An improved method for display of a transitional region of interest while transitioning between a first region of interest and a second region of interest within visual information on a display screen of a computer. The method comprising the steps of applying a transitional transformation to the visual information and displaying the transitional transformed visual information on the display screen. The transitional transformation requiring a reduced calculation for transforming the visual information in the transitional region.

Patent
   RE43742
Priority
Dec 19 2001
Filed
Oct 16 2009
Issued
Oct 16 2012
Expiry
Dec 19 2021
Assg.orig
Entity
Large
1
321
all paid
1. A method for generating a presentation of a region of interest in an original image for display on a display screen, comprising:
applying a lens to a border region of the region of interest in the original image by displacing the border region onto the lens and projecting the displacing onto a plane in a uniform direction aligned with a viewpoint, wherein the lens remains constant while transitioning between first and second locations for the region of interest in the original image; and,
displaying the presentation on the display screen.
0. 39. A method comprising:
applying a function by a data processing system to give an appearance of a lens to a region in an original image; and
displaying a presentation of the appearance of the lens that keeps the appearance of the lens constant while transitioning between first and second locations for the region in the original image on a display screen of the data processing system,
wherein said displaying comprises rendering the appearance of the lens at a first resolution and rendering the original image outside of the lens at a second resolution that is lower than the first resolution.
0. 45. A method comprising:
applying a function by a data processing system to give an appearance of a lens to a region in an original image; and
displaying a presentation of the appearance of the lens that restricts rendering of the presentation while transitioning between first and second locations for the region in the original image on a display screen of the data processing system such that a portion of the appearance of the lens is not rendered during the transitioning,
wherein the portion of the appearance of the lens that is not rendered during the transitioning is within a border of the appearance of the lens.
0. 51. A client device comprising a processor and memory having instructions that are executable on a processor to receive data via an internet from a server of an original image having a function applied to give an appearance of a lens to a region of the original image provided by selective high resolution rendering to display data within the region of interest and neighboring regions of the appearance of the lens while remaining data in the original image is rendered at a low resolution,
wherein the function causes a border region of the region in the original image to be displaced onto the lens and displayed onto a plane in a uniform direction.
0. 56. A method comprising:
displaying an image on a display of a computing device;
specifying a region of interest in the image;
displaying, on the display, the region of interest at a first resolution while displaying, on the display, one or more portions from the image that lie outside the region of interest at a second resolution that is less than the first resolution; and
updating display of the region of interest as the region of interest transitions from the first position to the second position, wherein said updating renders only a periphery of the region of interest as the region of interest transitions from the first position to the second position.
0. 62. A computing device, comprising
an input device configured to receive input that specifies a region of interest in an image; and
a processor configured to cause a display to display the region of interest at a first resolution and one or more portions from the image that lie outside the region of interest at a second resolution that is less than the first resolution,
wherein the processor is further configured to cause the display to update display of the region of interest as the region of interest transitions from the first position to the second position, and to only update a periphery of the region of interest as the region of interest transitions from the first position to the second position.
5. A system for generating a presentation of a region of interest in an original image for display on a display screen, comprising:
a processor coupled to memory and the display screen; and,
modules within the memory and executed by the processor, the modules including: a module for applying a lens to a border region of the region of interest in the original image by displacing the border region onto the lens and projecting the displacing onto a plane in a uniform direction aligned with a viewpoint, wherein the viewpoint remains constant while transitioning between first and second locations for the region of interest in the original image; and,
a module for displaying the presentation on the display screen.
9. A system for displaying a region of interest while transitioning between first and second locations for the region of interest within visual information on a display screen, comprising:
a processor coupled to memory and the display screen; and,
modules within the memory and executed by the processor, the modules including:
a module for applying a transformation to a border region of the region of interest in the visual information to improve visual detail in the border region of the region of interest by:
establishing a lens surface for the border region having a lens surface shape; and, generating a presentation by overlaying the visual information on the lens surface and projecting the lens surface with the visual information onto a plane in a uniform direction aligned with a viewpoint, wherein at least one of the lens surface shape and the viewpoint remain constant during the transitioning between the first and second locations; and, a module for displaying the presentation on the display screen.
2. The method of claim 1 wherein the viewpoint remains constant while transitioning between the first and second locations.
3. The method of claim 2 wherein the lens has a magnified region for the border region.
4. The method of claim 3 wherein the magnified region has a diminishing magnification.
6. The system of claim 5 wherein the lens remains constant while transitioning between the first and second locations.
7. The system of claim 6 wherein the lens has a magnified region for the border region.
8. The system of claim 7 wherein the magnified region has a diminishing magnification.
10. The system of claim 9 wherein the transformation transforms only a portion of the visual information in the region of interest.
11. The system of claim 10 wherein the portion is the border of the region of interest.
12. The system of claim 9 wherein the border region is a periphery of the region of interest.
13. The system of claim 9 wherein the lens surface for the border region is defined by a distortion function.
14. The system of claim 9 wherein the lens surface for the border region is defined by a predetermined portion of a lens surface for rendering the region of interest.
15. The system of claim 14 wherein the predetermined portion is a border region of the lens surface for rendering the region of interest.
16. The system of claim 15 wherein the predetermined portion is a periphery of the lens surface for rendering the region of interest.
17. The system of claim 14 wherein the lens surface for rendering the region of interest is defined by the distortion function.
18. The system of claim 9 and further comprising a module for establishing a path between the first and second locations for the region of interest.
19. The system of claim 18 wherein the path is established automatically by a predetermined program.
20. The system of claim 18 wherein the path is established by user selection.
21. The system of claim 9 and further comprising a module for at least one of: increasing resolution of the visual information in the region of interest; and, decreasing resolution of the visual information outside the region of interest.
22. The system of claim 21 wherein the transformation provides a smooth transition to the region of interest from an adjacent region by blending increased and decreased resolution visual information in predefined regions adjacent to the region of interest.
23. The system of claim 22 wherein the blending is performed by averaging the increased and decreased resolution visual information.
24. The system of claim 22 wherein the blending is performed by admixing the increased and decreased resolution visual information.
25. The system of claim 9 and further comprising a module for transmitting the presentation over a network to a remote computer.
26. The system of claim 9 wherein the visual information includes a portable document format (PDF) document.
27. The system of claim 26 and further comprising a module for scaling the visual information to fit on the display screen.
28. The system of claim 9 wherein the region of interest, the lens surface, and the lens surface shape include a plurality of regions of interest, a plurality of lens surfaces, and a plurality of lens surface shapes, respectively.
29. The system of claim 9 wherein the visual information includes one or more of newspapers, magazines, telephone directories, and maps.
30. The system of claim 9 wherein the visual information includes web page content.
31. The system of claim 9 wherein the display screen is contained in a handheld device.
32. The system of claim 9 wherein the visual information is a newspaper page.
33. The system of claim 32 wherein the newspaper page includes one or more of a plurality of headlines, columns, articles, graphics, and advertisements.
34. The system of claim 33 wherein the region of interest includes one or more of a headline, a column, an article, a graphic, and an advertisement.
35. The system of claim 34 wherein the lens surface shape has a shape corresponding to that of the region of interest.
36. The system of claim 35 wherein the lens surface shape has a shape corresponding to a column.
37. The system of claim 36 wherein the transformation increases the font size within a portion of the column.
38. The system of claim 37 wherein the lens surface shape is tapered to provide a continuous transition on at least one side of the portion of the column to undistorted text.
0. 40. The method of claim 39 wherein the applying includes displacing a border region of the region in the original image onto the lens and projecting the displaying onto a plane in a uniform direction.
0. 41. The method of claim 40 wherein the uniform direction is aligned with a viewpoint.
0. 42. The method of claim 41 wherein the viewpoint remains constant while transitioning between the first and second locations.
0. 43. The method of claim 40 wherein the lens has a magnified region for the border region.
0. 44. The method of claim 43 wherein the magnified region has a diminishing magnification.
0. 46. A method of claim 45 wherein the border of the appearance of the lens is rendered during the transitioning.
0. 47. The method of claim 45 wherein the applying includes displacing a border region of the region in the original image onto the lens and projecting the displaying onto a plane in a uniform direction that is aligned with a viewpoint.
0. 48. The method of claim 45 further comprising displaying the presentation of the appearance of the lens such as not to be restricted when the appearance of the lens is not being transitioned in the original image on the display screen.
0. 49. The method of claim 45 wherein the displaying of the presentation of the appearance of the lens is performed by fully rendering the appearance of the lens if the appearance is not being transitioned.
0. 50. The method of claim 45 wherein the displaying of the presentation of the appearance of the lens is performed by rendering the portion of the appearance of the lens if the appearance is not being transitioned.
0. 52. The client device of claim 51 wherein the function causes the neighboring regions of the appearance of the lens to give an appearance of a smooth transition from the high resolution rendering of the region to the remaining data in the original image.
0. 53. The client device of claim 52 wherein the function causes the transition by blending of a low resolution rendering of the remaining data in the original image with the selective high resolution rendering of the region.
0. 54. The client device of claim 53 wherein the blending includes admixing or averaging.
0. 55. The client device of claim 56, wherein the uniform direction is aligned with a viewpoint.
0. 57. The method of claim 56, further comprising scaling the region of interest to obtain a magnified presentation of the region of interest having a greater scale than the one or more portions that lie outside the region of interest, wherein
said displaying the region of interest comprises displaying the magnified presentation of the region of interest.
0. 58. The method of claim 56, wherein said displaying the region of interest occludes a portion of the image.
0. 59. The method of claim 56, further comprising receiving input that specifies movement of the region of interest from a first position to a second position.
0. 60. The method of claim 56, further comprising smoothing a resolution transition between the region of interest displayed at the first resolution and the one or more other portions displayed at the second resolution.
0. 61. The method of claim 56, wherein said specifying includes embedding locating information for the region of interest in a source of the image.
0. 63. The computing device of claim 62, wherein the processor is further configured to:
scale the region of interest to obtain a magnified presentation of the region of interest having a greater scale than the one or more portions that lie outside the region of interest; and
cause the display to display the magnified presentation of the region of interest such that the magnified presentation occludes a portion of the image.
0. 64. The computing device of claim 62, wherein the input device is further configured to receive additional input that specifies movement of the region of interest from a first position to a second position.
0. 65. The computing device of claim 62, wherein said processor is further configured to cause the display to display a smoothed resolution transition between the region of interest displayed at the first resolution and the one or more other portions displayed at the second resolution.

This application is a continuation of U.S. patent application Ser. No. 10/021,313, filed Dec. 19, 2001, now U.S. Pat. No. 7,106,349 the disclosure of which is incorporated herein by reference.

This application claims priority from Canadian Patent Application No. 2,328,795, filed Dec. 19, 2000. The invention relates to the field of computer graphics processing, more specifically, the invention relates to the display of visual information including portable document format (PDF) files on a display screen of a computer.

Display screens are the primary visual display interface to a computer. One problem with these visual display screens is that they are limited in size, thus presenting a challenge to user interface design, particularly when larger amounts of information is to be displayed. This problem is normally referred to as the “screen real estate problem”.

Well known solutions to this problem include panning, zooming, scrolling or combinations thereof. While these solutions are suitable for a large number of visual display applications, these solutions become less effective where the visual information is spatially related, such as maps, newspapers and such like. In this type of information display, panning, zooming and/or scrolling is not as effective as much of the context of the panned, zoomed or scrolled display is hidden.

A recent solution to this problem is the application of “detail-in-context” presentation techniques to the display of large surface area media, such as maps. Detail-in-context presentation techniques take on many forms and are useful for displaying large amounts of information on limited size computer screens, and are becoming more important with the increased use of hand held computing devices such as personal digital assistance (PDA's) and cell phones.

Now, in the detail-in-context discourse, differentiation is often made between the terms “representation” and “presentation”. A representation is a formal system, or mapping, for specifying raw information or data that is stored in a computer or data processing system. For example, a digital map of a city is a representation of raw data including street names and the relative geographic location of streets and utilities. Such a representation may be displayed visually on computer screen or printed on paper. On the other hand, a presentation is a spatial organization of a given representation that is appropriate for the task at hand. Thus, a presentation of a representation organizes such things as the point of view and the relative emphasis of different parts or regions of the representation. For example, a digital map of a city may be presented with a region magnified to reveal street names.

Detail-in-context presentations allow for magnification of a particular region of interest (the “focal region”) in a representation while preserving visibility of the surrounding representation. In other words, in detail-in-context presentations focal regions are presented with an increased level of detail without the removal of contextual information from the original representation. In general, a detail-in-context presentation may be considered as a distorted view (or distortion) of a portion of the original representation where the distortion is the result of the application of a “lens” like distortion function to the original representation. A detailed review of various detail-in-context presentation techniques may be found in a publication by Carpendale, Marianne S. T., titled “A Framework for Elastic Presentation Space” (Burnaby, British Columbia: Simon Fraser University, 1999) and incorporated herein by reference.

Thus, detail-in-context presentations of data using techniques such as Elastic Presentation Space (“EPS”) are useful in presenting large amounts of information on limited-size display surfaces. Detail-in-context views allow magnification of a particular region of interest (the “focal region”) in a data presentation while preserving visibility of the surrounding information. Development of increasingly powerful computing devices has lead to new possibilities for applications of detail-in-context viewing. At the same time, the development of new compact, mobile computing platforms such as handheld computers, typically with reduced computing performance and smaller display surfaces as compared to desktop or mainframe computers, has motivated research into alternate implementation techniques and performance improvements to detail-in-context data presentation technologies. Consequently, one shortcoming of current EPS graphics technology and detail-in-context presentation methods is that being computationally inefficient, they are not optimized for newer compact, mobile computing platforms (e.g. handheld computers) that have reduced computing power. Considerable computer processing is required to distort a given presentation so as to produce a detail-in-context “lens”, and to move the lens through the data with adequate performance to provide an acceptable level of interactivity to the user.

A need therefore exists for a method and system that will allow for the effective implementation of EPS graphics technology on computing platforms having variable levels of computing power. Consequently, it is an object of the present invention to obviate or mitigate at least some of the above-mentioned disadvantages.

In accordance with an aspect of the invention, there is provided an improved method for display of a transitional region of interest while transitioning between a first region of interest and a second region of interest within visual information on a display screen of a computer. The method comprises the steps of: applying a transitional transformation to the visual information, the transitional transformation requiring reduced calculations for transforming the visual information to transitional transformed visual information; and displaying the transitional transformed visual information on the display screen.

In accordance with a further aspect of the invention, there is provided a method for displaying the transition between regions of interest within visual information on a display screen of a computer. The method comprises the steps of: selecting a first region of interest within the visual information; applying a first transformation to the visual information to improve the visual detail in the first region of interest; and displaying the first transformed visual information on the display screen. Selecting a second region of interest within the visual information applying a second transformation to the visual information to improve the visual detail in the second region of interest; and displaying the second transformed visual information on the display screen. Selecting a transitional region of interest on a path between the first region of interest and the second region of interest within the visual information; applying a transitional transformation to the visual information to improve the visual detail in a predetermined portion of the transitional region of interest; and displaying the transitional transformed visual information on the display screen.

In accordance with yet a further aspect of the invention, there is provided a method for displaying visual information on a display screen of a computer. The method comprising the steps of: selecting a region of interest within the visual information; applying a transformation to the visual information for improving visual detail and presentation quality in the region of interest, the transformation for overlaying the visual information on a lens surface, the lens surface having predetermined shape for the region of interest. Projecting the lens surface with the overlaid visual information onto a plane. Increasing resolution of the visual information in the region of interest. Decreasing resolution of the visual information outside the region of interest, and displaying the transformed visual information on the display screen.

In accordance with yet a further aspect of the invention, there is provided a data carrier having stored thereon instructions for improving display of a transitional region while transitioning between a first region of interest and a second region of interest within visual information on a display screen of a computer. The instructions comprise the steps of: applying a transitional transformation to the visual information, the transitional transformation having a reduced a number of calculations required for rendering the transitional transformed visual information; and displaying the transitional transformed visual information on the display screen.

In accordance with yet a further aspect of the invention, there is provided a method for displaying visual information in portable document format (PDF) files on a display screen of a computer is provided. The method comprising the steps of: scaling the visual information to produce a scaled representation to fit on the display screen, the scaled representation generally containing the entire content of the visual information; selecting a region of interest within the scaled representation; applying a transformation to the scaled representation to improve the visual detail in the region of interest; and, displaying the transformed representation on the display screen. The step of applying a transformation further comprising the steps of: creating a lens surface of predetermined shape for the region of interest; and, creating a transformed representation by overlaying the scaled representation on the lens surface and projecting the lens surface with the overlaid scaled representation onto a plane.

In accordance with yet a further aspect of the invention, there is provided the use of a method for displaying visual information on a display screen of a computer for displaying visual information in portable document format (PDF) files is provided. The method comprising the steps of: scaling the visual information to produce a scaled representation to fit on the display screen, the scaled representation generally containing the entire content of the visual information; selecting a region of interest within the scaled representation; applying a transformation to the scaled representation to improve the visual detail in the region of interest; and, displaying the transformed representation on the display screen.

According to one aspect of the invention, there is provided a method for generating a presentation of a region of interest in an original image for display on a display screen, comprising: applying a lens to a border region of the region of interest in the original image by displacing the border region onto the lens and projecting the displacing onto a plane in a uniform direction aligned with a viewpoint, wherein at least one of the lens and the viewpoint remain constant while transitioning between first and second locations for the region of interest in the original image. The method may further include displaying the presentation on the display screen. The lens may have a magnified region for the border region. And, the magnified region may have a diminishing magnification.

According to another aspect of the invention, there is provided a system for generating a presentation of a region of interest in an original image for display on a display screen, comprising: a processor coupled to memory and the display screen; and, modules within the memory and executed by the processor, the modules including: a module for applying a lens to a border region of the region of interest in the original image by displacing the border region onto the lens and projecting the displacing onto a plane in a uniform direction aligned with a viewpoint, wherein at least one of the lens and the viewpoint remain constant while transitioning between first and second locations for the region of interest in the original image. The system may further include a module for displaying the presentation on the display screen. The lens may have a magnified region for the border region. And, the magnified region may have a diminishing magnification.

According to another aspect of the invention, there is provided a system for displaying a region of interest while transitioning between first and second locations for the region of interest within visual information on a display screen, comprising: a processor coupled to memory and the display screen; and, modules within the memory and executed by the processor, the modules including: a module for applying a transformation to a border region of the region of interest in the visual information to improve visual detail in the border region of the region of interest by: establishing a lens surface for the border region having a lens surface shape; and, generating a presentation by overlaying the visual information on the lens surface and projecting the lens surface with the visual information onto a plane in a uniform direction aligned with a viewpoint, wherein at least one of the lens surface shape and the viewpoint remain constant during the transitioning between the first and second locations; and, a module for displaying the presentation on the display screen. The transformation may transform only a portion of the visual information in the region of interest. The portion may be the border of the region of interest. The border region may be a periphery of the region of interest. The lens surface for the border region may be defined by a distortion function. The lens surface for the border region may be defined by a predetermined portion of a lens surface for rendering the region of interest. The predetermined portion may be a border region of the lens surface for rendering the region of interest. The predetermined portion may be a periphery of the lens surface for rendering the region of interest. The system may further include a module for establishing a path between the first and second locations for the region of interest. The path may be established automatically by a predetermined program. The path may be established by user selection. The system may further include a module for at least one of: increasing resolution of the visual information in the region of interest; and, decreasing resolution of the visual information outside the region of interest. The transformation may provide a smooth transition to the region of interest from an adjacent region by blending increased and decreased resolution visual information in predefined regions adjacent to the region of interest. The blending may be performed by averaging the increased and decreased resolution visual information. The blending may be performed by admixing the increased and decreased resolution visual information. The system may further include a module for transmitting the presentation over a network to a remote computer. The visual information may include a portable document format (PDF) document. The lens surface for rendering the region of interest may be defined by the distortion function. The region of interest, the lens surface, and the lens surface shape may include a plurality of regions of interest, a plurality of lens surfaces, and a plurality of lens surface shapes, respectively. The visual information may include one or more of newspapers, magazines, telephone directories, and maps. The visual information may include web page content. The display screen may be contained in a handheld device. The visual information may be a newspaper page. The newspaper page may include one or more of a plurality of headlines, columns, articles, graphics, and advertisements. The region of interest may include one or more of a headline, a column, an article, a graphic, and an advertisement. The lens surface shape may have a shape corresponding to that of the region of interest. The lens surface shape may have a shape corresponding to a column. The transformation may increase the font size within a portion of the column. The lens surface shape may be tapered to provide a continuous transition on at least one side of the portion of the column to undistorted text. And, the system may further include a module for scaling the visual information to fit on the display screen.

The invention may best be understood by referring to the following description and accompanying drawings which illustrate the invention. In the drawings:

FIG. 1 is a perspective view of a 3D perspective viewing frustum in accordance with known elastic presentation space graphics technology;

FIG. 2 is a cross-sectional view of a presentation in accordance with known elastic presentation space graphics technology;

FIG. 3 is a block diagram of an exemplary data processing system for implementing an embodiment of the invention;

FIG. 4 is a screen capture of a PDF file for a newspaper page that has been shrunk to fit a display surface in accordance with one embodiment of the invention; and,

FIG. 5 is a flow chart illustrating a general method for displaying visual information in portable document format (PDF) files on a display screen of a computer in accordance with one embodiment of the invention.

In the following description, numerous specific details are set forth to provide a thorough understanding of the invention. However, it is understood that the invention may be practiced without these specific details. In other instances, well-known software, circuits, structures and techniques have not been described or shown in detail in order not to obscure the invention. The term “data processing system” is used herein to refer to any machine for processing data, including the computer systems and network arrangements described herein. The term “PDF” (Portable Document Format) is used herein to refer to a file format that captures all the elements of a printed document as an electronic image that a user can view, navigate, print, or forward to someone else. The term “Elastic Presentation Space” or “EPS” is used herein to refer to techniques that allow for the adjustment of a visual presentation without interfering with the information content of the representation. The adjective “elastic” is included in the term as it implies the capability of stretching and deformation and subsequent return to an original shape. EPS graphics technology is described by Carpendale in A Framework for Elastic Presentation Space (Carpendale, Marianne S. T., A Framework for Elastic Presentation Space (Burnaby, British Columbia: Simon Fraser University, 1999)) which is incorporated herein by reference. In EPS graphics technology, a two-dimensional visual representation is placed onto a surface; this surface is placed in three-dimensional space; the surface, containing the representation, is viewed through perspective projection; and the surface is manipulated to effect the reorganization of image details. The presentation transformation is separated into two steps: surface manipulation or distortion and perspective projection. In the drawings, like numerals refer to like structures or processes. Referring to FIG. 1, there is shown a perspective view 100 of a 3D perspective viewing frustum 220 in accordance with known elastic presentation space (“EPS”) graphics technology. In EPS, detail-in-context views of 2D visual representations are created with sight-line aligned distortions of a 2D information presentation surface within a 3D perspective viewing frustum 220. In EPS, magnification of regions of interest and the accompanying compression of the context region to accommodate this change in scale are produced by the movement of regions of the surface towards the viewpoint 240 located at the apex of the pyramidal shape 220 containing the frustum. The process of projecting these transformed layouts via a perspective projection results in a new 2D layout which includes the zoomed and compressed regions. The use of the third dimension and perspective distortion to provide magnification in EPS provides a meaningful metaphor for the process of distorting the information presentation surface. The 3D manipulation of the information presentation surface in such a system is an intermediate step in the process of creating a new 2D layout of the information.

Referring to FIG. 2, there is shown a cross-sectional view of a presentation 200 in accordance with known EPS graphics technology. EPS graphics technology employs viewer-aligned perspective projections to produce detail-in-context presentations in a reference view plane 201 which may be viewed on a display. Undistorted 2D data points are located in a basal plane 210 of a 3D perspective viewing volume or frustum 220 which is defined by extreme rays 221 and 222 and the basal plane 210. A viewpoint (“VP”) 240 is located above the centre point of the basal plane 210 and reference view plane 201. Points in the basal plane 210 are displaced upward onto a distorted surface 230 which is defined by a general 3D distortion function (i.e. a detail-in-context distortion basis function). The direction of the viewer-aligned perspective projection corresponding to the distorted surface 230 is indicated by the line FPo-FP 231 drawn from a point FPo 232 in the basal plane 210 through the point FP 233 which corresponds to the focus or focal region or focal point of the distorted surface 230.

To reiterate, EPS refers to a collection of know-how and techniques for performing “detail-in-context viewing” (also known as “multi-scale viewing” and “distortion viewing”) of information such as images, maps, and text, using a projection technique summarized below. EPS is applicable to multidimensional data and is well suited to implementation on a computer for dynamic detail-in-context display on an electronic display surface such as a monitor. In the case of two dimensional data, EPS is typically characterized by magnification of areas of an image where detail is desired, in combination with compression of a restricted range of areas of the remaining information (the “context”), the end result typically giving the appearance of a lens having been applied to the display surface. EPS has numerous advantages over conventional zoom, pan, and scroll technologies, including the capability of preserving the visibility of information outside the local region of interest.

In general, in EPS, the source image to be viewed is located in the basal plane. Magnification and compression are achieved through elevating elements of the source image relative to the basal plane, and then projecting the resultant distorted surface onto the reference view plane. EPS performs detail-in-context presentation of n-dimensional data through the use of a procedure wherein the data is mapped into a region in an (n+l) dimensional space, manipulated through perspective projections in the (n+l) dimensional space, and then finally transformed back into n-dimensional space for presentation.

For example, and referring to FIGS. 1 and 2, in two dimensions, EPS can be implemented through the projection of an image onto a reference plane 201 in the following manner. The source image is located on a basal plane 210, and those regions of interest 233 of the image for which magnification is desired are elevated so as to move them closer to a reference plane situated between the reference viewpoint 240 and the reference view plane (RVP) 201. Magnification of the “focal region” 233 closest to the RVP varies inversely with distance from the RVP 201. As shown in FIGS. 1 and 2, compression of regions outside the focal region 233 is a function of both distance from the RVP 201, and the gradient of the function describing the vertical distance from the RVP 201 with respect to horizontal distance from the focal region 233. The resultant combination of magnification and compression of the image as seen from the reference viewpoint 240 results in a lens-like effect similar to that of a magnifying glass applied to the image, and the resultant distorted image may be referred to as a “pliable display surface”. Hence, the various functions used to vary the magnification and compression of the image via vertical displacement from the basal plane 210 are described as lenses, lens types, or lens functions. Lens functions that describe basic lens types with point and circular focal regions, as well as certain more complex lenses and advanced capabilities such as folding, have previously been described by Carpendale.

System.

Referring to FIG, 3, there is shown a block diagram of an exemplary data processing system 300 for implementing an embodiment of the invention. The data processing system is suitable for implementing EPS technology and for viewing PDF files. The data processing system 300 includes an input device 310, a central processing unit or CPU 320, memory 330, and a display 340. The input device 310 may be a keyboard, mouse, trackball, or similar device. The CPU 320 may include dedicated coprocessors and memory devices. The memory 330 may include RAM, ROM, databases, or disk devices. And, the display 340 may include a computer screen or terminal device. The data processing system 300 has stored therein data representing sequences of instructions which when executed cause the method described herein to be performed. Of course, the data processing system 300 may contain additional software and hardware a description of which is not necessary for understanding the invention.

Presentation of PDF Files Using EPS.

According to one aspect of the invention, EPS is applied to the electronic and online (i.e. Internet) presentation of Portable Document Format (“PDF”) files. PDF is a file format that captures the elements of a printed document as an electronic image that a user can view, navigate, print, or forward to someone else. PDF files are created using software products such as Adobe Acrobat®. To view and use a PDF file, a product such as Adobe Acrobat Reader® is typically used. PDF files are especially useful for documents such as newspaper and magazine articles, product brochures, or flyers where it is desired to preserve the original graphic appearance online. For example, a PDF file may be used for the online distribution of a printed document where it is desirable to preserve its printed appearance.

EPS and detail-in-context viewing can be used to enhance the viewing of PDF file. This is affected by the electronic scaling of the document content to a size that allows presentation of the full content on the display surface, with the use of specialized EPS lenses to enlarge regions of interest 233 to make them readable to the user. This method can be used to achieve the more effective presentation of PDF file content on small display surfaces including handheld computers. This aspect of the invention can be implemented with pre-placed EPS lenses on important content components including headlines, feature articles, tables of contents, and advertisements. Interaction with the reader is such that articles in the reader's region of interest 233 are enlarged automatically via EPS lenses of complex shape to suit the shape of the article or other area of interest.

Referring to FIG. 4, there is shown a screen capture 400 of a PDF file for a newspaper page that has been effectively shrunk to fit a display surface 340 according to one embodiment of the invention. A lens 410 has been used in the fifth column to increase the font size in the reader's region of interest 233. The top 420 and bottom 430 of the lens 410 are tapered to provide a continuous transition to the unmagnified text 440. Partial overwriting of neighboring columns 450 and images 460 by the lens 410, rather than a lateral distortion, is performed to blend the lens 410 into the undistorted regions 470, and provide enough space for the lens 410 while preserving the spatial orientation of the neighboring columns.

The implementation of pre-placed lenses can be achieved as follows. In order to provide the user with an immediate view of certain regions of a file, items of interest such as article headlines, whole articles, or advertisements can have lenses 410 in place when the document is first viewed. This can be implemented, for example, through the use of special lens locating information (i.e. locating tags) embedded within the source file or in a separate data layer, indicating the characteristics, location and/or bounds of the lens.

Method and Use.

Referring to FIG. 5, there is shown a flow chart 500 illustrating a general method for displaying visual information in portable document format (PDF) files on a display screen of a computer according to one embodiment of the invention. At step 501, the method starts. At step 502, the visual information is scaled to produce a scaled representation to fit on the display screen. The scaled representation generally contains the entire content of the visual information. At step 503, a region of interest is selected within the scaled representation. At step 504, a transformation is applied to the scaled representation to improve the visual detail in the region of interest. At step 505, the transformed representation is displayed on the display screen. At step 506, the method ends. Thus, elastic presentation space methodology can be used for displaying visual information in portable document format (PDF) files on a display screen of a computer.

Restricted Rendering of Lens During Lens Motion.

According to another aspect of the invention, a restricted portion of the region of interest (i.e. the “lens”) 233, for example the border or periphery 420, 430 of a lens 410, is rendered to a display 340 during the movement of the lens about the data space. The movement of the lens 410 may be user initiated or automated. By rendering only a portion of the lens 410, the computations required for lens movement and rendering are minimized while a presentation of the changing location of the lens is maintained. When movement of the lens ceases, by user or automated means, a full rendering of the lens in its new location can be displayed. In this way, the number of computations required during the movement of the lens 410 is reduced and hence performance is improved which is especially important for systems 300 with limited computational speed.

Blending and Selective Use of Data at Multiple Resolutions.

To improve detail-in-context presentation quality, an increase in the spatial resolution or level of detail within the region of interest 233, 410 can be provided as can a smooth visual transition from the region of interest to surrounding regions 440, 470.

According to another aspect of the invention, an increase in resolution within the region of interest 233, 410 of a detail-in-context presentation is provided by the selective high resolution rendering to a display 340 of data within the region of interest 233, 410 and neighbouring regions 420, 430 of a detail-in-context lens while the remaining data 440, 470 in the presentation is rendered at low resolution. In this way, resolution within and about the region of interest 233, 410 can be increased with a minimum of computing resources (i.e. processing time and processor memory).

According to another aspect of the invention, a smooth visual transition from the region of interest 233, 410 to surrounding regions 440, 470 is provided by the blending of low and high resolution regions 410, 420, 430, 440, 470. This blending can be accomplished by averaging or admixing of the high and low resolution regions described above. In this way, a smooth visual transition can be provided from the region of interest to surrounding regions with a minimum of computing resources (i.e. processing time and processor memory).

In the case where the client device on which the data is viewed is located apart from the data source (e.g. connected via the Internet), it is an advantage of the present invention that by increasing the resolution within the region of interest and smoothing the visual transition from the region of interest to surrounding regions as described, the amount of data that has to be transferred from the data source (e.g. server) to the viewer (e.g. client) is minimized.

Computer Software Product.

The sequences of instructions which when executed cause the method described herein to be performed by the exemplary data processing system of FIG. 3 can be contained in a computer software product according to one embodiment of the invention. This computer software product can be loaded into and run by the exemplary data processing system of FIG. 3.

Integrated Circuit Product.

The sequences of instructions which when executed cause the method described herein to be performed by the exemplary data processing system of FIG. 3 can be contained in an integrated circuit product including a coprocessor or memory according to one embodiment of the invention. This integrated circuit product can be installed in the exemplary data processing system of FIG. 3.

Although the invention has been described with reference to certain specific embodiments, various modifications thereof will be apparent to those skilled in the art without departing from the spirit and scope of the invention as outlined in the claims appended hereto.

Cowperthwaite, David J., Baar, David J. P., Tigges, Mark H. A.

Patent Priority Assignee Title
11567628, Jul 05 2018 International Business Machines Corporation Cognitive composition of multi-dimensional icons
Patent Priority Assignee Title
3201546,
3704938,
3739739,
3762799,
4581647, Sep 19 1983 Computerized automatic focusing control system for multiple television cameras
4630110, Feb 15 1984 Supervision Control Systems, Inc. Surveillance system
4688181, Dec 22 1982 International Business Machines Corporation Image transformations on an interactive raster scan or matrix display
4757616, Oct 26 1987 Educational Insights Ruler with magnifying cursor
4790028, Sep 12 1986 Westinghouse Electric Corp. Method and apparatus for generating variably scaled displays
4800379, May 12 1986 Fujifilm Electronic Imaging Limited Image display with movable magnification
4885702, Jul 27 1985 Sony Corporation Method of forming curved surfaces and the apparatus
4888713, Sep 05 1986 COMPUTER DESIGN, INC , A CORP OF MI Surface detail mapping system
4970028, Sep 24 1987 LEVER BROTHERS COMPANY, A CORP OF MAINE Composition for softening fabrics
4985849, Jun 12 1987 Canon Kabushiki Kaisha Image processing system for forming a slantwise-mapped or rotated modified image of an original image
4992866, Jun 29 1989 ABICON, INC Camera selection and positioning system and method
5031918, Apr 24 1990 Arrow International, Inc Magnifying marker for a game board
5048077, Jul 25 1988 Microvision, Inc Telephone handset with full-page visual display
5175808, Sep 12 1989 Pixar Method and apparatus for non-affine image warping
5185599, Oct 26 1987 Tektronix, Inc. Local display bus architecture and communications method for Raster display
5185667, May 13 1991 Sony Corporation Omniview motionless camera orientation system
5200818, Mar 22 1991 Video imaging system with interactive windowing capability
5206721, Mar 08 1990 Cisco Technology, Inc Television conference system
5227771, Jul 10 1991 International Business Machines Corporation Method and system for incrementally changing window size on a display
5250934, Dec 31 1990 XEROX CORPORATION, STAMFORD, CONNECTICUT Method and apparatus for thinning printed images
5258837, Jan 07 1991 Zandar Research Limited Multiple security video display
5269687, Aug 01 1990 WARNER BROS ENTERTAINMENT INC System and method for recursive driver training
5275019, Jun 26 1991 C.T.P. S.p.A. Functional ring
5309279, Aug 21 1992 Script view a curved convex magnifying device
5321807, Nov 27 1991 Eastman Kodak Company Accelerated graphics display method
5329310, Jun 30 1992 DISNEY ENTERPRISES, INC Method and apparatus for controlling distortion of a projected image
5341466, May 09 1991 Open Invention Network LLC Fractal computer user centerface with zooming capability
5369527, Dec 03 1992 Melanoma detection device
5416900, Apr 25 1991 International Business Machines Corporation Presentation manager
5432895, Oct 01 1992 University Corporation for Atmospheric Research Virtual reality imaging system
5451998, Apr 04 1994 Home shopping video catalog
5459488, Jul 21 1990 Robert Bosch GmbH Graphical user interface with fisheye adaptation principle
5473740, Dec 29 1993 International Business Machines Corporation Method and apparatus for interactively indicating image boundaries in digital image cropping
5521634, Jun 17 1994 Harris Corporation Automatic detection and prioritized image transmission system and method
5523783, Oct 19 1992 Fuji Photo Optical Co., Ltd. Pan head control system for TV camera
5528289, Oct 20 1993 LIBRE HOLDINGS, INC Method for automatically adjusting a videoconferencing system camera to center an object
5539534, Jun 03 1992 Hitachi, Ltd. Method of scaling an image capable of line width preservation
5581670, Jul 21 1993 JB PARTNERS, LLC User interface having movable sheet with click-through tools
5583977, Oct 21 1993 Apple Inc Object-oriented curve manipulation system
5588098, Nov 22 1991 Apple Computer, Inc. Method and apparatus for direct manipulation of 3-D objects on computer displays
5594859, Jun 03 1992 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Graphical user interface for video teleconferencing
5596690, Jul 21 1993 Xerox Corporation Method and apparatus for operating on an object-based model data structure to produce a second image in the spatial context of a first image
5598297, Aug 26 1993 Sharp Kabushiki Kaisha Image display unit
5610653, Jan 11 1993 CustomPlay LLC Method and system for automatically tracking a zoomed video image
5613032, Sep 02 1994 TTI Inventions C LLC System and method for recording, playing back and searching multimedia events wherein video, audio and text can be searched and retrieved
5638523, Jan 26 1993 BELL AUTOMOTIVE PRODUCTS, INC Method and apparatus for browsing information in a computer database
5644758, Dec 13 1994 Microsoft Technology Licensing, LLC Bitmap block transfer image conversion
5651107, Dec 15 1992 Sun Microsystems, Inc Method and apparatus for presenting information in a display system using transparent windows
5652851, Jul 21 1993 Xerox Corporation User interface technique for producing a second image in the spatial context of a first image using a model-based operation
5657246, Mar 07 1995 Cisco Technology, Inc Method and apparatus for a video conference user interface
5670984, Oct 26 1993 Xerox Corporation Image lens
5680524, Apr 21 1994 Sandia Corporation Synthetic environment employing a craft for providing user perspective reference
5682489, Jun 04 1991 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Method and device for monitoring, manipulating, and viewing system information
5689287, Oct 27 1993 Xerox Corporation Context-preserving display system using a perspective sheet
5689628, Apr 14 1994 Xerox Corporation Coupling a display object to a viewpoint in a navigable workspace
5696531, Feb 05 1991 MINTOLA CO , LTD Image display apparatus capable of combining image displayed with high resolution and image displayed with low resolution
5721853, Apr 28 1995 SAMSUNG ELECTRONICS CO , LTD Spot graphic display element with open locking and periodic animation
5726670, Jul 20 1992 Olympus Optical Co., Ltd. Display apparatus to be mounted on the head or face of an individual
5729673, Apr 07 1995 AVID TECHNOLOGY, INC Direct manipulation of two-dimensional moving picture streams in three-dimensional space
5731805, Jun 25 1996 Oracle America, Inc Method and apparatus for eyetrack-driven text enlargement
5742272, Apr 29 1996 ATI Technologies Inc. Accelerated full screen video playback
5745166, Jul 26 1994 Honeywell International, Inc Video security system field of the invention
5751289, Oct 01 1992 University Corporation for Atmospheric Research Virtual reality imaging system with image replay
5754348, May 14 1996 Intellectual Ventures I LLC Method for context-preserving magnification of digital image regions
5764139, Nov 06 1995 Toyota Jidosha Kabushiki Kaisha Information display apparatus for vehicles
5786814, Nov 03 1995 SPATIUM INNOVATIONS, LLC Computer controlled display system activities using correlated graphical and timeline interfaces for controlling replay of temporal data representing collaborative activities
5798752, Jul 21 1993 Xerox Corporation User interface having simultaneously movable tools and cursor
5808670, Feb 17 1995 NEC System Integration & Construction, Ltd. Method and system for camera control with monitoring area view
5812111, Aug 30 1994 NEC Corporation Bifocal picture display system
5818455, Jul 21 1993 Xerox Corporation Method and apparatus for operating on the model data structure of an image to produce human perceptible output using a viewing operation region having explicit multiple regions
5844545, Feb 05 1991 Minolta Co., Ltd. Image display apparatus capable of combining image displayed with high resolution and image displayed with low resolution
5848231, Dec 24 1996 Activcard Ireland Limited System configuration contingent upon secure input
5852440, Apr 13 1994 International Business Machines Corporation Method and system for facilitating the selection of icons
5872922, Mar 07 1995 Cisco Technology, Inc Method and apparatus for a video conference user interface
5909219, Jun 28 1996 Nvidia Corporation Embedding a transparency enable bit as part of a resizing bit block transfer operation
5923364, Jul 26 1994 Honeywell International, Inc Video security system
5926209, Apr 14 1995 SENSORMATIC ELECTRONICS, LLC Video camera apparatus with compression system responsive to video camera adjustment
5949430, May 20 1997 Microsoft Technology Licensing, LLC Peripheral lenses for simulating peripheral vision on a display device
5950216, Nov 12 1996 International Business Machines Corporation Method and system for marking and subsequently retrieving a collection of objects within a multipage compound document utilizing selectable page numbered dialog boxes
5959605, Nov 22 1995 Picker International, Inc. Video magnifier
5969706, Oct 16 1995 Sharp Kabushiki Kaisha Information retrieval apparatus and method
5973694, Jun 02 1995 Chatham Telecommunications, Inc., Method of communication using sized icons, text, and audio
5991877, Apr 03 1997 Lockheed Martin Corporation Object-oriented trusted application framework
5999879, Apr 26 1996 Pioneer Electronic Corporation Navigation apparatus with shape change display function
6005611, May 27 1994 B H IMAGE CO LLC Wide-angle image dewarping method and apparatus
6037939, Sep 27 1995 Sharp Kabushiki Kaisha Method for enabling interactive manipulation of data retained in computer system, and a computer system for implementing the method
6052110, May 11 1998 Sony Corporation; Sony Electronics, Inc. Dynamic control of zoom operation in computer graphics
6057844, Apr 28 1997 Adobe Systems Incorporated Drag operation gesture controller
6064401, May 28 1998 TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD User interface controls for adjusting the display of multi-dimensional graphical plots
6067372, Feb 22 1996 University of Pittsburgh Method and system to enhance robust identification of abnormal regions in radiographs
6072501, Jun 27 1997 Xerox Corporation Method and apparatus for composing layered synthetic graphics filters
6073036, Apr 28 1997 Nokia Corporation Mobile station with touch input having automatic symbol magnification function
6075531, Dec 15 1997 International Business Machines Corporation Computer system and method of manipulating multiple graphical user interface components on a computer display with a proximity pointer
6081277, Sep 28 1995 Sony Corporation Apparatus and method for controlling image display
6084598, Apr 23 1998 Apparatus for modifying graphic images
6091771, Aug 01 1997 ADT Services AG Workstation for video security system
6108005, Aug 30 1996 PHOENIX 3D, INC Method for producing a synthesized stereoscopic image
6128024, Dec 18 1997 Keysight Technologies, Inc Polar controller for defining and generating spiral-like shapes
6133914, Jan 07 1998 Interactive graphical user interface
6147709, Apr 07 1997 Sony Semiconductor Solutions Corporation Method and apparatus for inserting a high resolution image into a low resolution interactive image to produce a realistic immersive experience
6154840, May 01 1998 AVAYA Inc System and method for transferring encrypted sections of documents across a computer network
6160553, Sep 14 1998 Microsoft Technology Licensing, LLC Methods, apparatus and data structures for providing a user interface, which exploits spatial memory in three-dimensions, to objects and in which object occlusion is avoided
6184859, Apr 21 1995 Sony Corporation Picture display apparatus
6198484, Jun 27 1996 Kabushiki Kaisha Toshiba Stereoscopic display system
6201546, May 29 1998 Point Cloud, Inc.; POINT CLOUD, INC Systems and methods for generating three dimensional, textured models
6201548, Feb 24 1998 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Graphical user interface for image editing
6204845, Dec 16 1994 International Business Machines Corporation Ergonomic viewable object processor
6204850, May 30 1997 Scaleable camera model for the navigation and display of information structures using nested, bounded 3D coordinate spaces
6215491, Apr 18 1997 MonkeyMedia, Inc. Computer user interface with non-salience deemphasis
6219052, Apr 18 1997 MonkeyMedia, Inc. Computer user interface with non-salience deemphasis
6241609, Jan 09 1998 U.S. Philips Corporation Virtual environment viewpoint control
6246411, Apr 28 1997 Adobe Systems Incorporated Drag operation gesture controller
6249281, Feb 28 2000 Cisco Technology, Inc On-demand presentation graphical user interface
6256043, Sep 26 1997 WSOU Investments, LLC Three dimensional virtual reality enhancement techniques
6256115, Feb 21 1997 WABEC, LLC Facsimile network
6256737, Mar 09 1999 CITIBANK, N A System, method and computer program product for allowing access to enterprise resources using biometric devices
6266082, Dec 19 1995 Canon Kabushiki Kaisha Communication apparatus image processing apparatus communication method and image processing method
6271854, Dec 15 1997 HANGER SOLUTIONS, LLC Method and apparatus for facilitating navigation in three-dimensional graphic scenes
6278443, Apr 30 1998 Lenovo PC International Touch screen with random finger placement and rolling on screen to control the movement of information on-screen
6278450, Jun 17 1998 Microsoft Technology Licensing, LLC System and method for customizing controls on a toolbar
6288702, Sep 30 1996 Kabushiki Kaisha Toshiba Information device having enlargement display function and enlargement display control method
6304271, Feb 05 1999 Sony Corporation; Sony Electronics INC Apparatus and method for cropping an image in a zooming graphical user interface
6307612, Jun 08 2000 Brillian Corporation Liquid crystal display element having a precisely controlled cell gap and method of making same
6320599, May 11 1998 SNAPTRACK, INC Zooming scale indicator in computer graphics
6337709, Feb 13 1995 Hitachi, Ltd. Image display device
6346938, Apr 27 1999 III Holdings 1, LLC Computer-resident mechanism for manipulating, navigating through and mensurating displayed image of three-dimensional geometric model
6346962, Feb 27 1998 TELADOC HEALTH, INC Control of video conferencing system with pointing device
6359615, May 11 1999 Ericsson Inc. Movable magnification icons for electronic device display screens
6381583, Apr 15 1997 HANGER SOLUTIONS, LLC Interactive electronic shopping system and method
6384849, Jul 14 1997 Microsoft Corporation Method for displaying controls in a system using a graphical user interface
6392661, Jun 17 1998 Trident Systems, Inc. Method and apparatus for improving situational awareness using multiple map displays employing peripheral range bands
6396648, Mar 30 1999 NEC Corporation Image reader which can shorten focal length in optical system having optical lens while keeping predetermined image reading width
6396962, Jan 29 1999 Sony Corporation; Sony Electronics INC System and method for providing zooming video
6400848, Mar 30 1999 Apple Inc Method for modifying the perspective of a digital image
6407747, May 07 1999 CSR TECHNOLOGY INC Computer screen image magnification system and method
6411274, Jun 02 1997 Sony Corporation Digital map display zooming method, digital map display zooming device, and storage medium for storing digital map display zooming program
6416186, Aug 23 1999 NEC Corporation Projection display unit
6417867, May 27 1999 Sharp Laboratories of America, Inc. Image downscaling using peripheral vision area localization
6438576, Mar 29 1999 TREND MICRO INCORPORATED Method and apparatus of a collaborative proxy system for distributed deployment of object rendering
6487497, Mar 25 1998 HERE GLOBAL B V Method and system for route calculation in a navigation application
6491585, Sep 24 1996 Nintendo Co., Ltd. Three-dimensional image processing apparatus with enhanced automatic and user point of view control
6504535, Jun 30 1998 WSOU Investments, LLC Display techniques for three-dimensional virtual reality
6515663, Mar 19 1999 AsusTek Computer Inc. Apparatus for and method of processing three-dimensional images
6515678, Nov 18 1999 Gateway, Inc. Video magnifier for a display of data
6522341, Jun 02 1999 COLLABO INNOVATIONS, INC Multi-layer image mixing apparatus
6523024, Mar 18 1994 Hitachi, Ltd. Methods for retrieving database with image information
6542191, Apr 23 1996 Canon Kabushiki Kaisha Image display apparatus, camera control apparatus and method
6549215, May 20 1999 Compaq Computer Corporation System and method for displaying images using anamorphic video
6552737, Feb 18 1999 Fujitsu Limited Control of window size in response to user operation
6559813, Jul 01 1998 Vuzix Corporation Selective real image obstruction in a virtual reality display apparatus and method
6577311, Dec 16 1999 Monument Peak Ventures, LLC Techniques for automatically providing a high-resolution rendering of a low resolution digital image in a distributed network
6577319, Sep 18 1998 Sharp Kabushiki Kaisha Method for controlling data display
6584237, Aug 23 1999 Hoya Corporation Method and apparatus for expanding image data
6590568, Nov 20 2000 Nokia Technologies Oy Touch screen drag and drop input technique
6590583, May 14 1996 Intellectual Ventures I LLC Method for context-preserving magnification of digital image regions
6608631, May 02 2000 Pixar; Pixar Animation Studios Method, apparatus, and computer program product for geometric warps and deformations
6612930, Nov 17 1999 Nintendo Co., Ltd. Video game apparatus and method with enhanced virtual camera control
6631205, Jan 13 1999 Canon Kabushiki Kaisha Stereoscopic imaging in a portable document format
6633305, Jun 05 2000 Intel Corporation System and method for magnifying and editing images
6690387, Dec 28 2001 KONINKLIJKE PHILIPS N V Touch-screen image scrolling system and method
6704034, Sep 28 2000 International Business Machines Corporation Method and apparatus for providing accessibility through a context sensitive magnifying glass
6720971, May 29 1998 Canon Kabushiki Kaisha Image processing method and apparatus, and storage medium
6721655, Mar 14 2001 Mitsubishi Denki Kabushiki Kaisha Vehicle travel guide device and vehicle travel guide method
6727910, Dec 19 2000 MIND FUSION, LLC Method and system for inversion of detail-in-context presentations
6731285, Jan 11 2001 UNILOC 2017 LLC System and method for providing high performance image magnification in a web browser
6731315, Nov 30 1999 LENOVO SINGAPORE PTE LTD Method for selecting display parameters of a magnifiable cursor
6744430, Jul 21 1999 Sega Enterprises, Ltd Image processing method and its apparatus
6747610, Jul 22 1997 SANYO ELECTRIC CO , LTD Stereoscopic image display apparatus capable of selectively displaying desired stereoscopic image
6747611, Jul 27 2000 International Business Machines Corporation Compact optical system and packaging for head mounted display
6760020, Jun 30 1998 Canon Kabushiki Kaisha Image processing apparatus for displaying three-dimensional image
6768497, Oct 18 2000 CDN INNOVATIONS, LLC Elastic presentation space
6798412, Sep 06 2000 MIND FUSION, LLC Occlusion reducing transformations for three-dimensional detail-in-context viewing
6833843, Dec 03 2001 BIOTRONIX INC Panoramic imaging and display system with canonical magnifier
6842175, Apr 22 1999 FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E V Tools for interacting with virtual environments
6874126, Nov 30 2001 AURA HOLDCO, LLC; PORTUNUS PARENT, LLC; Aura Sub, LLC Method and apparatus for controlling content display by the cursor motion
6882755, Oct 19 2001 HEWLETT-PACKARD DEVELOPMENT COMPANY L P Image transmission for low bandwidth with region of interest
6906643, Apr 30 2003 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Systems and methods of viewing, modifying, and interacting with “path-enhanced” multimedia
6911975, Sep 11 2000 Canon Kabushiki Kaisha Stereo image display apparatus and method, and storage medium
6919921, Jun 10 1997 Canon Kabushiki Kaisha Camera control using scroll bar for tilt control and having display of tilting direction and controllable range information
6924822, Dec 21 2000 ETOME INNOVATIONS, LLC Magnification methods, systems, and computer program products for virtual three-dimensional books
6938218, Apr 28 2000 NOLEN, JAMES A, III Method and apparatus for three dimensional internet and computer file interface
6956590, Feb 28 2001 HERE GLOBAL B V Method of providing visual continuity when panning and zooming with a map display
6961071, May 17 2002 ACCESSIFY, LLC Method and system for inversion of detail-in-context presentations with folding
6975335, Dec 28 1999 International Business Machines Corporation Method of displaying magnified and reduced areas and apparatus thereof
6985865, Sep 26 2001 Sprint Spectrum LLC Method and system for enhanced response to voice commands in a voice command platform
7038680, Jan 09 2002 Xerox Corporation System for graphical display and interactive exploratory analysis of data and data relationships
7055095, Apr 14 2000 SAMSUNG ELECTRONIC CO , LTD Systems and methods for digital document processing
7071971, Jul 30 2001 Elbex Video, Ltd Apparatus for identifying the scene location viewed via remotely operated television camera
7084886, Jul 16 2002 ACCESSIFY, LLC Using detail-in-context lenses for accurate digital image cropping and measurement
7088364, Nov 07 2001 CDN INNOVATIONS, LLC Method and system for displaying stereoscopic detail-in-context presentations
7106349, Dec 19 2000 ACCESSIFY, LLC Method and system for enhanced detail-in-context viewing
7133054, Mar 17 2004 Microsoft Technology Licensing, LLC Methods and apparatus for navigating an image
7134092, Nov 13 2000 NOLEN, JAMES A , III Graphical user interface method and apparatus
7158878, Mar 23 2004 GOOGLE LLC Digital mapping system
7173633, Dec 19 2000 MIND FUSION, LLC Method and system for inversion of detail-in-context presentations
7173636, Mar 18 2004 NOREGIN ASSETS N V , L L C Method and system for generating detail-in-context lens presentations for elevation data
7194697, Sep 24 2002 Microsoft Technology Licensing, LLC Magnification engine
7197718, Oct 18 1999 Sharp Kabushiki Kaisha Interactive virtual area browser for selecting and rescaling graphical representations of displayed data
7197719, May 03 2001 ACCESSIFY, LLC Graphical user interface for detail-in-context presentations
7213214, Jun 12 2001 ACCESSIFY, LLC Graphical user interface with zoom for detail-in-context presentations
7233942, Oct 10 2000 TRUELOCAL, INC Method and apparatus for providing geographically authenticated electronic documents
7246109, Oct 07 1999 Koninklijke Philips Electronics N V Method and apparatus for browsing using position information
7256801, Oct 18 2000 CDN INNOVATIONS, LLC Elastic presentation space
7274381, Dec 03 2001 BIOTRONIX INC Panoramic imaging and display system with canonical magnifier
7275219, Feb 05 2002 ACCESSIFY, LLC Fast and accurate rendering of pliable display technology distortions using pre-calculated texel coverages
7280105, Sep 06 2000 MIND FUSION, LLC Occlusion reducing transformations for three-dimensional detail-in-context viewing
7283141, Dec 19 2000 ACCESSIFY, LLC Method and system for enhanced detail-in-context viewing
7310619, Sep 30 2002 CLOUDROCK LLC Detail-in-context lenses for interacting with objects in digital image presentations
7312806, Jan 28 2004 CALLAHAN CELLULAR L L C Dynamic width adjustment for detail-in-context lenses
7321824, Dec 30 2002 Meta Platforms, Inc Presenting a travel route using more than one presentation style
7411610, May 15 2002 ACCESSIFY, LLC Method and system for generating detail-in-context video presentations using a graphical user interface
7423660, Sep 26 2003 Canon Kabushiki Kaisha Image display apparatus, method and program
7443396, Nov 29 2000 National Instruments Corporation Instrument having a virtual magnifying glass for displaying magnified portions of a signal waveform
7450114, Apr 14 2000 SAMSUNG ELECTRONIC CO , LTD User interface systems and methods for manipulating and viewing digital documents
7472354, Jul 17 2002 ACCESSIFY, LLC Graphical user interface having an attached toolbar for drag and drop editing in detail-in-context lens presentations
7486302, Apr 14 2004 CALLAHAN CELLULAR L L C Fisheye lens graphical user interfaces
7489321, Jul 16 2002 ACCESSIFY, LLC Using detail-in-context lenses for accurate digital image cropping and measurement
7493572, Dec 21 2000 Xerox Corporation Navigation methods, systems, and computer program products for virtual three-dimensional books
7495678, Nov 17 2003 CALLAHAN CELLULAR L L C Navigating digital images using detail-in-context lenses
7580036, Apr 13 2005 ACCESSIFY, LLC Detail-in-context terrain displacement algorithm with optimizations
7667699, Feb 05 2002 ACCESSIFY, LLC Fast rendering of pyramid lens distorted raster images
7698653, Nov 04 1999 CEDAR LANE TECHNOLOGIES INC Graphical user interface including zoom control box representing image and magnification of displayed image
7714859, Sep 03 2004 ACCESSIFY, LLC Occlusion reduction and magnification for multidimensional data presentations
7737976, Nov 07 2001 CDN INNOVATIONS, LLC Method and system for displaying stereoscopic detail-in-context presentations
7761713, Nov 15 2002 CALLAHAN CELLULAR L L C Method and system for controlling access in detail-in-context presentations
7773101, Apr 14 2004 CALLAHAN CELLULAR L L C Fisheye lens graphical user interfaces
20010040585,
20010040636,
20010048447,
20010055030,
20020033837,
20020038257,
20020044154,
20020062245,
20020063711,
20020075280,
20020087894,
20020089520,
20020093567,
20020101396,
20020122038,
20020135601,
20020143826,
20020171644,
20020180759,
20020180801,
20030006995,
20030007006,
20030048447,
20030052896,
20030052900,
20030061211,
20030076363,
20030100326,
20030103063,
20030105795,
20030112503,
20030118223,
20030137525,
20030151625,
20030151626,
20030174146,
20030179198,
20030179219,
20030179237,
20030196114,
20030210281,
20030227556,
20030231177,
20040026521,
20040056869,
20040056898,
20040111332,
20040125138,
20040150664,
20040194014,
20040217979,
20040240709,
20040257375,
20040257380,
20050041046,
20050134610,
20050259118,
20050278378,
20050285861,
20060022955,
20060026521,
20060033762,
20060036629,
20060059432,
20060082901,
20060098028,
20060139375,
20060192780,
20060214951,
20070033543,
20070064018,
20070097109,
20090141044,
20090147023,
20090172587,
20090265656,
20090284542,
20100026718,
20100033503,
20100045702,
20100201785,
20100208968,
20100262907,
CA2350342,
CA2386560,
CA2393708,
CA2394119,
EP635779,
EP650144,
EP816983,
JP4410465,
////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 07 2008IDELIX SOFTWARE INC NOREGIN ASSETS N V , L L C ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0256490681 pdf
Oct 16 2009Noregin Assets N.V., L.L.C.(assignment on the face of the patent)
Aug 27 2015NOREGIN ASSETS N V , L L C CALLAHAN CELLULAR L L C MERGER SEE DOCUMENT FOR DETAILS 0372200255 pdf
Dec 22 2022CALLAHAN CELLULAR L L C INTELLECTUAL VENTURES ASSETS 186 LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0627080463 pdf
Feb 14 2023MIND FUSION, LLCINTELLECTUAL VENTURES ASSETS 191 LLCSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0632950001 pdf
Feb 14 2023MIND FUSION, LLCINTELLECTUAL VENTURES ASSETS 186 LLCSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0632950001 pdf
Feb 14 2023INTELLECTUAL VENTURES ASSETS 186 LLCMIND FUSION, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0642710001 pdf
Jun 23 2023MIND FUSION, LLCACCESSIFY, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0643570642 pdf
Date Maintenance Fee Events
Mar 25 2015M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Mar 13 2019M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Oct 16 20154 years fee payment window open
Apr 16 20166 months grace period start (w surcharge)
Oct 16 2016patent expiry (for year 4)
Oct 16 20182 years to revive unintentionally abandoned end. (for year 4)
Oct 16 20198 years fee payment window open
Apr 16 20206 months grace period start (w surcharge)
Oct 16 2020patent expiry (for year 8)
Oct 16 20222 years to revive unintentionally abandoned end. (for year 8)
Oct 16 202312 years fee payment window open
Apr 16 20246 months grace period start (w surcharge)
Oct 16 2024patent expiry (for year 12)
Oct 16 20262 years to revive unintentionally abandoned end. (for year 12)