A silicon carbide (SiC) substrate is provided with an off-oriented {0001} surface whose off-axis direction is <11-20>. A trench is formed on the SiC to have a stripe structure extending toward a <11-20> direction. An SiC epitaxial layer is formed on an inside surface of the trench.
|
4. A silicon carbide semiconductor device comprising:
a silicon carbide substrate having a top surface that is in a {0001} plane having an off angle, wherein an off-axis direction of the off angle is <1-100>; and
a trench that is formed on the top surface of the silicon carbide substrate, wherein the trench has a side wall having a surface that is in a {11-20} plane,
wherein a silicon carbide epitaxial layer is formed on an inside surface of the trench.
3. A silicon carbide semiconductor device comprising:
a silicon carbide substrate having a top surface that is in a {0001} plane having an off angle, wherein an off-axis direction of the off angle is <11-20>; and
a trench that is formed on the top surface of the silicon carbide substrate, wherein the trench has a side wall having a surface that is in a {1-1001} plane.
wherein a silicon carbide epitaxial layer is formed on an inside surface of the trench.
2. A silicon carbide semiconductor device comprising:
a silicon carbide substrate having a top surface that is a {0001} plane having an off angle, wherein an off-axis direction of the off angle is <1-100>; and
a trench that is formed on the top surface of the silicon carbide substrate and has a stripe structure extending toward a <1-100> direction of the top surface of the silicon carbide substrate,
wherein a silicon carbide epitaxial layer is formed on an inside surface of the trench.
7. A silicon carbide semiconductor device comprising:
a silicon carbide substrate having a top surface that is in a {0001} plane having an off angle, wherein an off-axis direction of the off angle is <11-20>; and
a trench that is formed on the top surface of the silicon carbide substrate, wherein the trench has a side wall having a surface that is in a {11-20} plane and is not perpendicular to the off-axis direction,
wherein a silicon carbide epitaxial layer is formed on an inside surface of the trench.
8. A silicon carbide semiconductor device comprising:
a silicon carbide substrate having a top surface that is a {0001} plane having an off angle, wherein an off-axis direction of the off angle is <1-100>; and
a trench that is formed on the top surface of the silicon carbide substrate, wherein the trench has a side wall having a surface that is in a {1-100} plane and is not perpendicular to the off-axis direction,
wherein a silicon carbide epitaxial layer is formed on an inside surface of the trench.
5. A silicon carbide semiconductor device comprising:
a silicon carbide substrate having a top surface that is in a plane having an off angle, wherein an off-axis direction of the off angle is a certain direction; and
a trench that is formed on the top surface of the silicon carbide substrate, wherein the trench has a planar structure, wherein each side of the planar structure is at an angle of 80 degrees or less with respect to the certain direction,
wherein a silicon carbide epitaxial layer is formed on an inside surface of the trench.
6. A silicon carbide semiconductor device comprising:
a silicon carbide substrate having a top surface that is in a plane having an off angle, wherein an off-axis direction of the off angle is a certain direction; and
a trench that is formed on the top surface of the silicon carbide substrate, wherein the trench has a planar structure, wherein each side of the planar structure is at an angle of 75 degrees or less with respect to the certain direction,
wherein a silicon carbide epitaxial layer is formed on an inside surface of the trench.
10. A silicon carbide semiconductor device comprising:
a silicon carbide substrate being a hexagonal crystal silicon carbide substrate having a top surface that is in a {1-100} lane plane; and
a trench that is formed on the top surface of the silicon carbide substrate and has a side wall that is inclined at an angle of one degree or more with respect to a {0001} plane in a virtual cross-sectional view that is perpendicular to the top surface of the silicon carbide substrate,
wherein a silicon carbide epitaxial layer is formed on an inside surface of the trench.
9. A silicon carbide semiconductor device comprising:
a silicon carbide substrate that is a hexagonal crystal silicon carbide substrate having a top surface that is in a {11-20} plane; and
a trench that is formed on the top surface of the silicon carbide substrate, wherein the trench has a side wall that is inclined at an angle of one degree or more with respect to a {0001} plane in a virtual cross-sectional view that is perpendicular to the top surface of the silicon carbide substrate,
wherein a silicon carbide epitaxial layer is formed on an inside surface of the trench.
0. 1. A silicon carbide semiconductor device comprising:
a silicon carbide substrate having a top surface that is a {0001} plane having an off angle, wherein an off-axis direction of the off angle is <11-20>; and
a trench that is formed on the top surface of the silicon carbide substrate and has a stripe structure extending toward a <11-20> direction of the top surface of the silicon carbide substrate,
wherein a silicon carbide epitaxial layer is formed on an inside surface of the trench.
|
This application is based on and incorporates herein by reference Japanese Patent Application No. 2002-233722 filed on Aug. 9, 2002.
The present invention relates to silicon carbide (SiC) semiconductor device where a facet is hindered from occurring.
In JP-A-H9-172187 discloses a structure of a silicon carbide (SiC) substrate 200 having a trench 201, wherein a silicon carbide epitaxial layer 202 is formed on an inside surface of the trench 200. Here, in order that electric field is inhibited from being concentrated on side walls of the trench 201, the substrate 200 has a main surface of a (0001) plane and the trench 201 has side walls of a (1-100) plane, as shown in
In actual manufacturing, as shown in
When the above substrate is applied to a trench JFET, or a trench MOSFET, a facet is formed on a channel layer. This increases on-resistance due to lowered mobility and leak electric current, or varies a threshold value.
Incidentally, (1-100) or <1-100> is equivalent to (0
It is an object of the present invention to restrict formation of a facet when an epitaxial layer grows on an inside surface of a trench of a silicon carbide substrate.
To achieve the above object, a silicon carbide semiconductor device is provided with the following.
A silicon carbide substrate is provided as having an off-oriented {0001} surface whose off-axis direction is <11-20> or <1-100> and a trench is provided as having a stripe structure extending toward a <11-20> or <1-100> direction, respectively.
This structure restricts formation of a facet when an epitaxial layer grows on an inside surface of the trench.
Furthermore, to achieve the same object to thereby enable the same effect, other silicon carbide semiconductor devices are differently provided as follows.
Another silicon carbide semiconductor device is provided with a silicon carbide substrate that has an off-oriented {0001} surface whose off-axis direction is <11-20> or <1-100> and a trench that has a side wall of a {1-100} or {11-20} surface, respectively.
Another silicon carbide semiconductor device is provided with a silicon carbide substrate that has an off-oriented surface having a certain off-axis direction and a planar structure of a trench has sides, each of which is at an angle of 80 degrees or less, favorably at 75 degrees or less, with respect to the certain off-axis direction.
Another silicon carbide semiconductor device is provided with a silicon carbide substrate that has an off-oriented {0001} surface whose off-axis direction is <11-20> or <1-100> and a trench that has a side wall of {11-20} or {1-100} surface that is not perpendicular to the off-axis, respectively.
Yet another silicon carbide semiconductor device is provided with a silicon carbide substrate that is a hexagonal crystal silicon carbide substrate having a {11-20} or {1-100} main surface and a trench that has a side wall being slant at an angle of one degree or more with respect to a {0001} plane in a sectional structure.
The above and other objects, features, and advantages of the present invention will become more apparent from the following detailed description made with reference to the accompanying drawings. In the drawings:
(First Embodiment)
A first embodiment will be explained with reference to
On the <11-20> off-oriented SiC wafer 10, the trench 11 is thus formed as having the stripe structure extending towards the <11-20> direction, and the SiC layer 12 is formed on the SiC substrate 10 including the inside of the trench 11.
Therefore, when the epitaxial layer 12 grows within the trench 11, no facet is formed on the (1-100) side wall of the trench 11. Preventing formation of the facet enables the (1-100) plane to be a channel layer. This is favorable for being applied to a trench JFET shown in
In addition, as shown in
As described above, using an off-oriented wafer 10, a trench 11 has a stripe structure extending toward an off-axis direction along a line L1 of
(Second Embodiment)
A second embodiment is different from the first embodiment in an off-axis direction and an extending direction of a trench. Referring to
An SiC substrate 20 has a <1-100> off-oriented {0001} surface. A trench 21 has a stripe structure extending toward a <1-100> direction.
On the <1-100> off-oriented SiC wafer 20, the trench 21 is thus formed as having the stripe structure extending towards the <1-100> direction, and an SiC layer 22 is formed on the SiC substrate 20 including the inside of the trench 21.
Therefore, when the epitaxial layer 22 grows within the trench 21, no facet is formed on (11-20) side walls of the trench 21. Preventing formation of the facet enables the (11-20) plane to be a channel layer.
In other words, selecting a <1-100> direction as an off-axis prevents a facet from being formed on a (11-20) plane having high mobility. This results in being favorable in forming a channel layer for an FET.
In addition, as shown in
(Third Embodiment)
A third embodiment is different from the first embodiment in a planar structure of a trench. Referring to
An SiC substrate 30 has a <11-20> off-oriented {0001} surface. A trench 31 has a regular hexagonal planar structure and side walls of a (1-100) plane, as shown in
Therefore, when the epitaxial layer 32 grows within the trench 31, no facet is formed on (1-100) side walls of the trench 31. Preventing formation of the facet enables the (1-100) plane to be a channel layer.
Furthermore, a trench 31 can be formed as having a long hexagonal planar structure instead of the regular hexagonal planar structure, like a stripe structure. The stripe structure has a pair of two longitudinal sides that parallelly face to each other and two pairs of two short sides that form two triangular terminal ends. Here, each triangular terminal end is formed of two (1-100) planes that intersect to each other with an angle of 120 degrees. No facet is thereby formed also in the terminal ends of the trench 31. This enables the terminal ends of the trench 31, along with the longitudinal sides of the trench 31, to be also used as a channel layer.
A first modification of the third embodiment will be explained with reference to
An SiC substrate 30 has a <11-20> off-oriented {0001} surface. A trench 33 has a regular triangular planar structure and side walls of a (1-100) plane, as shown in
A second modification of the third embodiment will be explained with reference to
Relationship, shown in
Furthermore, relationship, shown in
(Fourth Embodiment)
A fourth embodiment is different from the third embodiment shown in
An SiC substrate 40 has a <1-100> off-oriented {0001} surface. A trench 41 has a regular hexagonal planar structure and side walls of a (11-20) plane, as shown in
Therefore, when the epitaxial layer 42 grows within the trench 41, no facet is formed on (11-20) side walls of the trench 41. Preventing formation of the facet enables the (11-20) plane to be a channel layer.
Furthermore, a trench 41 can be formed as having a long hexagonal planar structure instead of the regular hexagonal planar structure, like a stripe structure. The stripe structure has a pair of two longitudinal sides that parallelly face to each other and two pairs of two short sides that form two triangular terminal ends. Here, each triangular terminal end is formed of two (11-20) planes that intersect to each other with an angle of 120 degrees. No facet is thereby formed also in the terminal ends of the trench 41. This enables the terminal ends of the trench 41, along with the longitudinal sides of the trench 41, to be also used as a channel layer.
A modification of the fourth embodiment will be explained with reference to
An SiC substrate 40 has a <1-100> off-oriented {0001} surface. A trench 43 has a regular triangular planar structure and side walls of a (11-20) plane. An SiC layer (not shown) is formed on the SiC substrate 40 including the inside of the trench 43. When the epitaxial layer grows within the trench 43, no facet is formed on (11-20) side walls of the trench 43. Preventing formation of the facet enables the (11-20) plane to be a channel layer.
(Fifth Embodiment)
A fifth embodiment will be explained mainly in difference from the first embodiment shown in
An SiC substrate 50 has a <11-20> off-oriented {0001} surface, which is a {0001} surface having an off angle and an off-axis direction of <11-20>. A trench 51 has a planar structure of a rectangle. Each side of the rectangle is at an angle of 80 degrees or less, favorably 75 degrees or less, with respect to the off-axis direction. In detail, the longitudinal sides of the rectangle are at an angle θ1 with respect to the off-axis direction, while the lateral sides are at an angle θ2 (acute angle: θ2=90−θ1) with respect to the off-axis direction. Here, both the angles θ1, θ2 are 80 degrees or less, favorably 75 degrees or less.
On the off-oriented SiC wafer 50, the trench 51 is thus formed as having the sides at an angle of 80 degrees or less, favorably 75 degrees or less, with respect to the off-axis direction. An SiC layer 52 is then formed on the SiC substrate 50 including the inside of the trench 51, as shown in
Here, whether a facet is formed on the side walls of the trench 51 when an epitaxial layer grows within the trench 51 depends on an angle θ between the off-axis and each of the sides of the trench 51. If the angle θ is 75 degrees or less, no facet is formed.
This indicates that all the sides of the planar structure of the trench 51 should be at an angle of 80 degrees or less, favorably 75 degrees or less, with respect to the off-axis of the SiC substrate 50.
(Sixth Embodiment)
A sixth embodiment will be explained mainly in difference from the first embodiment shown in
An SiC substrate 70 has a {0001} surface having an off angle and an off-axis direction of <11-20>. A trench 71 has side walls, each of which is a (11-20) plane and not perpendicular to the off-axis of the SiC substrate 70, as shown in
On the <11-20> off-oriented SiC wafer 70, the trench 71 is thus formed as having the side walls of (11-20) that include no (11-20) planes perpendicular to the off-axis of the substrate 70. Therefore, when an epitaxial layer (not shown) grows within the trench 71, no facet is formed. When this structure is applied to a device where the side walls of the trench is used as a channel layer, the (11-20) planes of the side walls become the channel layer, which enables obtaining high channel mobility.
Furthermore, in comparison with the trench having the stripe structure linearly extending as shown in
As a modification of the sixth embodiment, a trench 72 shown in
(Seventh Embodiment)
A seventh embodiment is different from the sixth embodiment in an off-axis direction of an SiC substrate and a plane index of side walls of a trench. Referring to
An SiC substrate 80 has a {0001} surface having an off angle and an off-axis direction of <1-100>. A trench 81 has side walls, each of which is a (1-100) plane and not perpendicular to the off-axis of the SiC substrate 80, as shown in
On the <1-100> off-oriented SiC wafer 80, the trench 81 is thus formed as having the side walls of (1-100) that include no (1-100) planes perpendicular to the off-axis of the substrate 80. Therefore, when an epitaxial layer (not shown) grows within the trench 81, no facet is formed. When this structure is applied to a device where the side walls of the trench is used as a channel layer, the (1-100) planes of the side walls become the channel layer, which enables obtaining high channel mobility.
Furthermore, in comparison with the trench having the stripe structure linearly extending as shown in
As a modification of the sixth embodiment, a trench 82 shown in
(Eighth Embodiment)
An eight embodiment is different from the preceding embodiments in using an SiC substrate having no off angle.
As shown in
(Ninth Embodiment)
A ninth embodiment is different from the eighth embodiment in a plane index of a main surface of an SiC substrate. Referring to
An SiC substrate 100 is a hexagonal crystal SiC substrate having a {1-100} main surface without an off angle. A trench 101 has side walls that are slant with being at an angle of one degree or more with respect to a (0001) plane in a sectional shape. Here, in the above structure, when an epitaxial layer 102 grows within the trench 101, no facet is formed. Furthermore, when this structure is applied to a device where the side walls of the trench is used as a channel layer, the (0001) planes of the side walls become the channel layers, which enables obtaining high channel mobility.
It will be obvious to those skilled in the art that various changes may be made in the above-described embodiments of the present invention. However, the scope of the present invention should be determined by the following claims.
Kumar, Rajesh, Takeuchi, Yuuichi, Kimoto, Tsunenobu, Matsunami, Hiroyuki, Kataoka, Mitsuhiro, Naito, Masami
Patent | Priority | Assignee | Title |
9425262, | May 29 2014 | Semiconductor Components Industries, LLC | Configuration of portions of a power device within a silicon carbide crystal |
Patent | Priority | Assignee | Title |
5736753, | Sep 12 1994 | Hitachi, Ltd. | Semiconductor device for improved power conversion having a hexagonal-system single-crystal silicon carbide |
JP6227886, | |||
JP9172187, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 21 2010 | Denso Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Apr 24 2013 | ASPN: Payor Number Assigned. |
Aug 01 2016 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 04 2015 | 4 years fee payment window open |
Jun 04 2016 | 6 months grace period start (w surcharge) |
Dec 04 2016 | patent expiry (for year 4) |
Dec 04 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 04 2019 | 8 years fee payment window open |
Jun 04 2020 | 6 months grace period start (w surcharge) |
Dec 04 2020 | patent expiry (for year 8) |
Dec 04 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 04 2023 | 12 years fee payment window open |
Jun 04 2024 | 6 months grace period start (w surcharge) |
Dec 04 2024 | patent expiry (for year 12) |
Dec 04 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |