A separator disk for use in centrifugal separation of components is designed to automatically position itself during separation at the interface between the supernatant and the remaining components. Preferably the interface is between plasma and red blood cells.
|
1. A method for obtaining a desired component of a physiological fluid that has been separated from a remaining components of said physiological fluid that are more dense than said desired component, comprising the steps of placing said physiological fluid and in a chamber having a floating separator disk in a chamber therein, separating said desired component from said remaining components of said fluid by centrifugation, and removing said desired component from said chamber, wherein said separator disk is configured to position itself automatically such that its upper surface is just below an interface between said desired component and said remaining components of said physiological fluid such that a small layer of said remaining components forms on said upper surface.
2. A method according to
3. A method according to
4. A method according to
6. A method according to
7. A method according to
8. A method according to
|
This application is a divisional of U.S. application Ser. No. 10/019,680 filed Jan. 4, 2002 now U.S. Pat. No. 7,077,273, which was the national stage of international Application No. PCT/US01/11732 filed Apr. 27, 2001, which was published in English, and claims priority of U.S. Provisional Application No. 60/200,150 filed Apr. 28, 2000.
This invention relates to methods and apparatus for use in the separation of fluids into components having different specific gravities. The invention finds particular utility in the centrifugal separation of the components of blood.
Centrifugal separation of blood into components of different specific gravities, such as red blood cells, white blood cells, platelets, and plasma is known from U.S. Pat. No. 5,707,331 (Wells). The apparatus shown in that patent employs a disposable processing tube having two chambers, and blood to be separated into components is placed in one of the chambers. The processing tube is placed in a centrifuge, which subjects the blood to centrifugal forces to separate the components. The supernatant is then automatically decanted into the second of the chambers.
To retain, principally, the red blood cells during the decant of the supernatant, the apparatus disclosed in the Wells patent includes a shelf placed in the first chamber at the expected level of the interface between the red blood cells and the less-dense components, including the plasma. One problem with the arrangement shown in the '331 Wells patent, however, is that the position of the interface varies with the particular proportions of the components (e.g., the hematocrit) of the blood to be processed. Thus, if the shelf is placed at the expected position of the interface for blood of average hematocrit, and the hematocrit of the particular blood being processed is low, the shelf will be above the interface after separation. Such a position of the shelf will hinder the flow of the components near the interface during decanting, thus retaining significant amounts of these components in the first chamber and reducing the separation efficiency of the system.
In accordance with the invention, a movable separator disk, which automatically positions itself at the interface between the separated components, is placed in the first chamber. In the preferred embodiment, the disk is capable of moving vertically and is designed to position itself automatically at the interface between red blood cells and the remaining components in the centrifugal separation of blood.
Decant of the supernatant can be either by gravity drain or by centrifugal transfer, and a main function of the disk is to restrict the flow of the component below it, e.g., red blood cells, during decant. This ensures that the supernatant is not contaminated and increases the efficiency of the process. The invention contemplates two embodiments for the disk. In one embodiment, the disk is supported on a central shaft such that an annulus is formed between the perimeter of the disk and the interior surface of the first chamber. The dimensions of the annulus are such that the flow of red blood cells through it during decant is restricted such that they do not contaminate the decanted supernatant to any significant degree.
In another embodiment, the disk is arranged on the shaft such that, when the chamber is tilted for gravity decanting, the disk rotates such that one edge of the disk engages the wall of the chamber to block flow of red blood cells. In either of these embodiments, the specific gravity of the disk and its shape may be chosen so that a major part of the upper surface lies just below the interface, thus facilitating release of the supernatant from the disk during decanting. This upper surface is also preferably curved to match the cylindrical shape the interface assumes during centrifugation.
With reference to
The shaft 6 may not be necessary in all instances, for example, when the bottom of the processing tube is flat. In that instance the disk does not have a central hole.
The disk is preferably made of material having a specific gravity that allows the disk to float at the interface with red blood cells. In the preferred embodiment that specific gravity is about 1.04 (e.g., polystyrene), which is just less than the specific gravity of red blood cells at 70% hematocrit. Thus, when the blood is centrifuged, the disk moves to the interface between the red blood cells and the other components.
The interface will naturally assume a cylindrical shape with a cylindrical radius equal to the distance to the center of rotation of the centrifuge. The disk may be cylindrical, to match the shape of the interface. In the embodiment shown in
Thus, when the processing tube is rotated to the decant position, the more dense red blood cells, illustrated at 14, that have accumulated below the disk exert a force against the bottom of the disk as they try to flow through the gap 12. This causes the disk 4 to rotate, as shown in
A second embodiment is shown in
Thus, the components of the blood flow through the channel during centrifugation (i.e., at 1000 G), but do not flow appreciably through the channel during decanting at 1 G. This allows the supernatant to be decanted without significant contamination by the red blood cells.
The layer of red blood cells 24 reduces the surface tension between the platelets at the interface 26 and the surface 20 of the disk and facilitates release of the platelets from the disk. This is important to ensure that all of the platelets are decanted, and the small amount of red blood cells that may be decanted along with the supernatant does not generally represent a significant contamination of the supernatant.
Modifications within the scope of the appended claims will be apparent to those of skill in the art.
Levesque, Steven F., Ellsworth, James R.
Patent | Priority | Assignee | Title |
10005081, | May 29 2009 | Cervos Medical LLC | Apparatus and methods for aspirating and separating components of different densities from a physiological fluid containing cells |
10343157, | May 15 2009 | Becton, Dickinson and Company | Density phase separation device |
10376879, | May 15 2009 | Becton, Dickinson and Company | Density phase separation device |
10413898, | May 15 2009 | Becton, Dickinson and Company | Density phase separation device |
10456782, | May 15 2009 | Becton, Dickinson and Company | Density phase separation device |
10603665, | Jan 29 2013 | Cervos Medical LLC | Cell concentration devices and methods that include an insert defining a lumen and a cannula assembly |
10807088, | May 15 2009 | Becton, Dickinson and Company | Density phase separation device |
11351535, | May 15 2009 | Becton, Dickinson and Company | Density phase separation device |
11660603, | Jan 29 2013 | Cervos Medical LLC | Cell concentration devices and methods including a syringe and a syringe holder |
11786895, | May 15 2009 | Becton, Dickinson and Company | Density phase separation device |
8313644, | Jan 13 2010 | OZOlab | Bottle with an integrated filtration assembly that is manually operated using a plunger |
8794452, | May 15 2009 | Becton, Dickinson and Company | Density phase separation device |
8998000, | May 15 2009 | Becton, Dickinson and Company | Density phase separation device |
9079123, | May 15 2009 | Becton, Dickinson and Company | Density phase separation device |
9272083, | May 29 2009 | Cervos Medical LLC | Apparatus and methods for aspirating and separating components of different densities from a physiological fluid containing cells |
9339741, | Jul 21 2008 | Becton, Dickinson and Company | Density phase separation device |
9364828, | May 15 2009 | Becton, Dickinson and Company | Density phase separation device |
9393575, | Apr 28 2000 | Harvest Technologies Corporation | Blood components separator disk |
9393576, | Apr 28 2000 | Harvest Technologies Corporation | Blood components separator disk |
9656274, | Apr 28 2000 | Harvest Technologies Corporation | Blood components separator disk |
9682373, | Dec 03 1999 | Becton, Dickinson and Company | Device for separating components of a fluid sample |
9694359, | Nov 13 2014 | Becton, Dickinson and Company | Mechanical separator for a biological fluid |
9731290, | May 15 2009 | Becton, Dickinson and Company | Density phase separation device |
9802189, | May 15 2009 | Becton, Dickinson and Company | Density phase separation device |
9919307, | May 15 2009 | Becton, Dickinson and Company | Density phase separation device |
9919308, | May 15 2009 | Becton, Dickinson and Company | Density phase separation device |
9919309, | May 15 2009 | Becton, Dickinson and Company | Density phase separation device |
Patent | Priority | Assignee | Title |
1818924, | |||
280820, | |||
3256977, | |||
3409165, | |||
3508653, | |||
3909419, | |||
3929646, | |||
3931010, | Feb 27 1974 | Becton, Dickinson and Company | Serum/plasma separators with centrifugal valves |
3935113, | Feb 27 1974 | Becton, Dickinson and Company | Serum/plasma separator with centrifugal valve |
3941699, | Feb 27 1974 | Becton, Dickinson and Company | Plasma separator with centrifugal valve |
3951801, | Feb 27 1974 | Becton, Dickinson and Company | Serum/plasma separator-strut stop type |
3972812, | May 08 1975 | Becton, Dickinson and Company | Blood serum separation filter disc |
4001122, | Aug 22 1973 | Telan Corporation | Method and device for separating blood components |
4083788, | Nov 19 1975 | Blood serum-isolation device | |
4279863, | Sep 12 1979 | Sherwood Services AG; TYCO GROUP S A R L | Reagent separator for a blood collection tube |
4364832, | Jan 21 1981 | BPS SEPARETTE AG | Separating member in a separating tube for centrifugal separation |
4417981, | May 04 1981 | Becton, Dickinson and Company | Blood phase separator device |
4563332, | Apr 27 1983 | ICL SCIENTIFIC, INC | Liquid sampling apparatus with retention means |
4818386, | Oct 08 1987 | Becton, Dickinson and Company | Device for separating the components of a liquid sample having higher and lower specific gravities |
4844818, | Oct 23 1987 | Becton Dickinson & Company | Method for separating the cellular components of blood samples |
4853137, | Aug 27 1986 | SEOVAC AB, A SWEDISH COMPANY | Method and device for separating serum/plasma from blood |
4877520, | Oct 10 1987 | Becton, Dickinson and Company | Device for separating the components of a liquid sample having higher and lower specific gravities |
4946601, | Aug 22 1988 | Sherwood Services AG; TYCO GROUP S A R L | Blood serum separator tube |
5053134, | Oct 21 1983 | Becton Dickinson and Company | Lymphocyte collection tube |
5454958, | May 29 1991 | Sherwood Services AG; TYCO GROUP S A R L | Method for sampling in a container having a material therein which separates from a barrier material |
5456885, | Jul 12 1993 | COLEMAN, CHARLES M | Fluid collection, separation and dispensing tube |
5533518, | Apr 22 1994 | Becton, Dickinson and Company | Blood collection assembly including mechanical phase separating insert |
5632905, | Aug 07 1995 | Method and apparatus for separating formed and unformed components | |
5707876, | Mar 25 1996 | Stephen C., Wardlaw | Method and apparatus for harvesting constituent layers from a centrifuged material mixture |
5736033, | Dec 13 1995 | COLEMAN, CHARLES M | Separator float for blood collection tubes with water swellable material |
5860937, | Apr 30 1997 | Becton, Dickinson & Company | Evacuated sample collection tube with aqueous additive |
5889584, | Mar 10 1997 | Robert A., Levine | Assembly for rapid measurement of cell layers |
5918622, | Jul 01 1997 | Bermad | Separation valve |
593333, | |||
6406671, | Dec 05 1998 | Becton Dickinson and Company | Device and method for separating components of a fluid sample |
6641517, | Apr 18 2000 | Large Scale Proteomics Corporation | Method and apparatus for making density gradients |
JP52126613, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 15 2011 | Harvest Technologies Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Nov 16 2012 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Nov 19 2012 | ASPN: Payor Number Assigned. |
Nov 28 2016 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Sep 28 2020 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 24 2015 | 4 years fee payment window open |
Jan 24 2016 | 6 months grace period start (w surcharge) |
Jul 24 2016 | patent expiry (for year 4) |
Jul 24 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 24 2019 | 8 years fee payment window open |
Jan 24 2020 | 6 months grace period start (w surcharge) |
Jul 24 2020 | patent expiry (for year 8) |
Jul 24 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 24 2023 | 12 years fee payment window open |
Jan 24 2024 | 6 months grace period start (w surcharge) |
Jul 24 2024 | patent expiry (for year 12) |
Jul 24 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |