A mobile transceiver and a method of detecting movement of the mobile transceiver in a radio system. The radio system includes at least one base station and terminals. The movement of the mobile transceiver is measured by at least one acceleration sensor (114-116) to take the movement of the mobile transceiver onto account in the operation of the radio system.
|
0. 36. A method of operating a mobile transceiver in a radio system, the method comprising;
determining a velocity of a mobile transceiver by integrating an acceleration of the mobile transceiver;
determining a doppler frequency shift at a frequency used for data transmission from the velocity of the mobile transceiver; and
adjusting at least one operating characteristic based on at least one of the velocity or the doppler frequency shift.
12. A mobile transceiver in a radio system, which comprises at least one base station and terminals, the mobile transceiver (2-4) being arranged and adapted to,:
measure the an acceleration of the mobile transceiver (2-4) with at least one acceleration sensor (114-116) and determine the a velocity of the mobile transceiver (2-4) by integrating the acceleration, and
determine the frequency shift caused by the a doppler phenomenon at the a frequency used for data transmission from the velocity of the mobile transceiver (2-4), in order to take the movement of the mobile transceiver (2-4) into account in the at least one operation of the radio system.
1. A method of detecting movement of a mobile transceiver in a radio system, which comprises at least one base station (1) and terminals (2-4), the method comprising the steps of:
measuring the an acceleration of the mobile transceiver (2-4) by at least one acceleration sensor (114-116) and determining the a velocity of the mobile transceiver by integrating the acceleration, and determining the a frequency shift caused by the a doppler phenomenon at the a frequency used for data transmission from the velocity of the mobile transceiver (2-4), in order to take the movement of the mobile transceiver into account in the at least one operation of the radio system.
0. 42. A system, comprising:
a radio system, comprising at least one base station; and
a mobile transceiver, comprising:
an acceleration sensor, configured to measure an acceleration of the mobile transceiver,
a digital processing block, configured to determine a velocity of the mobile transceiver by integrating the acceleration of the mobile transceiver and to determine, from the velocity, a doppler frequency shift at a frequency used for data transmission, and
a finite impulse response (FIR) filter, configured to be adjusted based on at least one of the velocity of the mobile transceiver or the doppler frequency shift.
2. The method according to
3. The method according to
4. The method according to claim 1 3, further comprising the step of determining the a coherence time related to the doppler phenomenon frequency shift from the velocity of the mobile transceiver (2-4).
5. The method according to
6. The method according to
7. The method according to
8. The method according to
9. The method according to
10. The method according to
13. The transceiver according to
14. The transceiver according to
15. The transceiver according to
16. The transceiver according to
17. The transceiver according to claim 12 14, wherein the mobile transceiver (2-4) is arranged to determine the a coherence time related to the doppler phenomenon frequency shift from the velocity of the mobile transceiver (2-4).
18. The transceiver according to
19. The transceiver according to
20. The transceiver according to
21. The transceiver according to
22. The transceiver according to
0. 23. The transceiver of claim 12, further comprising a finite impulse response (FIR) filter.
0. 24. The transceiver of claim 23, wherein a length of the FIR filter is altered based on the velocity of the mobile transceiver.
0. 25. The transceiver of claim 23, wherein the FIR filter comprises a number M of taps.
0. 26. The transceiver of claim 25, wherein a number P of taps, P≦M, are used to determine an output of the FIR filter, where P is determined based on the velocity of the mobile transceiver.
0. 27. The transceiver of claim 12, wherein the transceiver further comprises sampling means configured to take a doppler frequency shift into account, wherein the doppler frequency shift is based on the velocity of the mobile transceiver.
0. 28. The transceiver of claim 27, wherein the sampling means are configured to change a sampling frequency based on the doppler frequency shift.
0. 29. The transceiver of claim 27, wherein the sampling means comprises an analogue to digital converter.
0. 30. The transceiver of claim 27, further comprising adjustment means for adjusting a characteristic of the transceiver based on the doppler frequency shift.
0. 31. The transceiver of claim 30, wherein the characteristic of the transceiver is a source coding, a channel coding, a power control, or a data transmission rate of the transceiver.
0. 32. The transceiver of claim 27, wherein the sampling means are configured to determine a symbol duration of a channel and a coherence time of the channel.
0. 33. The transceiver of claim 32, wherein the sampling means are configured to determine a ratio of the coherence time of the channel to the symbol duration of the channel.
0. 34. The transceiver of claim 33, further comprising characterizing the channel as a slowly fading channel if the ratio is greater than 1.
0. 35. The transceiver of claim 33, further comprising characterizing the channel as a fast fading channel if the ratio is less than 1.
0. 37. The method of claim 36, wherein the at least one operating characteristic is a sampling rate of a signal received by the mobile transceiver.
0. 38. The method of claim 36, wherein the at least one operating characteristic is a symbol duration.
0. 39. The method of claim 36, wherein the at least one operating characteristic is a rate at which a channel impulse is determined.
0. 40. The method of claim 36, wherein the at least one operating characteristic is a length of a finite impulse response (FIR) filter.
0. 41. The method of claim 36, wherein the at least one operating characteristic is a source coding, a channel coding, a power control, or a data transmission rate of the transceiver.
|
The present application is a reissue of U.S. patent application Ser. No. 10/311,234 (now U.S. Pat. No. 7,079,814), filed Apr. 23, 2003, which is a national stage filing of International Pat. App. No. PCT/FI01/00562, filed Jun. 14, 2001, which claims the benefit of Finnish Pat. App. No. 20001453, filed Jun. 19, 2000.
The invention relates to a solution for detecting movement of a mobile transceiver in a radio system.
In radio systems, such as the GSM (Global System for Mobile Communication), CDMA (Code Division Multiple Access), WCDMA (Wide Band CDMA), CDMA 2000, PDC (Personal Digital Cellular) and the like, the movement of a mobile terminal is not usually measured in any way but the operations of the whole radio system are designed so that the data transmission connection works in all conditions. In that case operations are performed as if the terminal moved all the time at a very high rate on the border of the coverage area of two or more base stations in a city during daytime. Consequently, the loading of base stations and the interference level are high and channel changes as great as possible. This wastes resources and power, and increases the interference level because several measuring and signalling operations are performed all too often with respect to what the real movement of the terminal requires.
The object of the invention is to improve estimation of movement and adjust the operations of a radio system to the movement. This is achieved with a method of detecting movement of a mobile transceiver in a radio system, which comprises at least one base station and terminals. The method further comprises measuring the movement of the mobile transceiver by at least one acceleration sensor to take the movement of the mobile transceiver into account in the operation of the radio system.
The invention also relates to a mobile transceiver in a radio system, which comprises at least one base station and terminals. The mobile transceiver is further arranged to measure its movement with at least one acceleration sensor to take the movement of the mobile transceiver into account in the operation of the radio system.
The method and system of the invention provide several advantages. The power consumption of the mobile transceiver can be reduced, the radio network capacity increased and the quality of data transmission improved.
The invention will now be described in greater detail by means of preferred embodiments with reference to the accompanying drawings, in which
The solution of the invention is applicable to a mobile transceiver of a radio system, in particular.
First the radio system will be described by means of
When a signal is transmitted, it arrives in the signal processing block 108, where the signal to be transmitted can be filtered, encoded or modulated, for example, and propagates further to a digital-analogue converter 110, which converts the digital signal into an analogue one. The analogue signal is converted into a radio frequency signal in a mixer included in the radio frequency block 112. The radio frequency signal propagates to the duplex filter 102, which further guides the radio frequency signal to the antenna 100, which emits the signal into its environment as electromagnetic radiation.
The signal processing block 108 measures the impulse response in a manner known per se, for instance. In the present solution the measurement frequency of impulse response depends on the movement of the transceiver. The movement is measured by at least one acceleration sensor 114 to 116. The acceleration sensor is usually an electromechanic converter, which produces an electric signal corresponding to the acceleration at its output pole. The operation of the acceleration sensor is based e.g. on a piezoelectric crystal, where the change of charge distribution is comparable to the force directed at the crystal. Acceleration sensors are described in greater detail in Understanding Smart Sensors, Frank Randy, Artech House Inc., 1996 (ISBN 0-89006-824-0), which is incorporated herein by reference.
The movement can be measured in more than one dimension by using several acceleration sensors, which can be integrated into the same sensor. By using at least three acceleration sensors which are in the directions of different dimensions the terminal state can be measured three-dimensionally. The acceleration signal measured by the acceleration sensors 114 to 116 is fed into the digital signal processing block 108, where the measurement frequency of impulse response, for example, is controlled according to the acceleration information and/or the velocity calculated from the acceleration information. The higher the measured acceleration or the velocity is, the more frequently the impulse response is measured. The lower the measured acceleration or the velocity, the less frequently the impulse response is measured.
In addition to the acceleration or instead of it, the terminal velocity can be measured by integrating the acceleration. Mathematically expressed, the velocity v is obtained as an integral of acceleration a as follows:
where t0 is the starting time of measurement and t1 is the ending time of measurement, i.e. the time interval t1 to t0 is the measuring time window. The velocity v measurement can be expressed in discrete form as follows:
where M is the number of measuring moments in the measuring time window, ai is the acceleration at each measuring time and Δti is the time between two measuring moments. In the solution described the measurement frequency of impulse response increases as the terminal velocity increases. Correspondingly, the measurement frequency of impulse response decreases as the terminal velocity decreases.
Since the mobile transceiver does not move all the time at a very high velocity on the boarder of the coverage area of highly loaded base stations, the power consumption of the mobile transceiver can be reduced considerably by decreasing the measurement frequency of impulse response. The power consumption can at most be reduced to less than 1/3000 of the power consumption in a situation where the mobile transceiver does not take its movement into account. In a subscriber terminal, the reduced power consumption means longer charging intervals of the battery both in the standby mode and in the talk mode. When the movement of the mobile transceiver requires the highest possible measurement frequency of impulse response, the measurement frequency can be e.g. 100 Hz. On the other hand, when the transceiver is at least nearly immobile, the impulse response can be measured at a frequency of 1 Hz, for example. According to the example described, the impulse response measurement frequency can thus be reduced 100-fold. The measurement frequencies given only exemplify the operation and give an idea of the influence of the present solution on the measurement frequency of impulse response. The solution described is limited neither to the above-mentioned measurement frequencies nor to the ratios of the measurement frequencies given. At its simplest the impulse response can be measured at two frequencies. In that case a low measurement frequency is used when the mobile transceiver is immobile or moves slowly (at the human walking pace, less than 10 km/h). Otherwise a high measurement frequency is used. It is not the measurement frequencies that are important but the fact that the low impulse response measurement frequency should be lower than the high impulse response measurement frequency.
The information on the impulse response is used e.g. in the following manner. The base station or base stations with which the terminal communicates over a data transmission connection are searched for by means of the impulse response measurement. The search is carried out by measuring the impulse response from one or more base stations and selecting at least one base station with the highest signal interference ratio SNR or the highest, signal noise ratio SNR. The impulse response measurement is used for updating the list of neighbouring base stations for a possible handover. The impulse response measurement is also employed for timing synchronization between the terminals and the base stations. In addition, the starting transmission power of the terminal is determined at the beginning of connection establishment by means of the impulse response measurement.
When the velocity of the mobile transceiver is measured by integrating acceleration, the velocity estimate formed can be used for controlling the transmission power of the mobile transceiver. In that case the step size of power control, for example, can be optimised. The step size of power control is the smallest change in power that can be made. This is explained in greater detail in T. Frantti, Fuzzy Power Control for Mobile Radio Systems, European Symposium on Applications of Intelligent Technologies, Aachen, Germany, 1997 and in A. J. Viterbi, CDMA—Principles of Spread Spectrum Communications, Addison Wesley, 1995, which are incorporated herein by reference. By means of velocity the threshold for power control can also be changed so that as the velocity exceeds a predetermined velocity threshold, the power is controlled differently than when the velocity is below the predetermined limit. One or more such thresholds may be used. Instead of velocity thresholds, the power control can also be changed slidingly, i.e. constantly according to the velocity. Furthermore, the velocity can be used for determining the measurement accuracy of impulse response, i.e. for optimizing the length of the FIR filter (Finite Impulse Response).
The FIR filter will now be described in greater detail by means of
where h(k) is the tap coefficient of impulse response, k is an index from 0 M to 1, M is the number of taps, t is the time and x(t) is the signal value at the moment t, y(t) is the signal estimate of the received signal.
When the channel distortion is not very great, accurate information on impulse response is not needed. In that case it is not necessary to measure or define all M taps of the FIR filter but it is sufficient that P taps, where P is smaller than M, i.e. P<M, are used for defining the signal estimate. Undefined taps receive the value 0.
When the velocity of the mobile transceiver is measured, reliable information can also be formed from the influence of the Doppler phenomenon on the frequency shift of the signal received. The frequency shift Δfi caused by the Doppler phenomenon to the component i of one signal is expressed mathematically as follows:
where i is the index of the signal component, λ is the signal wave length, v is the transceiver velocity and αi is the angle between the direction of movement of the transceiver and the direction of the arriving signal. The frequency shift Δf of the received signal also changes the duration of the received symbol, which should be taken into account in data transmission. In transmission the symbol duration can be either increased or reduced according to the influence of the Doppler phenomenon.
The received signal should be sampled (block 106 in
When all K signal components are gone through, i being 1 to K (i=1, . . . , K), where K is the desired number of signal components, it is possible to form the power density spectrum of Doppler spread. If we assume that different signal components have scattered isotropically and arrive at the receiver spread equally in all directions between [0°, 360°], we obtain a U-shaped power density curve. The bandwidth fD of Doppler spread can be estimated from the power density spectrum or directly from the greatest frequency shift. The inverse of the bandwidth provides delay spread TC, TC=1/(2·fd), where the band width fD is fD=(v/c)·fC and fC is the frequency of the carrier wave. Coherence time, i.e. the time when channel changes are small and the symbol transmitted on the channel contains hardly any channel interference, can be determined from the delay spread or directly from the bandwidth of Doppler spread. Doppler spread is Doppler_spread=2·(v/c)·fC=βd. The coherence time TC=1/βd. If the symbol duration is shorter than the coherence time, the channel is a slowly fading channel. If the symbol duration is longer than the coherence time, the channel is a fast fading channel. When it is detected that the coherence time TC changes due to the Doppler phenomenon, source coding, channel coding, power control or data transmission rate can be changed in the solution shown so that the influence of the Doppler phenomenon is reduced or eliminated. The ratio of the coherence time to the symbol duration defines the channel as a slow fading or a fast fading channel.
Context identification related to each movement can also be carried out even by one acceleration sensor, but preferably by several acceleration sensors. This is illustrated in
Acceleration sensors can be integrated into terminal circuits or frame and the acceleration information can be processed by the processor in the terminal or by a separate processor in the signal processing block (
Even though the invention was described above with reference to the example according to the accompanying drawings, it is clear that the invention is not limited thereto but may be modified in various ways within the inventive concept disclosed in the appended claims.
Frantti, Tapio, Mähönen, Petri
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5513221, | May 19 1994 | Hughes Electronics Corporation | Doppler bandwidth dependent estimation of a communications channel |
5862487, | Jan 25 1995 | NTT Mobile Communications Network Inc | Channel allocation for co-located systems based on interferring channel groups |
5894473, | Feb 29 1996 | Ericsson Inc. | Multiple access communications system and method using code and time division |
5953677, | Sep 27 1996 | Matsushita Electric Industrial Co., Ltd. | Mobile telephone apparatus with power saving |
6035209, | Mar 31 1995 | Qualcomm Incorporated | Method and apparatus for performing fast power control in a mobile communication system |
6067460, | May 23 1996 | Nokia Technologies Oy | Mobile station having enhanced standby mode |
6078826, | May 29 1998 | Ericsson Inc. | Mobile telephone power savings method and apparatus responsive to mobile telephone location |
6219540, | Nov 23 1998 | JPMORGAN CHASE BANK, N A | Communication device providing out-of-range battery saving and method therefor |
6225948, | Sep 27 1999 | NOKIA SOLUTIONS AND NETWORKS GMBH & CO KG | Method for direction estimation |
6249252, | Sep 09 1996 | TracBeam, LLC | Wireless location using multiple location estimators |
6275705, | Dec 22 1995 | Cambridge Positioning Systems Limited | Location and tracking system |
6297773, | Mar 23 1998 | Humatics Corporation | System and method for position determination by impulse radio |
6313787, | Nov 12 1999 | Google Technology Holdings LLC | Method and apparatus for assisted GPS protocol |
6314308, | Jul 02 1998 | SnapTrack, Inc. | Method and apparatus for providing reserve power in a cellular telephone |
6317612, | Aug 27 1997 | NOKIA SOLUTIONS AND NETWORKS GMBH & CO KG | Method for estimating spatial parameters of transmission channels by estimating a spatial covariance matrix |
6370357, | Dec 21 1998 | Apple Inc | Mobile speed estimation for digital cellular radio systems |
6385460, | May 26 1998 | SNAPTRACK, INC | Power management system for a mobile unit by reduced neighbor cell scanning |
6396867, | Apr 25 1997 | Qualcomm Incorporated | Method and apparatus for forward link power control |
6456827, | Feb 03 1998 | Fujitsu Limited | Apparatus and method for controlling communications based on moving speed |
6480716, | May 13 1997 | Nokia Technologies Oy | Estimating subscriber terminal speed, selecting cell, and radio system |
6496695, | Jul 27 1998 | Hitachi, LTD | Resource-saving event-driven monitoring system and method |
6542741, | Jul 01 1999 | Ericsson Inc | Method of establishing an adaptive public neighbor cell list for mobile stations of a private cellular system |
6542745, | Feb 08 1999 | Mitsubishi Denki Kabushiki Kaisha | Method of estimating the speed of relative movement of a transmitter and a receiver, in communication with one another, of a telecommunication system |
6564042, | Mar 03 2000 | Qualcomm Incorporated | Velocity-estimation-based gain tables |
6680967, | Aug 21 1998 | Nokia Technologies Oy | Receiver |
6690679, | Jun 16 1998 | Nokia Mobile Phones, Ltd. | Method and system for bearer management in a third generation mobile telecommunications system |
20010010686, | |||
EP812119, | |||
EP833537, | |||
GB2183117, | |||
GB2305825, | |||
JP5259969, | |||
JP6208696, | |||
JP8322091, | |||
JP9200827, | |||
JP983409, | |||
WO11798, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 14 2001 | Intellectual Ventures Holding 9 LLC | (assignment on the face of the patent) | / | |||
Oct 10 2007 | Valtion Teknillinen Tutkimuskeskus | Intellectual Ventures Holding 9 LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024036 | /0090 | |
Aug 13 2015 | Intellectual Ventures Holding 9 LLC | Xylon LLC | MERGER SEE DOCUMENT FOR DETAILS | 036576 | /0549 | |
Dec 22 2022 | Xylon LLC | INTELLECTUAL VENTURES ASSETS 191 LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 062708 | /0435 | |
Feb 14 2023 | MIND FUSION, LLC | INTELLECTUAL VENTURES ASSETS 191 LLC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 063295 | /0001 | |
Feb 14 2023 | MIND FUSION, LLC | INTELLECTUAL VENTURES ASSETS 186 LLC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 063295 | /0001 | |
Feb 14 2023 | INTELLECTUAL VENTURES ASSETS 191 LLC | MIND FUSION, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 064270 | /0685 |
Date | Maintenance Fee Events |
Dec 30 2013 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Feb 26 2018 | REM: Maintenance Fee Reminder Mailed. |
Aug 13 2018 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jul 24 2015 | 4 years fee payment window open |
Jan 24 2016 | 6 months grace period start (w surcharge) |
Jul 24 2016 | patent expiry (for year 4) |
Jul 24 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 24 2019 | 8 years fee payment window open |
Jan 24 2020 | 6 months grace period start (w surcharge) |
Jul 24 2020 | patent expiry (for year 8) |
Jul 24 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 24 2023 | 12 years fee payment window open |
Jan 24 2024 | 6 months grace period start (w surcharge) |
Jul 24 2024 | patent expiry (for year 12) |
Jul 24 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |