A compact disc coupled to a wireless communication device comprises the disc with a metalized outer portion, a wireless communication chip and a pair of tabs. The first tab may capacitively couple the wireless communication chip to the metalized portion of the disc. The second tab may be positioned in an inner portion of the disc with a gap delimited by the metalized portion and the second tab. A slot antenna is thus formed through which the wireless communication device may communicate. wireless communication chip allows disc to be interrogated and identified for a variety of purposes, including, but not limited to security, advertising and promotion, and issuing of related coupons to customers for subsequent purchases.

Patent
   RE43683
Priority
Jul 18 2000
Filed
Oct 19 2006
Issued
Sep 25 2012
Expiry
Jul 18 2020
Assg.orig
Entity
Large
0
155
all paid
27. A wireless communication device, comprising:
a wireless communication chip;
a first tab coupled to a an outer metalized outer portion of a disc and electrically connected to said wireless communication chip; and
a second tab adapted to position configured to be positioned on an inner portion of the disc and electrically connected to said wireless communication chip; and
wherein said second tab adapted is configured to be spaced from the outer metalized portion so as to form a slot antenna therebetween.
0. 64. A method of communicating information related to a disc, the method comprising:
positioning a wireless communication device on said disc by coupling a first tab of said wireless communication device to an outer metalized portion of said disc;
positioning a second tab of said wireless communication device on an inner portion of said disc, wherein said second tab is spaced by a gap from said outer metalized portion of said disc; and
extending a stub from said second tab across said gap.
0. 66. A method of communicating information related to a disc, the method comprising:
positioning a wireless communication device on said disc by coupling a first tab of said wireless communication device to an outer metalized portion of said disc;
positioning a second tab on an inner portion of said disc, wherein said second tab is spaced by a gap from said outer metalized portion of said disc; and
positioning a wireless communication chip between said first and second tabs such that said gap between said outer metalized portion and said second tab acts as a slot antenna.
24. A method of communicating information related to a disc, comprising:
positioning a wireless communication device on the disc by:
coupling a first tab of the wireless communication device to a an outer metalized outer portion of the disc; and
positioning a second tab on an inner portion of the disc and spaced by a gap from the outer metalized outer portion of the disc; and
positioning a wireless communication chip between said first and second tabs such that the gap between said outer metalized portion and said second tab acts as a slot antenna; and
interrogating the disc with an interrogation reader.
0. 59. A wireless communication device comprising:
a wireless communication chip;
a first tab electrically connected to said wireless communication chip, wherein said first tab is configured to be coupled to an outer metalized portion of a disc; and
a second tab electrically connected to said wireless communication chip, wherein said second tab is configured to be positioned on an inner portion of said disc;
wherein the second tab is further configured to be spaced by a gap from said outer metalized portion to form a slot antenna therebetween that operates at a first frequency; and
wherein said first and second tabs form a dipole antenna configured to operate at a second frequency.
1. A disc having a metal region for the storage of data thereon coupled to a wireless communication device,
wherein the disc comprises an outer metalized portion and the outer metalized portion includes the metal region; and
wherein the wireless communication device comprises:
a wireless communication chip;
a first tab positioned on the outer metalized portion;
a second tab spaced from the outer metalized portion by a gap with the wireless communication chip positioned between the first tab and the second tab; and
a stub extending from the second tab across the gap; and
wherein the metal region of the disc is used as part of an antenna for the wireless communication device.
0. 33. A disc having data stored thereon coupled to a wireless communication device, wherein said disc comprises an outer metalized portion and said wireless communication device comprises:
a wireless communication chip;
a first tab positioned on said outer metalized portion; and
a second tab spaced from said outer metalized portion by a gap with said wireless communication chip positioned between said first tab and said second tab across the gap;
wherein said first tab and said second tab are constructed out of a conductive material; and
wherein said gap forms a slot antenna configured to operate at a first frequency and said first and second tabs form a dipole antenna configured to operate at a second frequency.
12. A method of communicating information related to a disc having a metal region for the storage of data, comprising:
positioning a wireless communication device on the disc, wherein the disc comprises an outer metalized portion and the outer metalized portion includes the metal region;
coupling a first tab of the wireless communication device to the outer metalized portion;
positioning a second tab of the wireless communication device on an inner portion of the disc and spaced by a gap from the outer metalized outer portion of the disc;
extending a stub from the second tab across the gap;
coupling the metal region as part of an antenna for the wireless communication device; and
interrogating the disc with an interrogation reader.
0. 47. A method of communicating information related to a disc, the method comprising:
positioning a wireless communication device on said disc by coupling a first tab of said wireless communication device to an outer metalized portion of said disc;
positioning a second tab on an inner portion of said disc and spaced by a gap from the outer metalized portion of said disc, wherein said first and second tabs are constructed out of a conductive material and form a dipole antenna; and
positioning a wireless communication chip between said first and second tabs such that the gap between said outer metalized portion and said second tab acts as a slot antenna that operates at a first frequency, whereas said dipole antenna is configured to operate at a second frequency.
2. The disc of claim 1, wherein said disc is a compact disc.
3. The disc of claim 1, wherein said disc is a mini disc.
4. The disc of claim 1, wherein said disc is a DVD.
5. The disc of claim 1, wherein said second tab forms an annulus positioned over an inner portion of the disc.
6. The disc of claim 1, wherein said first tab capacitively couples to said outer metalized portion.
7. The disc of claim 1, wherein said first tab directly couples to said outer metalized portion.
8. The disc of claim 1, wherein said wireless communication device includes a memory.
9. The disc of claim 8, wherein said memory is operable to store the an identification of said disc.
10. The disc of claim 8, wherein said memory is operable to store whether or not said disc has been legally purchased.
11. The disc of claim 9, wherein said identification is an artist or musical group name.
13. The method of claim 12, wherein said positioning a wireless communication device on the disc comprises coupling a said first tab of the wireless communication device to a said outer metalized outer portion of the disc.
14. The method of claim 13, wherein said positioning a wireless communication device on the disc comprises positioning a said second tab on an said inner portion of the disc and spaced by a said gap from the outer metalized outer portion of the disc.
15. The method of claim 12, wherein said interrogating further comprises reading a memory in said wireless communication device.
16. The method of claim 15, wherein said interrogating further comprises comparing said memory to determine if said disc has been legally purchased.
17. The method of claim 16, wherein said interrogating further comprises identifying said disc.
18. The method of claim 17, wherein said memory contains a name of the an artist or musical group.
19. The method of claim 15, further comprising generating a trigger event in response to said interrogating.
20. The method of claim 19, wherein said trigger event is an alarm.
21. The method of claim 19, wherein said trigger event is an audio alert.
22. The method of claim 19, wherein said trigger event is a visual alert.
23. The method of claim 22, wherein said visual alert comprises a visual message created by and an artist associated with said disc.
25. The method of claim 24, wherein said interrogating the disc with an interrogator interrogation reader comprises interrogating the disc at a frequency such that the first and second tabs act as an antenna for a response.
26. The method of claim 24, wherein said positioning a wireless communication chip between said first and second tabs such that the gap between said outer metalized portion and said second tab acts as a slot antenna comprises positioning a stub across the gap to form an asymmetrical slot antenna.
28. The wireless communication device of claim 27, further comprising a stub extending from said second tab across a gap delimited by the outer metalized portion and the second tab.
29. The wireless communication device of claim 27, wherein said wireless communication device is sized to fit on a compact disc.
30. The wireless communication device of claim 27, wherein said wireless communication device if is sized to fit on a mini disc.
31. The wireless communication device of claim 27, wherein said wireless communication device is sized to fit on a DVD.
32. The wireless communication device of claim 28, wherein said stub is positioned so as to create an asymmetric slot antenna.
0. 34. The disc of claim 33, wherein said wireless communication device further comprises a stub extending from said second tab across said gap.
0. 35. The disc of claim 33, wherein said first tab is electrically connected to said wireless communication chip.
0. 36. The disc of claim 35, wherein said second tab is electrically connected to said wireless communication chip.
0. 37. The disc of claim 36, wherein said wireless communication device further comprises a stub extending from said second tab across said gap.
0. 38. The disc of claim 33, wherein said disc is selected from the group consisting of a compact disc, a mini disc, and a DVD.
0. 39. The disc of claim 33, wherein said second tab forms an annulus positioned over an inner portion of said disc.
0. 40. The disc of claim 33, wherein said first tab is capacitively coupled to said outer metalized portion.
0. 41. The disc of claim 33, wherein said first tab is directly coupled to said outer metalized portion.
0. 42. The disc of claim 33, wherein said wireless communication device further comprises a memory.
0. 43. The disc of claim 42, wherein said memory is configured to store an identification of said disc.
0. 44. The disc of claim 42, wherein said memory is operable to store whether or not said disc has been legally purchased.
0. 45. The disc of claim 43, wherein said identification is an artist or musical group name.
0. 46. The disc of claim 34, wherein said wireless communication chip is positioned with respect to the stub to allow said slot antenna to be formed as an asymmetric slot antenna.
0. 48. The method of claim 47, wherein said positioning a wireless communication chip between said first and second tabs further comprises positioning a stub across said gap.
0. 49. The method of claim 47, further comprising interrogating said disc with an interrogation reader.
0. 50. The method of claim 49, wherein said interrogating said disc comprises interrogating said disc at a frequency such that the first and second tabs act as an antenna for a response.
0. 51. The method of claim 49, wherein said interrogating said disc comprises reading a memory in said wireless communication device.
0. 52. The method of claim 51, wherein said interrogating said disc further comprises determining from information in said memory whether said disc has been legally purchased.
0. 53. The method of claim 51, wherein said interrogating said disc further comprises identifying said disc.
0. 54. The method of claim 53, wherein said memory contains a name of an artist or musical group.
0. 55. The method of claim 49, further comprising generating a trigger event in response to said interrogating said disc.
0. 56. The method of claim 55, wherein said trigger event is selected from the group consisting of an alarm, an audio alert, and a visual alert.
0. 57. The method of claim 53, further comprising issuing a coupon to a customer in response to identification of said disc.
0. 58. The method of claim 48, wherein said stub is positioned across said gap to form an asymmetric slot antenna.
0. 60. The wireless communication device of claim 59, wherein said wireless communication chip is positioned across said gap.
0. 61. The wireless communication device of claim 59, further comprising a stub extending from said second tab across said gap.
0. 62. The wireless communication device of claim 59, wherein said wireless communication device is sized to fit on said disc, and wherein said disc is selected from the group consisting of a compact disc, a mini disc, and a DVD.
0. 63. The wireless communication device of claim 61, wherein said stub is positioned to create an asymmetric slot antenna.
0. 65. The method of claim 64, further comprising interrogating said disc with an interrogation reader.

This application is a continuation-in-part of patent application entitled “Wireless Communication Device and Method,” Ser. No. 09/678,271, filed on Oct. 3, 2000, now U.S. Pat. No. 6,501,435, which is a continuation-in-part of application Ser. No. 09/618,505, filed on Jul. 18, 2000, now U.S. Pat. No. 6,483,473, the disclosures of which are hereby incorporated by reference in their entireties as if set forth fully herein.

The present invention relates to an apparatus, system and method of providing wireless communication devices in discs and communicating of information concerning the disc containing the wireless communication device.

It is often desired to track and identify items, such as packages, containers, discs, etc., and to communicate information concerning such items wirelessly. One method of tracking and providing information concerning packages is to attach a wireless communication device, such as a radio frequency identification (RFID) transponder or other identification device, to packages. The information communicated concerning the packages may include identification information, expiration dates, “born on” dates, lot numbers, manufacturing information, and the like. A wireless communication device may be attached to an individual package or to a container containing multiple packages.

A problem exists when a wireless communication device is attached to packaging or containers constructed out of a conductive material such as foil, or comprised of a metalized or conductive portion. A pole antenna connected to the wireless communication device will not radiate properly if the wireless communication device is attached on the outside of the package. The pole antenna will be shielded if the wireless communication device is placed inside the package.

In addition to conductive materials, wireless communication devices are also used with many other substrates. Each substrate has its own dielectric characteristics that typically affect the impedance matching between the wireless communication device and its antenna. Impedance matching ensures the most efficient energy transfer between an antenna and the wireless communication device.

One particular item for which tracking may be desirable is a disc. Discs can be any type of circular substrate, but the present invention address discs that store digital information in particular such as compact discs or mini discs. Note that in this context, the term “mini disc” does not refer to the trademark used by SONY, but rather to a miniature compact disc that is optically read. Most compact discs and mini discs are made from a metalized outer portion and a plastic inner portion. Digital video discs or Digital versatile discs (collectively DVDs) are made from substantially the same structure. This tracking may be for identification, such as in a retail outlet, computer system or jukebox (for compact-discs), theft prevention, authenticity purposes or the like as needed or desired.

It may be also advantageous for such a wireless communication device to communicate on different frequencies so that one device can be used for various applications. For instance, an operating frequency of 2.45 GHz is used frequently outside the United States, but an operating frequency of 915 MHz is frequently used in the United States. Many companies manufacture wireless communication devices that are capable of operating at both 915 MHz and 2.45 GHz frequencies so that either frequency can be chosen for operation. However, wireless communications device applications, such as attaching wireless communication devices to packages for informative and tracking purposes, configure the device to communicate on only one frequency—either a frequency for the United States or a frequency for use abroad. It would be advantageous to construct a wireless communication device with an antenna structure that is capable of communicating at more than one frequency. This would allow one wireless communication device to be applicable for uses in both the United States and abroad.

The present invention relates to a wireless communication device for use in conjunction with a disc, such as a compact disc, mini disc or digital video disc, or comparable item. In particular, an antenna is formed with a conductive tape or the like attached to a center portion of the disc. The metalization of the disc coupled with the tape, form a slot antenna for operation at a first frequency. Further, conductive tabs may be used to couple to the slot in such a fashion that the tabs form an antenna at a second frequency. These conductive tabs may also serve the purpose of delimiting the length of the slot regardless of their use as a second antenna.

It should be appreciated that the parent applications discussed wireless communication devices associated with a package, container or other material to communicate information concerning the package, container or other material. A wireless communication device is provided that contains a control system, communication electronics, memory, and an antenna. The wireless communication device may contain a sensor to sense environmental conditions surrounding the wireless communication device. The wireless communication device contains one or more tabs constructed out of conductive material. The tab(s) may serve as both a pole antenna and may attach the wireless communication device to a slot, thereby forming a slot antenna. While helpful in some embodiments such is not required in all the embodiments herein presented.

In one embodiment, the wireless communication device is a transponder that is interrogated by an interrogation reader for communication purposes. The wireless communication device is attached to a package that may be constructed out of a conductive material, such as foil packaging used for food or liquid.

In another embodiment, the tab(s) form a pole antenna to communicate in a first mode at one frequency, and the tab(s) are attached across a slot in a package to communicate in a second mode at a second frequency. One tab is used in one embodiment to form a monopole type antenna, and two tabs are used in another embodiment to form a dipole antenna. In another embodiment, the tab(s) can be varied in shape and size to adjust to surfaces that vary in form.

An asymmetrical antenna arrangement may be provided so that the impedance of the antenna is not substantially affected by the substrate to which the wireless communication device is attached. In one embodiment, the asymmetrical antenna arrangement is an asymmetrical dipole antenna formed by asymmetrical tabs. For example, the wireless communication device may be placed in an indentation in the substrate so that the wireless communication device does not protrude from the substrate surface. Asymmetrical tabs are placed on the surface of the substrate. The asymmetrical tabs are connected to the wireless communication device with feed lines to provide an asymmetrical dipole antenna. In a second embodiment, the asymmetrical antenna arrangement is an asymmetrical slot antenna.

In another embodiment, a wireless communication device placed onto a disc, such as a compact disc or video disc, is used in conjunction with an interrogator to identify a disc for either promotional or security purposes. A customer may purchase a compact disc or video disc in a retail store. As the customer leaves the retail store, an interrogator determines the identification of the disc purchased by the customer and displays and/or plays a special message to the customer. If an interrogator detects an unpurchased disc leaving the retail store, the interrogator may indicate an alert and/or alarm condition.

FIG. 1 is a schematic diagram illustrating communication between a wireless communication device and an interrogation reader;

FIG. 2 is an illustration of the wireless communication device with slot antenna on a foil food package;

FIG. 3A is a schematic top view diagram of the wireless communication device with coupling tab devices containing a dielectric, adhesive material;

FIG. 3B is a schematic side view diagram of the wireless communication device in FIG. 3A;

FIG. 3C is a schematic diagram of the wireless communication device having its own slot;

FIG. 4 is a schematic diagram of the wireless communication device attached across a slot to form a slot antenna;

FIG. 5A is a schematic diagram of the wireless communication device having a slot antenna of a particular width to match the impedance between the wireless communication device and the slot;

FIG. 5B is a schematic diagram of the wireless communication device illustrated in FIG. 5A with a slot of different width;

FIG. 6 is a schematic diagram of a circularly polarized slot antenna;

FIG. 7 is a schematic diagram of another type of packaging containing a wireless communication device;

FIG. 8A is a schematic diagram of the wireless communication device having a slot antenna formed by a foil package closing;

FIG. 8B is a schematic diagram of the wireless communication device illustrated in FIG. 8A with the foil package having an additional seal below the wireless communication device;

FIG. 9 is a flowchart illustrating the operation of the wireless communication device when sensing to detect its presence outside of a package;

FIG. 10 is a schematic diagram of wireless communication devices mounted on a carrier or support for stamping into packages in an assembly line;

FIG. 11A is a top plan view of a wireless communication device with an asymmetrical antenna arrangement;

FIG. 11B is a side elevational view of the wireless communication device of FIG. 11A;

FIG. 12A is a schematic diagram of a particular asymmetrical antenna arrangement;

FIG. 12B is a schematic diagram of the matched gain of the particular asymmetrical antenna arrangement in FIG. 12A;

FIG. 12C is a schematic diagram of the matched gain of the particular asymmetrical antenna arrangement in FIG. 12A with lossless FR4;

FIG. 13 is a schematic diagram of an alternative asymmetrical antenna arrangement;

FIG. 14A is a schematic diagram of another alternative asymmetrical antenna arrangement;

FIG. 14B is a schematic diagram of a second embodiment of the alternative asymmetrical antenna arrangement of FIG. 14A;

FIG. 15A is a schematic diagram of a wireless communication device having an asymmetrical antenna arrangement on a side of an aluminum beverage can;

FIG. 15B is a schematic diagram of wireless communication device having an asymmetrical antenna arrangement on the bottom dome of an aluminum beverage can;

FIG. 16 is a schematic diagram of a wireless communication device mounting arrangement;

FIG. 17 is a schematic diagram of a wireless communication device using an asymmetrical slot antenna;

FIG. 18 illustrates a top plan view of a compact disc with an exemplary embodiment of a wireless communication device secured thereto; and

FIG. 19 illustrates a top plan view of selected elements of the wireless communication device of FIG. 18 removed from the compact disc;

FIG. 20 illustrates a flow chart process of an interrogation reader identifying a disc in a retail store to determine if the disc was purchased before its removal from the retail store; and

FIG. 21 illustrates a flowchart process of an interrogation reader performing a trigger event in response to identification of a disc purchased by a customer in a retail store.

The present invention is directed to a particular wireless communication device positioned on a disc. However, this technology builds on a line of patent applications with related subject matter. This related subject matter is presented in full below, with the new material described with reference to FIGS. 18 and 19 following. For the purposes of the present invention, the term “mini disc” is a miniaturized optical disc. The term “DVD” includes digital video discs and digital versatile discs, the latter capable of storing computer data as well as video data. The prior inventions were directed to a device, system and method of attaching a wireless communication device, such as a radio frequency identification device (RFID), to a package or container to communicate information about the package or container. The package may be an individual package containing specific contents, or an individual, exterior package containing a group of additional, interior individual packages. The word “package” and “container” are used interchangeably herein to describe a material that houses contents, such as goods or other individual packages, and equivalent structures. The present invention should not be limited to any particular meaning or method when either “package” or “container” is used.

As illustrated in FIG. 1, the invention includes a wireless communication device 10 for electronic communication. Some wireless communication devices 10 have both a transmitter and receiver. Other wireless communication devices 10, known in the art as “transponders,” are interrogated by interrogation reader 50, whereby the transponder communicates back by altering field 58 containing interrogation signal 56. This description refers to the terms “transponder” and wireless communication device 10 interchangeably, and the use of the term transponder is not intended to limit the type of wireless communication device 10 applicable to the present invention. Wireless communication devices 10 are available that communicate at various frequencies, including UHF and VHF. One embodiment of the present invention uses a wireless communication device 10, also called a “transponder,” that is a passive radio-frequency device with the ability to rectify incoming radio energy and provide power to power the device for communication and operation. The invention is also applicable to active devices that have their own power source for communications. It should be readily understood to one of ordinary skill in the art that there are many other different types of wireless communication devices 10 that allow electronic communication and thus the present invention is not limited to any one particular type.

Transponder 10 includes a control system 12 and communication electronics 14. Transponder 10 may also contain memory 18 for storage of information to be communicated to an interrogation reader 50. Alternatively, transponder 10 may store information such as an identification number or other information by using diodes, dip switches or some other like circuitry in lieu of erasable memory 18. Antenna 16 is provided to receive the interrogation signal 56 from interrogation reader 50. Antenna 16 may be either external to or internal to transponder 10. The particular type and location of antenna 16 will depend on the operating frequency of transponder 10 and the particular design desired. Transponder 10 may also be connected to sensor 20 for sensing ambient or environmental information surrounding transponder 10, package 200 containing transponder 10, or the contents of package 200. One example of sensor 20 may be a quartz crystal resonator like that described in U.S. Pat. No. 5,922,550, entitled “Biosensing devices which produce diffraction images,” incorporated herein by reference , length, width, volume, and/or density, from the second pole. In FIG. 11A, transponder 10 is coupled to two conductive tabs 10A, 10B 100A, 100B. The first conductive tab 100A is asymmetrical with respect to the second conductive tab 10B 100B. The two symmetrical asymmetrical tabs 10A 100A, 100B comprises comprise asymmetrical dipole antenna 16.

FIG. 11B illustrates a side view of one embodiment of the transponder 10 illustrated in FIG. 11A. Tabs 100A, 100B are placed on a dielectric 102. Dielectric 102 acts as an insulator between tabs 100A, 100B and substrate 202. Dielectric 102 is a material that is substantially non-conductive. Examples of materials that may be used to form a dielectric 102 include, but are not limited to: cardboard, plastic, Lexan plastic, fabric, and polypropylene.

If substrate 202 is constructed out of a conductive material, a separate dielectric 102 is provided between substrate 202 and transponder 10 as illustrated in FIG. 11B. If substrate 202 is constructed out of a non-conductive material, substrate 202 may additionally act as dielectric 102. In this case, a ground plane (not shown) may be placed on the opposite side of substrate 202, so that substrate 202, acting as a dielectric 102, is in between transponder 10 and the ground plane. Note that the ground plane may be placed on other places on substrate 202 and not necessarily on the opposite side from transponder 10.

The shape, type, and characteristics of antenna 16 affect the impedance of transponder 10. The substrate 202 also affects the impedance presented to transponder 10 by antenna 16. This is especially true when a thin dielectric 102 is used, because there is less insulation between the transponder 10/antenna 16 and substrate 202. A thin dielectric 102 is between approximately 0.1 mm and 2.0 mm. For transponder 10 to transfer radiation energy from antenna 16 at the highest radiation level possible without losses, the impedance of the transponder 10 should be matched to the impedance of antenna 16 as placed onto substrate 202. For example, in one embodiment, the transponder 10 may have an impedance of 15-j60 ohms. To get optimum transfer of energy between antenna 16 and transponder 10, antenna 16, as placed onto substrate 202, would need to have a conjugate impedance of transponder 10. In practice, impedance matching between transponder 10 and antenna 16 does not have to be exact to have energy transfer between transponder 10 and antenna 16 necessary for communication. Impedances between transponder 10 and antenna 16 that are substantially the same will still allow good energy transfer between antenna 16 and transponder 10.

The transponder 10 may be used with a variety of different substrates 202. To minimize the protrusion of transponder 10 from substrate 202, a thin dielectric 102 is used. Empirical and modeling data have shown that the operation of an asymmetric antenna 16 is substantially insensitive to the size and/or dimensions of substrate 202 when using a dielectric 102 that is relatively thin. Materials with poorly defined structures and/or dielectric constants, such as cardboard, can be used as dielectric 102 materials, which also serve as substrate 202. This discovery allows antenna 16 and transponder 10 impedance to be matched more easily during manufacture without having to take characteristics of substrate 202 into consideration, such as substrate 202 size, thickness, and/or dielectric constant. Substrate 202 does have a certain dielectric constant depending on its material of manufacture and the amount of air present in substrate 202. The dielectric constant is the amount of permissivity of a particular material. In addition, antenna 16 elements, such as tabs 100, do not need precise dimensional control, allowing less precise and less expensive materials and methods to be used to define such elements. For example, tabs 100 may be constructed using label printing techniques and conductive ink, such as described in U.S. Pat. No. 5,566,441, entitled “Attaching an electronic circuit to a substrate,” incorporated herein by reference in its entirety.

In the embodiment illustrated in FIGS. 11A and 11B, asymmetrical tabs 10A, 100B act as the asymmetrical antenna 16. Although the impedance of tabs 100A, 100B are substantially insensitive to substrate 202, tabs 100A, 100B may be increased or decreased in size, length, and/or width depending on variations in the thickness and dielectric constant of substrate 202 to provide optimal impedance matching to transponder 10.

FIG. 12A illustrates one modeled example of asymmetrical tabs 100A, 100B used on a substrate 202. Substrate 202 is a common printed circuit board (PCB) material FR4 with an approximate dielectric constant of 4.65. Two additional tabs 101A, 101B are added to tabs 100A, 100B respectively to allow proper modeling and have no effect on results of the asymmetrical antenna 16. FIG. 12B illustrates the predicted gain of antenna 16, which is −0.85 dBi at 915 MHz. FIG. 12C illustrates the modeled gain of an asymmetrical antenna 16, using tabs 100A, 100B, on a substrate 202 having the same dielectric constant as FR4 without losses. The predicted gain for this model is 5.3 dBi at 915 MHz.

As previously stated, tabs 100A, 100B may vary in size in different manners to provide an asymmetrical antenna 16. FIGS. 13, 14A and 14B illustrate other embodiments of asymmetrical antennas 16. FIG. 13 illustrates an embodiment of an asymmetrical antenna 16, whereby tabs 10A, 100B are at right angles to each other. One tab 100A is substantially thinner than the other tab 100B. The performance of the asymmetrical antenna 16 illustrated in FIG. 13 was found to have similar performance characteristics of the asymmetrical antenna 16 illustrated in FIG. 12A.

FIGS. 14A and 14B illustrate two other embodiments of an asymmetrical antenna 16. In FIG. 14A, one tab 100B, hereto represented as being thicker than tab 100A, is in the shape of a ring, and the other tab 100A is nested inside the area bounded by tab 100B. This asymmetrical antenna 16 is almost one-half the total length of the asymmetrical antenna 16 illustrated in FIG. 12A, and may be used in applications where a shorter asymmetrical antenna 16 is desired. Similarly, FIG. 14B depicts another alternate embodiment of asymmetrical antenna 16. In contrast to the embodiment of FIG. 14A, a relatively thick tab 100B is nested within tab 100A, which is arranged in the shape of a ring or loop. Again, asymmetrical antenna 16 in FIG. 14B, is almost one-half the total length of the asymmetrical antenna 16 illustrated in FIG. 12A, and may be used in applications where a shorter asymmetrical antenna 16 is desired. For example, a shorter asymmetrical antenna 16 may be advantageous for design or manufacturing reasons.

FIG. 15A illustrates another embodiment of an asymmetrical antenna dipole antenna 16, whereby substrate 202 is an aluminum can 600. A separate dielectric 102 is provided between transponder 10 having tabs 100A, 100B and can 600, because can 600 is constructed out of a conductive material namely aluminum (as previously discussed). In this particular embodiment, an asymmetrical antenna 16 is created by using tab 100B that is longer in length than tab 100A. FIG. 15B illustrates another asymmetrical antenna embodiment, again using a can 600 as substrate 202. Transponder 10 is placed on the underneath dome 602 of can 600. Two asymmetrical tabs 100A, 100B are provided to form a dipole antenna 16. The resultant dipole antenna 16 is asymmetrical. Tab 100A is shorter in length than tab 100B, and tab 100B is wider than tab 100A.

FIG. 16 illustrates another embodiment of an asymmetrical dipole antenna 16. In this embodiment, transponder 10 is placed into an indentation 500 of substrate 202 so that transponder 10 will not protrude from substrate 202. Transponder 10 may be damaged or hit by an outside force if it protrudes from substrate 202. Tabs 100A, 100B are provided on the surface of substrate 202 on each side of indentation 500. Conductive leads 502 are placed on the inside of indentation 500 and are electrically coupled to tabs 100A, 100B. Such coupling may be accomplished by direct connection, capacitive coupling or inductive coupling. Tabs 100A, 100B are asymmetrical to one another. Transponder 10 has feed lines 504 on each side that couple to conductive leads 502 to couple transponder 10 and tabs 100A, 100B together. In this manner, transponder 10 uses tabs 100A, 100B to form an asymmetrical dipole antenna 16. As illustrated, transponder 10 has not yet been positioned inside indentation 500 below the surface level of substrate 202. When properly positioned, transponder 10 does not protrude from the surface of substrate 202.

FIG. 17 illustrates another embodiment of an asymmetrical antenna 16. In this embodiment, the asymmetrical antenna 16 is provided using a slot 300 to form an asymmetrical slot antenna 16. In this particular embodiment, slot 300 length is λ/4 and slot 300 width is 3.625 mm, although other lengths and widths may be used. Transponder 10 is placed across the slot 300 using tabs 100 to form a slot antenna 16. The asymmetrical nature of the slot antenna 16 is controlled by the location of the placement of tabs 100 across slot 300, and not by differences in the size, width, and/or density of tabs 100. Tabs 100 are placed off-center of slot 300, thereby forming an asymmetrical slot 300. An asymmetrical slot 300 is a slot that is split into at least two separate portions whereby each portion is of different size, width, and/or depth. If substrate 202 is constructed out of a conductive material, a separate dielectric 102 is provided between transponder 10 and substrate 202. If substrate 202 is constructed out of a non-conductive material, substrate 202 is dielectric 102 with a ground plane provided (not shown). Again, this asymmetrical antenna 16 is substantially insensitive to substrate 202 when using a thin dielectric 102, as previously discussed above.

An alternative embodiment to FIG. 17 is to only couple one tab 100 to transponder 10 to provide a monopole asymmetric antenna 16. Again, tab 100 is placed off-center across slot 300. A ground plane is provided and coupled to transponder 10 so as to ground transponder 10.

The focus of the present invention is on providing wireless communication devices for use on discs, such as compact discs, mini discs, DVDs, and similar devices. Discs may be constructed out of metalized portions that allow storage of digital information. For the purposes of the present claims and the following discussion, some of the terms previously used may be used in a slightly different context.

Turning now to FIG. 18, a particular type of disc known as a compact disc 1000 is illustrated with wireless communication device 1010 disposed thereon. Compact disc 1000 may comprise an outer metalized portion 1002 upon which data is stored as is conventional, an inner portion 1006, typically made from a transparent plastic and delimiting a central hole 1008. Non-conductive gap 1004 exists between outer metalized portion 1002 and inner portion 1006.

Wireless communication device 1010, illustrated isolated from compact disc 1000 in FIG. 19, may comprise a first tab 1012, a second tab 1014, and a wireless communication chip 1016. Wireless communication device 1010 may be either active or passive as described with reference to U.S. Pat. Nos. 5,347,280 (previously incorporated) and 5,585,953, the latter of which is expressly incorporated by reference.

Tabs 1012, 1014 serve as either a pole antenna or to provide a slot antenna for wireless communication device 1010, as discussed below. Tabs 1012, 1014 are a material constructed out of a conductive material, such as metal, copper, or aluminum. Tabs 1012, 1014 may also be in the form of a foil or tape depending on the geometry needs and/or constraints of disc 1000.

Wireless communication chip 1016 may comprise a device from INTERMEC as used in their Intellitag® labels and those devices from SCS as used in their DL100 label although other devices are certainly possible, especially in light of the present invention's suitability to both active and passive wireless communication devices 1010. Wireless communication chip 1016 may comprise a control system 12, memory 18, a battery, a sensor 20, and other conventional components.

First tab 1012 capacitively couples wireless communication chip 1016 to the outer metalized portion 1002 to form a first antenna element. The precise dimensions of the first tab 1012 are dictated in part by the compact disc 1000 and in part by impedance matching considerations, as previously discussed above. However, also note that first tab 1012 may be directly connected to outer metalized portion 1002 to directly connect wireless communication chip 1016 to outer metalized portion 1002.

Second tab 1014 may be an annulus and is positioned on inner portion 1006 for form a second antenna element. Second tab 1014 substantially covers the annulus; however, second tab 1014 does not cover non-conductive gap 1004.

Second tab 1014 may include a stub 1018 that extends across gap 1004 as illustrated in FIG. 18. Wireless communication chip 1016 may likewise be positioned across gap 1004 as illustrated.

Gap 1004 may forms a slot antenna operating at a first frequency for wireless communication device 1010. Likewise, tabs 1012 and 1014 may form an asymmetric dipole antenna for operation at a second frequency. Exemplary frequencies are 915 MHz and 2.45 GHz. However, the present invention is also applicable to wireless communication chip 1016 only being coupled to one tab forming a monopole antenna operating at a second frequency.

The relative positioning of wireless communication chip 1016 with respect to stub 1018 allows the slot antenna to be formed as an asymmetric slot antenna with first portion 1020 extending from stub 1018 to wireless communication chip 1016 and a second portion 1022 comprising the other arc between stub 1018 and wireless communication chip 1016.

The size, shape, and placement of stub 1018 is dictated by impedance matching concerns and the desire for second tab 1014 to act as an antenna element at the second frequency. For example, while not shown, it is possible to position stub 1018 opposite wireless communication chip 1016 so that the slot antenna is not an asymmetrical slot antenna, but rather a normal symmetric dipole slot antenna.

In an exemplary embodiment stub 1018 is four (4) mm wide and extends the radius of compact disc 1000. In this embodiment first tab 1012 may be ten (10) mm wide and extend the radius of compact disc 1000. An arc of thirty-seven degrees separates stub 1018 from first tab 1012. While copper foil is specifically contemplated as being a useful conductor for the construction of first tab 1012 and second tab 1014, other conductive materials such as aluminum are also possible.

Attachment of wireless communication device 1010 to disc 1000 may have a variety of useful applications. For instance, wireless communication device 1010 may provide identification so that disc 1000 cannot be taken from a retail store without authorization and/or having been purchased. Interrogation reader 50 may be placed near exit locations in a retail store that sells discs 1000, such as a retailer of compact-discs. The flowchart illustrated in FIG. 20 discusses the process for detecting the unauthorized removal of disc 1000 having wireless communication device 1010 attached.

The process starts (block 1050), and interrogation reader 50 sends out interrogation signal 56 (block 1052) to determine if wireless communication device 1010 is in range of signal 56 (decision 1054). If there is no detected wireless communication device 1010 in the range of interrogation reader 50, interrogation reader 50 continues to send out interrogation signal 56 (block 1052). If interrogation reader 50 detects wireless communication device 1010 (decision 1054), interrogation reader 50 determines if disc 1000 was legally purchased (decision 1056). If yes, the process start over by interrogation reader 50 sending out interrogation signal 56 for subsequent discs 1000 (block 1052). If no, interrogation reader 50 causes an alert condition (block 1058), and the process ends (block 1060).

One way for interrogation reader to determine if disc 1000 was legally purchased or removed from a location with authorization is to interrogate discs 1000 at exit locations or other desired areas in a store. Interrogation readers 50 may also be located at points of purchase so that interrogation reader 50 can mark memory 18 in wireless communication device 1010 to indicate a legal purchase. Interrogation reader 50, located around exits or other desired locations of store, may then interrogate memory 18 of wireless communication device 1010 to determine if disc 1000 was previously purchased or authorized for removal.

An alert condition may include an audio and/or visual message or signal. For instance, an audio signal may include a siren, alarm, or the like. Such audio signal may be public, or private whereby only certain personnel, such as security personnel, are alerted of the unauthorized removal of disc 1000 from the retail store. Alert conditions may also include a visual signal, both public and/or private as well.

Wireless communication device 1010 on disc 1000 may also cause an interrogation reader 50 to perform a trigger event in response to identification of disc 1000. The identification of disc 1000 may be stored in memory 18 of wireless communication device 1010 in the form of a text or other message.

For instance, it may be desirable to display a visual message to a customer as the customer leaves a retail store with a newly purchased disc 1000. If the customer purchases a disc 1000 that contains an audio recording of a particular artist or musical group, a video display, linked to an interrogation reader 50, may display the artist or musical group thanking the customer for his purchase as customer leaves the store. Interrogation reader 50 determines the identification of disc 1000, and causes a trigger event to occur in response thereto. The trigger event may be any type of communication signal, and may be an audio message or combination of video and audio.

The trigger event may also be a coupon issued to the customer for a future purchase. For instance if the customer purchases a disc 1000 containing jazz music style, interrogation reader 50, through associated with a coupon dispensing station, may issue coupons for other jazz music discs 1000 of the same artist or musical group, or discs 1000 for other jazz artists or musical groups.

FIG. 21 illustrates an interrogation reader 50 that performs a trigger event in response to a disc 1000 identification. The process starts (block 1080), and interrogation reader 50 sends out interrogation signal 56 (block 1082). If interrogation reader 50 does not detect a disc 1000 in range of interrogation signal 56 (decision 1084), interrogation reader 50 continues to send out interrogation signal (block 1082). If interrogation reader 50 detects disc 1000 (decision 1084), interrogation reader determines the identification of disc 1000 (block 1086) and performs the appropriate trigger event in response thereto (block 1088) before the process ends (block 1090). The trigger event may be an event that is external to interrogation reader 50, whereby interrogation reader 50 is coupled to an external device to perform such event. For example, such external device may be a video player that plays when a signal is received from interrogation reader 50.

It should be appreciated that while compact disc 1000 has been discussed in particular, other types of discs, including, but not limited to mini discs, DVDs, and the like are also equally suitable for use with the present invention. This is especially true in light of the uniformity of inner portion 1006 of a compact disc with comparable inner portions on mini discs and DVDs. Mini discs and DVDs are specifically defined elsewhere in the present application.

Note that the present invention is also well suited for use with a miniature compact disc that is shaped like a business card or in other shapes. Examples of shaped compact discs may be found at http://www.sculptedcd.com/home1.htm and in the document entitled “Sculpted CD, CD Business Card, Admission Ticket, CD-R 3″ Minis,” dated Jan. 4, 2001, incorporated herein by reference in its entirety.

In a non-illustrated embodiment, the wireless communication chip 1016 and the coupling structure of the tabs 1012, 1014 may be mounted as part of the CD jewel case. The wireless communication chip 1016 may only be interrogated when the compact disc 1000 is inserted into the jewel case and the case is closed bringing the chip 1016 and the tabs 1012, 1014 into close proximity to the elements that act as the antenna.

Certain modifications and improvements will occur to those skilled in the art upon a reading of the foregoing description. It should be understood that the present invention is not limited to any particular type of wireless communication device, tabs, disc, packaging, or slot arrangement. For the purposes of this application, couple, coupled, or coupling is defined as either directly connecting or reactive coupling. Reactive coupling is defined as either capacitive or inductive coupling. The present invention is intended to cover what is claimed and any equivalents. The specific embodiments used herein are to aid in the understanding of the present invention, and should not be used to limit the scope of the invention in a manner narrower than the claims and their equivalents.

Forster, Ian J., King, Patrick F.

Patent Priority Assignee Title
Patent Priority Assignee Title
2507528,
3972049, Apr 24 1975 The United States of America as represented by the Secretary of the Navy Asymmetrically fed electric microstrip dipole antenna
4054886, Nov 16 1974 Telefunken Systemtechnik GmbH Transmitting/receiving antenna having mirror symmetry and defined polarizations
4117489, Apr 24 1975 The United States of America as represented by the Secretary of the Navy Corner fed electric microstrip dipole antenna
4278186, Sep 08 1978 Method and apparatus for beverage dispensing control and quantity monitoring
4410890, May 06 1981 The United States of America as represented by the Field Operations VHF Directional receiver
4530483, Sep 30 1982 Ancra International LLC Side guide for cargo loading system
4545761, Dec 10 1984 AT&T Technologies, Inc. Method and apparatus for securing articles in place on a substrate
4575725, Aug 29 1983 ALLIED CORPORATION A CORP OF NY Double tuned, coupled microstrip antenna
4662503, Aug 19 1983 International Business Machines Corporation Docking and locking device for a pallet in a robot or like system
4670757, Apr 26 1985 Eaton Corporation Bistatic object location method
4673923, May 19 1986 Checkpoint Systems, Inc. Article surveillance using reactivatable resonant tags
4678425, Aug 27 1986 Cincinnati Milacron Inc. Resilient skirted spindle nose and pallet with reciprocatable spindle combined therewith
4694283, Oct 30 1981 Identification device in the form of a tag-like strip affixable to an article
4850020, Nov 05 1987 Asymmetrical sideband AM stereo transmission
4873532, Oct 07 1987 NIPPON SHEET GLASS CO , LTD , 8, 4-CHOME, DOSHOMACHI, HIGASHI-KU, OSAKA, JAPAN, A JAPANESE CORP Antenna apparatus for a vehicle
4916457, Jun 13 1988 TELEDYNE INDUSTRIES, INC , A CA CORP Printed-circuit crossed-slot antenna
4947181, Dec 19 1988 Raytheon Company Asymmetrical biconical horn antenna
4967184, Sep 19 1989 Eastman Kodak Company Computer disk with security protection
4975711, Aug 31 1988 Samsung Electronic Co., Ltd. Slot antenna device for portable radiophone
4987421, Jun 09 1988 Mitsubishi Denki Kabushiki Kaisha Microstrip antenna
5006857, Aug 09 1989 The Boeing Company Asymmetrical triangular patch antenna element
5073971, Sep 05 1989 Motorola, Inc. Cellular radiotelephone communications system
5081446, Sep 24 1990 Checkpoint Systems, Inc. Security tag for compact disc storage container
5119353, Mar 02 1989 SEIKO EPSON CORPORATION, A CORP OF JAPAN Compact disc with additional memory addressable by disc player
5123541, Mar 26 1991 WILBERT, INC Modular shipping container and clip for assembling components thereof
5155493, Aug 28 1990 The United States of America as represented by the Secretary of the Air Tape type microstrip patch antenna
5187489, Aug 26 1991 Hughes Aircraft Company Asymmetrically flared notch radiator
5216430, Dec 27 1990 Lockheed Martin Corporation Low impedance printed circuit radiating element
5216435, Oct 19 1988 Toyo Communication Equipment Co., Ltd. Array antenna power supply system having power supply lines secured in a cylinder by adhesive
5298894, Jun 17 1992 Badger Meter, Inc. Utility meter transponder/antenna assembly for underground installations
5315303, Sep 30 1991 TRW Inc. Compact, flexible and integrated millimeter wave radar sensor
5347280, Jul 02 1993 Texas Instruments Incorporated Frequency diversity transponder arrangement
5350074, Oct 01 1993 L&P Property Management Company Pallet rack lock
5376943, Sep 07 1990 Plessey SemiConductors Limited Moving vehicle transponder
5381137, Oct 26 1992 MOTOROLA SOLUTIONS, INC RF tagging system and RF tags and method
5382952, Jan 22 1992 ASSA ABLOY AB Transponder for proximity identification system
5406263, Jul 27 1992 Round Rock Research, LLC Anti-theft method for detecting the unauthorized opening of containers and baggage
5430441, Oct 12 1993 Motorola, Inc. Transponding tag and method
5461393, Aug 20 1993 OL SECURITY LIMITED LIABILITY COMPANY Dual frequency cavity backed slot antenna
5508706, Sep 07 1993 TRW Inc. Radar signal processor
5512901, Sep 30 1991 TRW Inc.; TRW Inc Built-in radiation structure for a millimeter wave radar sensor
5528222, Sep 09 1994 INTERMEC IP CORP , A CORPORATION OF DELAWARE Radio frequency circuit and memory in thin flexible package
5539414, Sep 02 1993 Inmarsat Global Limited Folded dipole microstrip antenna
5541399, Sep 30 1994 ASSA ABLOY AB RF transponder with resonant crossover antenna coil
5566441, Mar 11 1993 ZIH Corp Attaching an electronic circuit to a substrate
5574470, Sep 30 1994 ASSA ABLOY AB Radio frequency identification transponder apparatus and method
5577268, Feb 26 1993 Motorola, Inc. Radio frequency shield clip suitable for use in a communication device
5584113, Feb 08 1995 Method for identifying cast parts
5585953, Aug 13 1993 MITEL SEMICONDUCTOR, INC IR/RF radio transceiver and method
5593040, Dec 04 1995 Delphi Technologies Inc Rotary clip for solder pallet
5598169, Mar 24 1995 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Detector and modulator circuits for passive microwave links
5600333, Jan 26 1995 PULSE ELECTRONICS, INC Active repeater antenna assembly
5603430, Feb 10 1995 BERG COMPANY LLC Beverage dispensing system with bottle identification mechanism
5635917, Mar 31 1992 AMPAC TRIGON, LLC Bag including an encodable device responsive to remote interrogation and an associated fabrication method
5652838, May 20 1996 BENHOV GMBH, LLC Smart disc cd-rom
5790029, Aug 31 1994 Tyco Fire & Security GmbH EAS tag package
5814797, Nov 04 1996 A RIFKIN CO Transponder system for monitoring and logging depository transactions
5821859, Jun 07 1996 INTERMEC IP CORP , A CORPORATION OF DELAWARE Concealed magnetic ID code and antitheft tag
5826175, Dec 07 1995 KONINKLIJKE KPN N V Active tag having one diode for modulation and demodulation
5842555, Dec 16 1996 ELITE LINE SERVICES, INC Automated baggage tracking system and method for use in a baggage conveyor system
5862117, Mar 12 1997 EM Microelectronic-Marin SA Device, in particular a compact disc, comprising a data storage medium and an integrated circuit
5892486, Oct 11 1996 ASC Signal Corporation Broad band dipole element and array
5892487, Feb 28 1993 Thomson multimedia S.A. Antenna system
5897741, Feb 09 1998 Premark FEG L.L.C.; PREMARK FEG L L C Apparatus for applying security tags to labels
5910770, Aug 22 1997 UNI Electronics Industry Co., Ltd.; Shiro, Ohara; Yasushi, Ohara Tag for theft prevention
5922550, Dec 18 1996 Kimberly-Clark Worldwide, Inc Biosensing devices which produce diffraction images
5929760, Oct 20 1997 DATALOGIC IP TECH S R L RFID conveyor antenna
5929820, Feb 02 1994 Hughes Electronics Corporation Scanning cup-dipole antenna with fixed dipole and tilting cup
5936528, May 20 1996 Sunny Sealing Co., Ltd.; Sensor Technos Co., Ltd. Visually handicapped person guidance and support
5939984, Dec 31 1997 INTERMEC IP INC ; Intermec IP CORP Combination radio frequency transponder (RF Tag) and magnetic electronic article surveillance (EAS) material
5945201, Oct 25 1995 Holographic identifier for garments
5955048, Sep 27 1995 Alcoa World Alumina LLC; ALMATIS AC, INC Process for making flash activated hydrotalcite
5972152, May 16 1997 Round Rock Research, LLC Methods of fixturing flexible circuit substrates and a processing carrier, processing a flexible circuit and processing a flexible circuit substrate relative to a processing carrier
5973600, Sep 11 1997 Precision Dynamics Corporation Laminated radio frequency identification device
5973648, Oct 16 1996 FUBA AUTOMOTIVE GMBH & CO KG Radio antenna arrangement with a patch antenna for mounting on or adjacent to the windshield of a vehicle
6008727, Sep 10 1998 BICAMERAL LLC Selectively enabled electronic tags
6018299, Jun 09 1998 Google Technology Holdings LLC Radio frequency identification tag having a printed antenna and method
6018324, Dec 20 1996 Apple Inc Omni-directional dipole antenna with a self balancing feed arrangement
6023244, Feb 14 1997 Telefonaktiebolaget LM Ericsson Microstrip antenna having a metal frame for control of an antenna lobe
6024333, Jun 23 1997 Midwest Air Technologies, Inc. Shelf bracket for wire shelves
6027622, May 17 1997 Robert Bosch GmbH Sensor element
6031503, Feb 20 1997 Systemonic AG Polarization diverse antenna for portable communication devices
6034636, Aug 21 1996 NEC Corporation Planar antenna achieving a wide frequency range and a radio apparatus used therewith
6036810, Oct 25 1995 Method of a making and applying a holographic identifier for garments
6044046, Apr 26 1996 Giesecke & Devrient GmbH CD with built-in chip
6054961, Sep 08 1997 MAXRAD, INC Dual band, glass mount antenna and flexible housing therefor
6057803, Mar 19 1996 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Antenna apparatus
6068214, Jan 10 1997 Daimler Chrysler Aerospace Airbus GmbH; DaimlerChrysler Aerospace System for securing a support to an aircraft floor
6075493, Aug 11 1997 Ricoh Company, LTD; Koji Mizuno Tapered slot antenna
6082030, Aug 06 1998 Beverage can identification system
6097347, Jan 29 1997 INTERMEC IP CORP , A CORPORATION OF DELAWARE Wire antenna with stubs to optimize impedance for connecting to a circuit
6100804, Jul 16 1998 Intecmec IP Corp. Radio frequency identification system
6107920, Jun 09 1998 Google Technology Holdings LLC Radio frequency identification tag having an article integrated antenna
6114962, Oct 15 1998 Intermec IP Corp. RF tag having strain relieved stiff substrate and hydrostatic protection for a chip mounted thereto
6118426, Jul 20 1995 E Ink Corporation Transducers and indicators having printed displays
6124829, Jun 20 1994 Kabushiki Kaisha Toshiba Circularly polarized wave patch antenna with wide shortcircuit portion
6140969, Oct 16 1996 Delphi Delco Electronics Europe GmbH Radio antenna arrangement with a patch antenna
6155098, Nov 13 1998 General Electric Company Dewpoint sensor
6239765, Feb 27 1999 Tyco Electronics Logistics AG Asymmetric dipole antenna assembly
6243013, Jan 08 1999 Intermec IP CORP; Intermec IP Corporation Cascaded DC voltages of multiple antenna RF tag front-end circuits
6249260, Jul 16 1999 COMANT INDUSTRIES, INC T-top antenna for omni-directional horizontally-polarized operation
6259369, Sep 30 1999 Moore North America, Inc. Low cost long distance RFID reading
6278413, Mar 29 1999 Intermec IP Corporation Antenna structure for wireless communications device, such as RFID tag
6325199, Oct 05 1998 AXIS USA, INC Pallet conveyor apparatus
6329915, Dec 31 1997 Intermec IP CORP RF Tag having high dielectric constant material
6359842, Oct 22 1998 Hitachi, Ltd. Disc having a semiconductor memory
6411213, Oct 11 1995 MOTOROLA SOLUTIONS, INC Radio frequency identification tag system using tags arranged for coupling to ground
6483473, Jul 18 2000 TERRESTRIAL COMMS LLC Wireless communication device and method
6501435, Jul 18 2000 TERRESTRIAL COMMS LLC Wireless communication device and method
6501965, May 20 1998 Apple Inc Radio communication base station antenna
6533108, Jul 07 2000 Valu Engineering, Inc. Serpentine clip
6806842, Jul 18 2000 TERRESTRIAL COMMS LLC Wireless communication device and method for discs
6828941, Jul 18 2000 TERRESTRIAL COMMS LLC Wireless communication device and method
6853345, Jul 18 2000 TERRESTRIAL COMMS LLC Wireless communication device and method
7098850, Jul 18 2000 TERRESTRIAL COMMS LLC Grounded antenna for a wireless communication device and method
7193563, Jul 18 2000 TERRESTRIAL COMMS LLC Grounded antenna for a wireless communication device and method
20010000430,
20020000430,
20020167450,
DE3247425,
EP615285,
EP673007,
EP706232,
EP861788,
EP993069,
EP1018779,
EP1055943,
EP1058338,
EP1128466,
FR2697801,
FR2706422,
GB2335081,
JP11035038,
JP3196704,
JP9188248,
JP9330388,
WO23994,
WO26856,
WO124109,
WO124314,
WO137215,
WO173675,
WO207084,
WO207085,
WO207496,
WO9414208,
WO9724689,
WO9827609,
WO9918000,
WO9960657,
WO9965002,
WO23994,
WO9414208,
WO9724689,
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jan 06 2005MARCONI INTELLECTUAL PROPERTY US , INC Mineral Lassen LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0292880476 pdf
Oct 19 2006Mineral Lassen LLC(assignment on the face of the patent)
Dec 10 2018Mineral Lassen LLCINTELLECTUAL VENTURES ASSETS 101 LLCNUNC PRO TUNC ASSIGNMENT SEE DOCUMENT FOR DETAILS 0478340917 pdf
Dec 14 2018INTELLECTUAL VENTURES ASSETS 101 LLCTERRESTRIAL COMMS LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0507120244 pdf
Date Maintenance Fee Events
Mar 25 2016M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Sep 25 20154 years fee payment window open
Mar 25 20166 months grace period start (w surcharge)
Sep 25 2016patent expiry (for year 4)
Sep 25 20182 years to revive unintentionally abandoned end. (for year 4)
Sep 25 20198 years fee payment window open
Mar 25 20206 months grace period start (w surcharge)
Sep 25 2020patent expiry (for year 8)
Sep 25 20222 years to revive unintentionally abandoned end. (for year 8)
Sep 25 202312 years fee payment window open
Mar 25 20246 months grace period start (w surcharge)
Sep 25 2024patent expiry (for year 12)
Sep 25 20262 years to revive unintentionally abandoned end. (for year 12)