment with the optical fiber length.

The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying drawings and descriptive matter in which preferred embodiments of the invention are illustrated.

In the drawings:

FIG. 1 is an exploded view of an assembly in the form of a plug assembly in accordance with an embodiment of the present invention;

FIG. 2 is a perspective view of the plug assembly;

FIG. 3 is a side elevation of the plug assembly;

FIG. 4 is a section taken on the line 4-4 of FIG. 3;

FIG. 5 is a sectional view taken on the line 5-5 of FIG. 3;

FIG. 6 is a perspective view showing a modification of a component in the plug assembly of FIG. 1;

FIG. 7 is an exploded view of a modification of the embodiment of FIG. 1;

FIG. 8 is a perspective view of the modification according to FIG. 7;

FIG. 9 is a side view of the modification according to FIG. 7;

FIG. 10 is a sectional view taken on the line 10-10 of FIG. 9; and

FIG. 11 shows a modified form of saddle.

Referring to the drawings in particular, FIGS. 1 to 5 shows a plug assembly for use in terminating an optical fiber or optical fibers comprises an outer body member 10, a first member part 11 and a housing part 12. These parts can all be molded from suitable plastics materials.

The outer body member has a body portion 14 which defines therein a space of generally rectangular cross-section which can receive the first member 11. Two opposite side walls of the body portion 14 each have an aperture 16 formed therein at a generally central location. The open end of the body portion 14 has four longitudinally extending slots identified by reference number 18, the slots 18 being arranged so that one slot 18 is formed in each of the walls of the body portion 14.

The internal surface of the body portion 14 is formed with a step 20 which is illustrated in FIG. 5 of the drawings. The top wall of the body portion 14 can have a transparent section 19.

The other end of the outer body member 10 has an enlarged portion 21 which is formed integrally with the body portion 14. In the top wall of the enlarged portion 21 are formed two spaced through holes 22. Internally, as shown in FIG. 4, opposite side walls of the body 10 portion 21 have steps shown at 54. The lower wall of the portion 21 has an integrally formed resilient catch element 25 which can be used to secure the plug assembly in another part of an optical fiber connector in a manner which will be apparent to those skilled in the art.

The first member 11 comprises a main body portion 30 of generally rectangular cross-section and an end portion 31 whose dimensions are slightly greater than the body portion 30 so that a step 32 is formed around their junction. The first member 11 has secured therein a pair of optical fiber lengths 35 which at one end are substantially flush with an end face 36 of the first member and at the other end protrude from the end portion 31 as illustrated in FIG. 1. Also the first member 11 has two longitudinally extending bores formed therein, these extending for the full length of the body. The housing part 12 has a first generally channel-shaped section 40 from one end of which projects a pair of spaced pins 41, 42. The channel section 40 defines a compartment 43 which can receive a pair of optical fiber alignment elements in the form of a pair of guide sleeves 44,45 which preferably are optically transparent. Each guide sleeve has a through bore with a diameter corresponding to that of an optical fiber. The ends of each bore are widened to facilitate insertion of an optical fiber. One side wall of the channel-shaped section has an outwardly extending projection 38.

The housing part 12 also includes an end housing part 46 which is formed integrally with the channel-shaped section 40. The end part 46 defines a compartment 47. The lower surface of the compartment 47 defines two side-by-side grooves 48, 49 in which can be located the protective outer sleeves 50, 51 of two optical fibers 52, 53, which are to be terminated. The outer surface of opposite side walls of the end part 46 are stepped at 24. The end wall 55 of the end part 46 has formed therein an aperture 56. The compartment 47 can accommodate above the optical fibers 52, 53 and sleeves 50, 51 a heat responsive adhesive in the form of a glue pellet 57 which is straddled by a thermally conductive saddle 58 on top of which is located an electrical resistor 59 which has conductive pads 60, 61. The saddle may be formed from aluminum or other suitable thermally conductive material.

In order to assemble the plug assembly the pins 41, 42 on the housing part 12 are located within the longitudinally extending bores formed in the first member 11, the housing part 12 is moved towards the first member 11 and the protruding parts of the optical fibers 35 locate into one end of the sleeves 44, 45, which sit within the compartment 43 of the housing part 12.

The assembly of the glue pellet 57, the saddle 58, and the resistor 59 are located in the compartment 47 as shown in FIG. 4 of the drawings. The first member 11 and housing part 12 are moved into the outer body member 10 so that they assume the position shown in FIG. 5 of the drawings. It will be noted that this movement is arrested when the step 32 on the first member 11 comes into contact with the step 20 formed on the interior surface of the outer body member 10. Also at this point the projection 38 on the channel-shaped section 40 locates within the opening 16 to secure the body parts in position. The step 24 on the outer surface of the end part 46 sits on the step 54 on the interior of the body portion 21.

In use the optical fibers to be terminated are fed through the aperture 56 in the end wall 55 into the compartment 47 so that the outer sleeves 50, 51 of the fibers sit within the grooves 48, 49 at the base of that compartment. The optical fibers 52, 53 which protrude from the sleeves 50, 51 are fed into the end of the sleeves 44, 45 until they meet and abut with the optical fiber lengths at a position shown at 65 in FIG. 5.

Optical radiation is then passed through the optical fibers 52, 53 and the junction of the fibers 52, 53 with the optical fiber lengths 35 is detected through the transparent section 19 of the body member 10. If radiation is detectable, this is an indication that the fibers 52, 53 and optical fiber lengths 35 are not aligned and/or abutted correctly. They are then manipulated until the radiation is substantially extinguished indicating correct abutment and/or alignment. At this point an electrical power source is connected to the pads 60, 61 of the resistor by passing electrical conductive terminals of the power source through the apertures 22 formed in the portion 20 of the outer body member 10 so that they contact the pads 60, 61. Electrical current is passed through the resistor 59 which heats up the glue pellet 57 by way of the thermally conducting saddle 58. The power source is in the form of a tool which can be used to apply pressure to the resistor and hence the adhesive in order to cause it to flow around the fibers. The adhesive melts and flows around the optical fibers 52, 53. The thermally conducting saddle has a good thermal conductive bond with the resistor 59. When the current is interrupted the adhesive then resets to secure the fibers 52, 53 in their correct position in alignment and abutment with the optical fiber lengths 35.

It will be appreciated that the above described plug assembly represents a very convenient way of terminating optical fibers in the field since it is relatively simple to use.

The plug assembly as described above is used to terminate a pair of optical fibers. It will be appreciated that the assembly can be used to terminate one or several optical fibers. Also the assembly as described includes a single compartment 47 for receiving the adhesive pellet. It will be appreciated that assemblies can be constructed which have more than one compartment.

Also the assembly as described is used to terminate optical fibers so that they are aligned with optical fiber lengths 35. It will be appreciated that the basic principle of activating a heat responsive adhesive by heating it using an electrically conductive element can be applied generally to many different types of optical fiber splice or connector and not just that described in the above embodiment.

An alternative form of saddle and resistive heating element is shown in FIG. 6 of the drawings. In this arrangement the resistor and saddle are effectively combined into a single element.

The arrangement shown in FIG. 6 comprises a U-shaped member 80 which is formed from ceramic material and which, in use, straddles the glue pellet 57 in much the same way as the saddle 58 of FIG. 1.

A pair of conductive contacts 82, 83 are formed on the upper surface of the U-shaped member 80 and a resistive element 85 extends around the upper surface between the contacts 82, 83.

In use the arrangement operates in a manner similar to that described for FIGS. 1 to 5. Electrically conductive terminals of a power source are passed through the apertures 22 of the portion 21 so that they contact the contacts 82, 83 on the U-shaped member 80. Electrical current from the power source is then passed through the resistive element 85 and the heat generated is conducted through the U-shaped member 80 and melts the glue pellet which then flows around the fibers 52, 53.

In the embodiment described with reference to FIGS. 1 to 5 the alignment means for the fiber lengths 36 and the fibers 52, 53 are sleeves 44, 45.

It will be appreciated that other alignment means can be employed. One example is a V-groove type arrangement which is employed in an alternative embodiment illustrated in FIGS. 7 to 10. The connector shown in these Figures is similar to that of FIGS. 1 to 5, but the alignment is achieved using a pair of V-grooves 90, 91 formed in a component 92. The component 92 is located over the fiber ends to be aligned and abutted which are located on the base of the compartment 43. Each pair of fibers extends along one of the grooves 90, 91 in a manner which will be apparent to those skilled in the art. The component 92 is retained in position in the channel-shaped section 40 by a clip 94.

Other differences with respect to the first embodiment are the location of the aperture 16 and cooperating projection 38, the provision of slots 95 rather than holes 22 for the terminals or electrodes of the power source, and the provision of a cable clamp 96.

In the arrangements described above the resistor is accommodated in the compartment 47. It is possible to produce an embodiment in which the resistor is external to the compartment. One example is illustrated in FIG. 11. In this arrangement the saddle is formed with a thicker upper part 98 so that when located in the compartment 47, its upper surface is substantially flush with the upper edges of the walls of the compartment 47. In this example the body part 21 will have a rectangular opening corresponding in shape to the top surface of the saddle, instead of the holes 22.

In use an external resistor, which will be part of the power source, is located in that rectangular opening so that it rests against the upper surface of the saddle. When a current is passed through the resistor the adhesive is heated substantially as described before.

Alternatively the power source can be provided with a coil which can be located against or near the saddle to heat the saddle inductively.

It will be appreciated that the embodiments described are MTRJ type connectors. The basic principle of using a heat responsive adhesive in conjunction with a thermally conductive element such as saddle 58 to can be employed in other types of connector such as SC, LC, ST, LX5, MU, MTP, E200 connectors.

While specific embodiments of the invention have been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles.

Murray, David Patrick, George, Ian, Elliott, Neil David

Patent Priority Assignee Title
10345531, Feb 04 2010 CommScope Technologies LLC Fiber optic/electrical connection system
10768378, Jul 01 2014 COMMSCOPE TELECOMMUNICATIONS SHANGHAI CO LTD Fiber alignment device, ferrule device and method of manufacturing the ferrule device
10838151, Feb 04 2010 CommScope Technologies LLC Fiber optic/electrical connection system
11307363, Oct 11 2016 CommScope Technologies LLC Ferrule assembly, method for manufacturing a ferrule assembly and optical fiber fixing mold
11500161, Feb 04 2010 CommScope Technologies LLC Fiber optic/electrical connection system
11808993, Nov 19 2020 Corning Research & Development Corporation Molded ferrule holder with coupling features for optical fiber connectors
11860424, Feb 04 2010 CommScope Technologies LLC Fiber optic/electrical connection system
8480312, Feb 04 2010 CommScope EMEA Limited; CommScope Technologies LLC Ruggedized fiber optic/electrical connection system
8544171, Sep 14 2010 CommScope EMEA Limited; CommScope Technologies LLC Method of terminating a fiber optic cable
8894300, Feb 04 2010 CommScope EMEA Limited; CommScope Technologies LLC Ruggedized fiber optic/electrical connection system
9104001, Feb 04 2010 CommScope EMEA Limited; CommScope Technologies LLC Ruggedized fiber optic/electrical connection system
9146360, Sep 11 2013 Verizon Patent and Licensing Inc. V-groove ferrule mating sleeve
9459411, Feb 04 2010 CommScope EMEA Limited; CommScope Technologies LLC Ruggedized fiber optic/electrical connector
9989707, Feb 04 2010 CommScope Technologies LLC Enclosure for fiber optic/electrical system
Patent Priority Assignee Title
4158476, Dec 16 1977 ITT Corporation Single optical fiber connector
4201444, May 26 1976 ITT Corporation Single optical fiber connector
4258977, Jun 05 1978 Northern Telecom Limited Optical fibre connector
4354731, Oct 02 1979 Berg Technology, Inc Self-aligning optical fiber connector
4355862, Sep 01 1979 AMP INCORPORATED, EISENHOWER BLVD , HARRISBURG, PA A CORP OF Optical fibre termination
4447121, Nov 06 1981 AMP Incorporated Connector for fiber optic member
4477146, Mar 16 1981 AMP Incorporated Optical waveguide connector
4588256, Sep 07 1982 Minnesota Mining and Manufacturing Company Optical fiber connector
4597632, Nov 26 1982 British Telecommunications Temperature sensitive releasable optical connector
4614402, Jun 06 1983 AMP Incorporated Fiber optic connector and method of terminating fiber optic transmission members
4645296, Dec 20 1984 AMP Incorporated Optical fiber connector apparatus and method of manufacture
4648688, May 24 1982 AMP Incorporated Connector for fiber optic member including polishing fixture and method of terminating same
4666241, Sep 07 1982 AMP Incorporated Fiber optic connector and method for terminating fiber optic transmission members
4669820, Jun 05 1982 AMP Incorporated Optical fiber termination method, terminal splice and connector therefor
4679895, Aug 31 1984 AMP Incorporated Adhesiveless optical fiber connector
4735477, Dec 11 1984 AMP Incorporated Fiber optic splice terminal and method of using same
4741590, Sep 07 1982 AMP Incorporated Fiber optic connector
4741796, May 29 1985 Siemens Aktiengesellschaft Method for positioning and bonding a solid body to a support base
4746194, Jul 17 1984 Method of mounting an end portion of an optical fibre in an optical fibre connector
4756591, Feb 09 1984 Siemens Aktiengesellschaft Device for releasable coupling of an optical fiber to an optoelectronic component
4768199, Sep 05 1985 Siemens Aktiengesellschaft Mechanism for self-adjusting positioning of a semiconductor laser relative to an optical fiber to be coupled thereto
4773725, May 24 1982 AMP Incorporated Termination of a fiber optic transmission member and method therefore
4784456, May 06 1987 Berg Technology, Inc Fiber optic connector
4787699, Sep 01 1987 HE HOLDINGS, INC , A DELAWARE CORP ; Raytheon Company Fiber optic terminus
4850671, Mar 26 1987 Siemens Aktiengesellschaft Connector device for light waveguides
4856866, Sep 29 1986 American Telephone and Telegraph Company, AT&T Bell Laboratories Optical fiber connecting means
4877303, Sep 22 1988 SIECOR TECHNOLOGY, INC Fiber optic connector element & method for its use
4888081, May 29 1985 Siemens Aktiengesellschaft Device for positioning and fastening a lightwave guide to a base
4936662, Feb 10 1989 Minnesota Mining and Manufacturing Company Optical fiber connector
4950048, Jun 13 1986 Sumitomo Electric Industries, Ltd. Optical connector ferrule
4961624, Aug 29 1989 AMP Incorporated Optical fiber termination with crimping body
4964688, Sep 22 1988 SIECOR TECHNOLOGY, INC Fiber optic connector element and method for its use
4973127, May 31 1989 AT&T Bell Laboratories Multifiber optical connector and method of making same
4984865, Nov 17 1989 Minnesota Mining and Manufacturing Company Thermoplastic adhesive mounting apparatus and method for an optical fiber connector
5013122, Aug 29 1989 Teknion Furniture Systems; BIRCHGROVE INVESTMENTS INC Threaded crimping body for fiber optic termination
5020873, May 29 1985 Siemens Aktiengesellschaft Optical component for accurately locating the end face of an optical waveguide with respect to an optical device
5040867, Mar 21 1990 SIECOR TECHNOLOGY, INC Slide fit optical connector having end cap to prevent rotation
5208887, Jan 22 1990 AMP INCORPORATED, A CORP OF PA Method and apparatus for terminating a fiber-optic cable without adhesive
5249246, Jun 29 1992 RXS Schrumpftechnik-Garnituren GmbH Self-contained fiber splicing unit and method for splicing together optical fibers
5337390, Apr 21 1992 Minnesota Mining and Manufacturing Company Adhesiveless connector for optical fibers
5446819, Jul 14 1994 ITT Industries, Inc. Termination tool and method for optical fibre cables
5499310, May 28 1993 NEC Corporation Optical fiber connector with sleeve for resiliently fitting an optical fiber thereto
5621835, May 20 1994 Seikoh Giken Co., Ltd. Optical fiber assembly and manufacturing method for the same
5675683, Jan 13 1995 Seikoh Giken Co., Ltd. Optical coupler constructed using optical fiber ferrules
5682450, Jun 29 1995 Minnesota Mining and Manufacturing Company Fiber optic connector element
5717804, Apr 30 1996 Lumentum Operations LLC Integrated laser diode and fiber grating assembly
5727097, Jun 07 1996 Minnesota Mining and Manufacturing Company Pull-proof fiber optic array connector
5732174, Jun 29 1995 Minnesota Mining and Manufacturing Company Bare fiber connector
5734770, Jun 29 1995 Minnesota Mining and Manufacturing Company Cleave and bevel fiber optic connector
5748819, Apr 05 1995 Corning Optical Communications LLC Field installable optical fiber connector and an associated method of fabrication
5748822, Jul 10 1995 Fujitsu Limited Optical module for connecting optical element and optical fiber
5757997, Dec 22 1995 Minnesota Mining and Manufacturing Company Optical fiber connector using fiber spring force alignment groove
5815621, May 23 1996 Sumitomo Electric Industries, Ltd. Optical fiber connector ferrule with die and method of manufacturing same
5845026, Jun 07 1996 Minnesota Mining and Manufacturing Company Pull-proof fiber optic array connector
5896481, May 30 1997 The Boeing Company Optical subassembly with a groove for aligning an optical device with an optical fiber
5909528, Apr 29 1997 SUMITOMO ELECTRIC INDUSTRIES, LTD Optical connector and assembly method thereof
5966488, Jul 10 1995 Fujitsu Limited Optical module for connecting optical element and optical fiber
5993070, Oct 09 1996 SUMITOMO ELECTRIC INDUSTRIES, LTD; Nippon Telegraph Telephone Corporation Optical connector and a method of attaching the same
6022150, Apr 30 1997 TYCO ELECTRONICS SERVICES GmbH Fiber optic connector
6074577, Dec 27 1996 SUMITOMO ELECTRIC INDUSTRIES, LTD Method of molding an optical connector ferrule
6085004, Feb 03 1998 3M Innovative Properties Company Optical fiber connector using photocurable adhesive
6151433, Feb 03 1998 3M Innovative Properties Company Optical fiber connector using photocurable adhesive
6173097, Jul 01 1998 Corning Optical Communications LLC Field installable multifiber connector
6179658, Aug 06 1998 Delphi Technologies, Inc Sealing arrangement between an electrical connector and an electrical conductor
6193421, Oct 09 1996 SUMITOMO ELECTRIC INDUSTRIES, LTD; Nippon Telegraph and Telephone Corporation Optical connector and a method of attaching the same
6234681, May 21 1999 Fitel USA Corporation Apparatus and method for interconnecting optical fibers
6325670, Mar 16 2000 Yazaki Corporation Waterproof connector
6331080, Jul 15 1998 3M Innovative Properties Company Optical fiber connector using colored photocurable adhesive
6340249, Sep 13 1999 AFL Telecommunications LLC Connector assembly and method of securing fiber optic cable to connector
6379054, Jul 01 1998 Corning Optical Communications LLC Field installable multifiber connector
6409394, Mar 21 2000 SUMITOMO ELECTRIC INDUSTRIES, LTD Optical connector
6439780, Aug 31 2000 Corning Optical Communications LLC Field-installable fiber optic ribbon connector and installation tool
6457878, Nov 13 1997 CommScope Technologies LLC Multiple fiber splice element and connector
6459843, Mar 12 1996 3M Innovative Properties Company Optical connector assembly using partial large diameter alignment features
6553173, May 15 1998 NEC Corporation Installation structure for optical fiber
6599029, Sep 18 2000 Fujitsu Limited Ferrule assembly and receptacle type optical transmission module
6682231, Dec 14 2000 II-VI Incorporated; MARLOW INDUSTRIES, INC ; EPIWORKS, INC ; LIGHTSMYTH TECHNOLOGIES, INC ; KAILIGHT PHOTONICS, INC ; COADNA PHOTONICS, INC ; Optium Corporation; Finisar Corporation; II-VI OPTICAL SYSTEMS, INC ; M CUBED TECHNOLOGIES, INC ; II-VI PHOTONICS US , INC ; II-VI DELAWARE, INC; II-VI OPTOELECTRONIC DEVICES, INC ; PHOTOP TECHNOLOGIES, INC Optical subassembly and related methods for aligning an optical fiber with a light emitting device
6733186, Sep 27 2001 XIEON NETWORKS S A R L Optical connection verification apparatus and method
6779931, Nov 02 2001 NTT Advanced Technology Corporation; TELECOM ASSIST CORPORATION; RichStone Limited; ISHIHARA TEKUNO CO LTD Optical fiber connecting element and alignment sleeve
6783280, Oct 29 2001 SIEMON COMPANY, THE Mechanical splice optical fiber connector having a sliding actuator
6786648, Jan 24 2001 CCS Technology, Inc Optical fiber coupling unit and optical waveguide arrangement, and method of producing an optical fiber coupling unit
6805493, Mar 12 1996 3M Innovative Properties Company Optical connector assembly using partial large diameter alignment features
6811323, Jun 12 2000 CommScope EMEA Limited; CommScope Technologies LLC Assembly and method for use in terminating an optical fiber or fibers
6816661, Nov 03 1999 Corning Optical Communications LLC Multifiber connector, installation tool and associated methods of validating optical fiber continuity
6848837, Feb 08 2002 Fibre-optic connector
6877908, Jul 13 2001 SUMITOMO ELECTRIC INDUSTRIES, LTD Fiber with ferrule, and optical module and method of manufacturing the same
6931193, Mar 22 2000 Corning Optical Communications LLC Multifiber connector, installation tool and associated methods of validating optical fiber continuity
6962446, Jun 05 2000 Huber & Suhner AG Method for fabricating an optical plug connector, device for carrying out the method, and plug connector for use in such a method
6981802, Nov 15 2001 Tomoegawa Paper Co., Ltd. Connection structure of optical fiber and process for connecting optical fibers
7011454, Aug 25 2003 Panduit Corp.; Panduit Corp Reversible fiber optic stub fiber connector
7104702, Mar 24 2004 Corning Optical Communications LLC Field installable optical fiber connector
7121734, Oct 09 2002 SEIKOH GIKEN CO , LTD Ferrule
7197224, Jul 24 2003 REFLEX PHOTONICS INC. Optical ferrule
7204644, Mar 24 2004 Corning Optical Communications LLC Field installable optical fiber connector
7270487, Apr 30 2004 Corning Optical Communications LLC Field installable optical fiber connector
7331719, Nov 02 2006 CommScope EMEA Limited; CommScope Technologies LLC Optical fiber clamping assembly
7331721, Dec 04 2001 Optical Communication Products, Inc. Optical interface unit
7369738, Oct 24 2005 Corning Research & Development Corporation Optical connector and fiber distribution unit
7376315, Jul 01 2003 Hitachi Cable, LTD; Nippon Telegraph and Telephone Corporation Optical fiber, optical fiber connecting method, and optical connector
7410303, Nov 29 2001 SUMITOMO ELECTRIC INDUSTRIES, LTD Method and metal mold for manufacturing optical connector ferrule, optical connector ferrule manufactured by using the method, and optical connector and optical wiring system using the ferrule
20020067894,
20030142921,
20050238292,
20060093300,
EP479415,
EP689070,
EP810455,
EP1290479,
JP440402,
JP61284710,
//////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jun 11 2001ADC GmbH(assignment on the face of the patent)
Apr 04 2019ARRIS SOLUTIONS, INC JPMORGAN CHASE BANK, N A ABL SECURITY AGREEMENT0498920396 pdf
Apr 04 2019RUCKUS WIRELESS, INC JPMORGAN CHASE BANK, N A ABL SECURITY AGREEMENT0498920396 pdf
Apr 04 2019ARRIS TECHNOLOGY, INC JPMORGAN CHASE BANK, N A ABL SECURITY AGREEMENT0498920396 pdf
Apr 04 2019ARRIS ENTERPRISES LLCJPMORGAN CHASE BANK, N A ABL SECURITY AGREEMENT0498920396 pdf
Apr 04 2019CommScope Technologies LLCJPMORGAN CHASE BANK, N A ABL SECURITY AGREEMENT0498920396 pdf
Apr 04 2019COMMSCOPE, INC OF NORTH CAROLINAJPMORGAN CHASE BANK, N A ABL SECURITY AGREEMENT0498920396 pdf
Apr 04 2019ARRIS SOLUTIONS, INC JPMORGAN CHASE BANK, N A TERM LOAN SECURITY AGREEMENT0499050504 pdf
Apr 04 2019RUCKUS WIRELESS, INC JPMORGAN CHASE BANK, N A TERM LOAN SECURITY AGREEMENT0499050504 pdf
Apr 04 2019ARRIS TECHNOLOGY, INC JPMORGAN CHASE BANK, N A TERM LOAN SECURITY AGREEMENT0499050504 pdf
Apr 04 2019ARRIS ENTERPRISES LLCJPMORGAN CHASE BANK, N A TERM LOAN SECURITY AGREEMENT0499050504 pdf
Apr 04 2019CommScope Technologies LLCJPMORGAN CHASE BANK, N A TERM LOAN SECURITY AGREEMENT0499050504 pdf
Apr 04 2019COMMSCOPE, INC OF NORTH CAROLINAJPMORGAN CHASE BANK, N A TERM LOAN SECURITY AGREEMENT0499050504 pdf
Apr 04 2019CommScope Technologies LLCWILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENTPATENT SECURITY AGREEMENT0498920051 pdf
Date Maintenance Fee Events
May 02 2016M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Jul 24 20154 years fee payment window open
Jan 24 20166 months grace period start (w surcharge)
Jul 24 2016patent expiry (for year 4)
Jul 24 20182 years to revive unintentionally abandoned end. (for year 4)
Jul 24 20198 years fee payment window open
Jan 24 20206 months grace period start (w surcharge)
Jul 24 2020patent expiry (for year 8)
Jul 24 20222 years to revive unintentionally abandoned end. (for year 8)
Jul 24 202312 years fee payment window open
Jan 24 20246 months grace period start (w surcharge)
Jul 24 2024patent expiry (for year 12)
Jul 24 20262 years to revive unintentionally abandoned end. (for year 12)