A mechanical scanning stage for high speed image acquisition in a focused beam system. The mechanical scanning stage preferably is a combination of four stages. A first stage provides linear motion. A second stage, above the first stage, provides rotational positioning. A third stage above the rotational stage is moveable in a first linear direction, and the fourth stage above the third stage is positionable in a second linear direction orthogonal to the first direction. The four stages are responsive to input from a controller programmed with a polar coordinate pixel addressing method, for positioning a specimen mounted on the mechanical stage to allow an applied static focus beam to irradiate selected areas of interest, thereby imaged by collecting signals from the specimen using a polar coordinate pixel addressing method.
|
0. 12. A method of scanning a specimen in an image acquisition system comprising:
moving said specimen along a first axis by a first stage of a mechanical stage providing linear positioning and scanning movement;
moving said specimen by a second stage of said mechanical stage providing scanning rotational movement; and
impacting said specimen with a non-scanning energy beam, wherein the image is acquired during the scanning movements of the first and second stages.
1. A method of scanning a specimen in an image acquisition system comprising:
(a) placing a specimen on a mechanical stage for positioning and scanning said specimen for irradiation by an energy beam;
(b) first moving said specimen along a first axis by a first stage of said mechanical stage providing linear positioning and scanning movement;
(c) second moving said specimen by a second stage of said mechanical stage providing scanning rotational movement; and
(d) impacting said specimen with a non-scanning energy beam, whereby the image is acquired during the scanning movements of the stages.
2. A method as recited in
3. A method as recited in
4. A method as recited in
(a) third moving said specimen by a third stage providing linear movement in an X direction; and
(b) fourth moving said specimen by a fourth stage providing linear movement in a Y direction orthogonal to said X direction.
5. A method as recited in
6. A method as recited in
7. A method as recited in
10. A method as recited in
11. A method as recited in
0. 13. The method as recited in claim 12 further comprising directing movement of said mechanical stage by a controller.
0. 14. The method as recited in claim 12, and further comprising:
directing said scanning of said specimen by directing said first stage to sequentially position said specimen at each of a plurality of steps; and
directing said second stage to sequentially rotate to a plurality of rotational positions for each said step.
0. 15. The method as recited in claim 12, and further comprising:
moving said specimen by a third stage providing linear movement in an X direction; and
moving said specimen by a fourth stage providing linear movement in a Y direction substantially orthogonal to said X direction.
0. 16. The method as recited in claim 12, and further comprising moving said specimen by a third stage providing linear movement substantially orthogonal to said first axis.
0. 17. The method as recited in claim 16, wherein said first stage is adapted for scanning, and said third stage is adapted for specimen positioning and is mounted on top of said second stage.
0. 18. The method as recited in claim 17, wherein said second stage is mounted on top of said first stage.
0. 19. A method as recited in claim 15 wherein said second stage is mounted on top of said first stage.
0. 20. A method as recited in claim 12, and further comprising programming a controller to direct movement of said first and second stages so as to cause said first stage to move simultaneously with said second stage.
0. 21. A method as recited in claim 20, wherein said first and second stages are moved so as to address a location of interest on said specimen using spiral polar coordinates.
|
This The present application is a reissue application of U.S. Pat. No. 6,911,656, issued on Jun. 28, 2005 and filed as U.S. patent application Ser. No. 10/884,698 on Jul. 1, 2004, and entitled “Rotational Stage for High Speed Large Area Scanning in Focused Beam Systems”, which is a continuation of U.S. Pat. Ser. No. 10/245,865 filed on Sep. 16, 2002 now U.S. Pat. No. 6,777,688, issued on Aug. 17, 2004 and filed as U.S. patent application Ser. No. 10/245,865 on Sep. 16, 2002, the disclosures of which are incorporated by reference in their entireties.
1. Field of the Invention
The present invention relates generally to moveable stages for use in focused beam systems; and more particularly to a high speed rotational stage in conjunction with a linear stage to form a high speed scanning system without scanning the beam, allowing a large area specimen to be imaged with a substantially higher speed using an optimally focused beam.
2. Description of the Prior Art
In the context of scanning microscopy, the most common image formation systems in the prior art make use of Cartesian raster scanning to form an image. In a typical imaging system, a source of energy such as an electron beam, ion beam or photon beam is used to irradiate a specimen. The interaction between the source beam and the specimen produces a signal that can be detected which corresponds to the signal intensity at the interaction point. There are two Cartesian raster scanning mechanisms commonly used to form an image: (1) a beam scanning system wherein the source beam is Cartesian raster scanned over the area of interest of a static specimen; (2) a stage scanning system wherein the specimen is mounted on a mechanical Cartesian scanning stage, and the stage is scanned with respect to the static source beam to cover the area of interest.
In a beam scanning system, the source beam is typically scanned from left to right in a raster manner, pixel by pixel, before ‘flying back’ to the beginning of the next line. This process repeats from the top to the bottom for a complete image acquisition before returning to the top of the scan again. In a stage scanning system, the mechanical scanning stages scan from left to right in a raster manner using stepper motors, servo motors or voice coils. These two methods impose significant problems and limitations. Firstly, both methods need a fly-back at the end of each line scan, which slows down the image acquisition. For the stage scanning system, the relatively large mass of the mechanical stage needs significant settling time, which further slows down the rate of image acquisition. In addition to this, the beam scanning system suffers from aberrations when the beam is deflected from the optical axis while scanning a relatively large area. This is a serious drawback of the beam scanning system when scanning a large area.
In conclusion, a mechanical scanning stage with high speed capability for large area specimen scanning would have advantages in many applications.
It is, therefore, an object of the present invention to provide a mechanical scanning stage for high speed image acquisition in a focused beam system.
It is another object of the present invention to provide a mechanical scanning stage that can achieve high speed image acquisition of a large area specimen.
Briefly, a preferred embodiment of the present invention includes a mechanical scanning stage for high speed image acquisition in a focused beam system. The mechanical scanning stage preferably is a combination of four stages. A first stage provides linear motion. A second stage, above the first stage, provides rotational positioning. A third stage above the rotational stage is moveable in a first linear direction, and the fourth stage above the third stage is positionable in a second linear direction orthogonal to the first direction. The four stages are responsive to input from a controller programmed with a polar coordinate pixel addressing method, for positioning a specimen mounted on the mechanical stage to allow an applied static focus beam to irradiate selected areas of interest, thereby imaged by collecting signals from the specimen using a polar coordinate pixel addressing method.
Referring now to
The arrangement of the four stages in
As illustrated in
An area of interest on the specimen 20 is moved to the static source beam 36 spot 38 by moving the X positioning stage 18 and the Y positioning stage 16. The X and Y positioning stages 18 and 16 may be activated by wireless control or other means of remote activation, symbolically represented by controller 32 and arrow 34. The scanning motion of the mechanical stage 10 includes rotational motion provided by the rotational stage 14 such that the specimen 20 rotates in the rotational direction 26, and linear motion provided by the linear scanning stage 12, scanning in the direction 22. The rotational stage 14 may be rotated in the clockwise or counter clockwise direction. The source beam 36 remains stationary, directed along the axis 40. The scanning operations are performed by the stage 10 elements 12-18. As referred to above for one embodiment, the mechanical stage can be positioned initially so as to place the rotational axis 24 in alignment with the beam axis 40. Starting in this position, a movement of the linear stage 12 one unit along the axis 22 moves the axis of rotation 24 of the rotational stage one unit away from the axis 40 of the beam 36. As a result, the static source beam 36 can be activated to irradiate specimen areas along a circular path on the rotating specimen 36 as the rotational stage 14 is rotated. After the rotational stage 14 has rotated one revolution, the linear scanning stage 12 moves a pre-programmed distance, enabling the static source beam 36 to address areas on another concentric path as the stage 14 is rotated. As the linear scanning stage 12 moves further, the source beam 36 addresses a point further from the axis of rotation of the specimen stage 14. This linear movement of the linear scanning stage 12 is preferably stopped when the source beam 36 reaches the edge of an area of interest on the specimen 20. The linear movement may reverse its direction until the source beam 36 addresses the starting point again and vice versa. The above description details how image pixels corresponding to areas of interest on the specimen are addressed using concentric circular polar coordinates. This is further as depicted in
In the above described example of operation of the mechanical stage 10, the third and fourth stages 16 and 18 are used to initially position the beam 36 at a required central location of an area of interest on the specimen. Subsequent to this positioning, the stages 16 and 18 preferably remain in a fixed position relative to the rotational stage axis 24, serving no further purpose.
In another embodiment of operation of the mechanical stage 10, the linear scanning stage 12 moves simultaneously and concurrently with the rotational stage 14. The image pixels can then be addressed using spiral polar coordinates as depicted in
Another embodiment of the mechanical stage 10 of the present invention includes only the linear stage 12 and rotational stage 14, omitting the X and Y stages 16 and 18. Operation in this embodiment requires manual alignment of a specimen orthogonal to the direction 22 of the linear stage 12. The specimen is mounted on the upper stage, for example on the rotational stage 14 if the rotational stage is above the linear stage. The initial position of the specimen is then adjusted either manually, or manually and in combination with the linear stage 12.
The apparatus of the present invention operated as described above, minimizes or eliminates linear stop and start motions, and totally avoids the settling down and “fly back” involved in the prior art line scanning systems which are responsible for the long image acquisition times of the prior art. The operation of the present invention illustrated in
Although the present invention has been described above in terms of a specific embodiment, it is anticipated that alterations and modifications thereof will no doubt become apparent to those skilled in the art. It is therefore intended that the following claims be interpreted as covering all such alterations and modifications as fall within the true spirit and scope of the invention.
Liu, Yong Yu, Chan, Daniel S. H., Phang, Jacob C. H.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3670153, | |||
3919558, | |||
4376891, | Mar 05 1980 | Method and apparatus for producing electron beam diffraction patterns | |
5390112, | Oct 04 1993 | General Electric Company | Three-dimensional computerized tomography scanning method and system for imaging large objects with smaller area detectors |
5868952, | Mar 17 1995 | Ebara Corporation; HATAMURA, YOTARO | Fabrication method with energy beam |
5868953, | Nov 16 1994 | Kabushiki Kaisya Ohara | Method for manufacturing a magnetic disk substrate |
5888682, | Dec 27 1995 | Nikon Corporation | Method of using a compensation mask to correct particle beam proximity-effect |
5986765, | Dec 27 1995 | Nikon Corporation | Apparatus including compensation mask to correct particle beam proximity-effect |
5986795, | Jun 15 1998 | Lawrence Livermore National Security LLC | Deformable mirror for short wavelength applications |
6015976, | Mar 17 1995 | Ebara Corporation; Yotaro, Hatamura | Fabrication apparatus employing energy beam |
6185271, | Feb 16 1999 | Helical computed tomography with feedback scan control | |
6444991, | Jul 19 1999 | Jeol Ltd | Scanning charged-particle beam instrument |
6683316, | Aug 01 2001 | Fei Company | Apparatus for correlating an optical image and a SEM image and method of use thereof |
6777688, | Sep 16 2002 | National University of Singapore | Rotational stage for high speed, large area scanning in focused beam systems |
6911656, | Sep 16 2002 | National University of Singapore | Rotational stage for high speed, large area scanning in focused beam systems |
7923702, | Nov 13 2007 | Carl Zeiss NTS GmbH | System and method for processing an object |
20020175295, | |||
20020186632, | |||
20080317321, | |||
20120025075, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 14 2002 | HANG, JACOB C H | National University of Singapore | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020455 | /0562 | |
Nov 15 2002 | CHAN, DANIEL S H | National University of Singapore | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020455 | /0562 | |
Nov 18 2002 | LIU, YONG YU | National University of Singapore | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020455 | /0562 | |
Jun 28 2007 | National University of Singapore | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Oct 29 2012 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Nov 28 2016 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Oct 23 2015 | 4 years fee payment window open |
Apr 23 2016 | 6 months grace period start (w surcharge) |
Oct 23 2016 | patent expiry (for year 4) |
Oct 23 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 23 2019 | 8 years fee payment window open |
Apr 23 2020 | 6 months grace period start (w surcharge) |
Oct 23 2020 | patent expiry (for year 8) |
Oct 23 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 23 2023 | 12 years fee payment window open |
Apr 23 2024 | 6 months grace period start (w surcharge) |
Oct 23 2024 | patent expiry (for year 12) |
Oct 23 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |