A method for treating progression of a refractive disorder in a human eye. The method includes the steps of producing a first image on a retina of the human eye and producing a second image to generate a defocus.

Patent
   RE43851
Priority
Sep 30 2004
Filed
Mar 22 2011
Issued
Dec 11 2012
Expiry
Sep 30 2024
Assg.orig
Entity
Small
11
97
all paid
1. A method for retarding the progression of myopia or hyperopia in a human eye, the method comprising:
(a) providing a fresnel concentric multi-focal lens comprising primary optical zones having a primary refractive power and secondary optical zones having at least one secondary refractive power; and
(b) correcting the myopia or hyperopia with the primary refractive power and generating at least one defocus with the secondary refractive power,
wherein the primary optical zones enable near and distant objects to be viewed; and the secondary optical zones generate myopic defocus to retard myopia or generate hyperopic defocus to retard hyperopia.
2. The method of claim 1, wherein:
the step (b) comprises focusing a first stream of light rays of an object onto a retina of the human eye through the primary optical zones to correct the myopia and focusing a second stream of light rays of the object in front of the retina through the secondary optical zones to generate at least one myopic defocus.
3. The method of claim 1, wherein:
the step (b) comprises focusing a primary stream of light rays of an object onto a retina of the human eye through the first optical zones to correct the hyperopia and focusing a second stream of light rays of the object behind the retina through the secondary optical zones to generate at least one hyperopic defocus.
4. The method of claim 1, wherein the step (a) comprises prescribing a fresnel concentric bi-focal lens to produce a defocus in step (b).
5. The method of claim 1, wherein the step (a) comprises providing a fresnel concentric multi-focal lens producing two or more defocuses in step (b).
6. The method of claim 1, wherein the fresnel concentric multi-focal lens is a concentric bi-focal lens.
0. 7. The method of claim 1, wherein the primary optical zones is configured for generating a focused image in a central optic zone, and wherein the secondary optical zones are configured for generating a defocused image in the central optic zone at a spaced distance from the focused image.
0. 8. The method of claim 1, wherein the lens is a contact lens.

The present invention relates to a method of optical treatment. In particular, the present invention relates to a method for treating progression of refractive disorders, such as myopia and hyperopia, in human eyes.

The retina is the innermost layer of an eyeball and is the place where optical images created by the lens of the eye is focused. The information from the images are turned into nerve impulses, which are then sent to the brain via the optic nerve. If the retina does not coincide with the resultant focal point of the optical elements of the eye, defocus is generated. As used herein, the term “defocus” refers to the shift of the optical images to a point behind or in front of the retina. The human eye has a feedback mechanism that regulates the growth of the eye to achieve an optimal balance between the size/length of the eye and the focal length of the optical elements of the eye. This feedback mechanism is called emmetropization.

Myopia and hyperopia are common refractive disorders of human eyes. They are generally described as an imbalance between the focusing power of optical elements of the eye and the size/length of the eye. Focus of a myopic eye lies in front of the retina of the eye, while focus of a hyperopic eye lies behind the retina of the eye. It is generally accepted that these disorders are results of inaccurate axial growth during post-natal development of the eyes. In other words, myopia typically develops when the size/length of the eye grows to exceed the focal length of the optical elements of the eye, while hyperopia typically develops when the size/length of the eye grows to be shorter than the focal length of the optical elements of the eye.

Referring to FIG. 1, an optical image 12 is formed in front of the retina in the case of myopia. Defocus in this case is positive and called myopic defocus 13. The emmetropization mechanism operates to retard eye growth in size until the retina 11 coincides with the optical image 12 when the myopic defocus 13 diminished. As a result, the eye becomes less myopic.

Referring to FIG. 2, optical image 22 is formed behind the retina 21 in the case of hyperopia. Defocus in this form is negative and called hyperopic defocus 23. The emmetropization mechanism operates to promote eye growth in size until the retina 21 coincides with the optical image 22 when the hyperopic defocus 23 diminished. As a result, the eye becomes less hyperopic.

Referring to FIG. 3, the natural major sources of defocus for a human eye come from accommodation lag and ambient defocus. The accommodation lag is generally projected by the object of interest 35 onto the center of the retina 31 or macula 34 along a visual axis 32. It usually ranges from 0.5 D to 1.0 D of hyperopic defocus 36 for a non-presbyope during near visual tasks, such as reading. Ambient defocus is projected by peripheral visual objects other than the object of interest 35. Since peripheral objects are usually positioned more distant than the object of interest 35, they usually produce myopic defocus up to 3.0 D during near visual tasks. For example, peripheral object 37 produce myopic defocus 38 at periphery of retina 31. Habitually, the peripheral visual objects are seldom positioned closer than the object of interest 35. However, if they do like peripheral object 39, hyperopic defocus 33 will be produced.

The natural process of emmetropization is regulated by the equilibrium between the above opposite defocus. Incidences of refractive errors are secondary to the disruption of the equilibrium. For example, insufficient ambient myopic defocus may cause myopia. On the other hand, excessive ambient myopic defocus may cause hyperopia.

Existing optical aids and refractive surgeries, in the form of spectacles, contact lens, corneal implant or shape modification of cornea, are corrective approaches involving alteration of the gross focusing power of the eye to produce sharper retinal images. They do not eliminate or deal with the cause of the disorders, but are just prosthetic.

The existing optical treatments to retard the progression of myopia by relieving the eye's accommodation during near visual tasks are recently shown to be clinically ineffective. Examples of those treatments include bi-focal addition lenses, multi-focal progressive addition lenses and their derivatives, and spherical aberration manipulations.

The present invention is directed to a method for treating progression of a refractive disorder in a human eye. Particularly, the present invention provides methods for counteracting the development of myopia by enhancing myopic defocus. The present invention also provides methods for counteracting the development of hyperopia by enhancing hyperopic defocus. The apparatuses used in practice of the present invention alter the defocus equilibrium of the eye to influence axial eye growth in a direction towards emmetropia.

According to a general aspect of the present invention, the method for treating progression of a refractive disorder in a human eye includes producing a first image on a retina of the human eye and producing a second image to generate a defocus.

According to one aspect of the present invention, the method for treating progression of a refractive disorder in a human eye includes providing a Fresnel lens having primary optical zones and secondary optical zones. The primary optical zones include a primary refractive power, and secondary optical zone includes at least one secondary refractive power. The method also includes correcting the refractive disorder with the primary refractive power and generating at least one defocus with the secondary refractive power.

According to another aspect of the present invention, the method for treating progression of a refractive disorder in a human eye includes prescribing an optical system having a back layer and a partially transparent front layer. The method also includes producing a primary image of one of the front and back layers on a retina of the human eye and producing a secondary image of the other layer of the front and back layers to generate a defocus.

According to yet another aspect of the present invention, the method for treating progression of a refractive disorder in a human eye includes providing a lens including a central optical zone having a primary optical power and at least one peripheral optical zone having a secondary optical power. The method also includes producing a primary image on a retina of the human eye with the first optical power and producing at least one secondary image with the second optical power to generate a defocus.

According to yet another aspect of the present invention, the method for treating progression of a refractive disorder in a human eye includes prescribing an optical system having a central visual object and at least one peripheral visual object. The method also includes producing a first image of the central visual object on a central retina of the human eye and producing a second image of the peripheral visual object to generate a defocus.

FIG. 1 is a schematic diagram showing the section of a myopic eye and the nature of myopic defocus.

FIG. 2 is a schematic diagram showing the section of a hyperopic eye and the nature of hyperopic defocus.

FIG. 3 is schematic diagram showing the section of an eye, illustrating the source and the formation of accommodation lag and ambient defocus.

FIG. 4a is a cross-sectional view of a Fresnel type concentric bi-focal or multi-focal lens used in practice of the present invention.

FIG. 4b is a back view of the Fresnel type concentric bi-focal or multi-focal lens of FIG. 4a.

FIG. 5a is a diagram of a myopic eye fitted with a concentric bi-focal lens in accordance with the present invention.

FIG. 5b is a diagram of a myopic eye fitted with a concentric multi-focal lens in accordance with the present invention.

FIG. 6a is a diagram of a hyperopic eye fitted with a concentric bi-focal lens in accordance with the present invention.

FIG. 6b is a diagram of a hyperopic eye fitted with a concentric multi-focal lens in accordance with the present invention.

FIG. 7a is a diagram of a myopic eye fitted with an optical system having of a semi-transparent front layer and a non-transparent back layer in accordance with the present invention.

FIG. 7b is a diagram of a hyperopic eye fitted with an optical system having a non-transparent back layer and a semi-transparent front layer in accordance with the present invention.

FIG. 8a is a cross-sectional view of a central-peripheral multi-focal lens used in practice of the present invention.

FIG. 8b is a back view of the central-peripheral multi-focal lens of FIG. 8a.

FIG. 9 is a diagram of a myopic eye fitted with the central-peripheral multi-focal lens of FIG. 8a and FIG. 8b in accordance with the present invention.

FIG. 10 is a diagram of a hyperopic eye fitted with the central-peripheral multi-focal lens of FIG. 8a and FIG. 8b in accordance with the present invention.

FIG. 11a is a diagram of a myopic eye fitted with an optical system having peripheral visual objects positioned closer than a central visual object in accordance with the present invention.

FIG. 11b is a diagram of a hyperopic eye fitted with an optical system having peripheral visual objects positioned closer than a central visual object in accordance with the present invention.

The present invention is directed to a method for treating progression of a refractive disorder in a human eye. Particularly, the present invention provides a method for counteracting the development of myopia by enhancing myopic defocus. The present invention also provides a method for counteracting the development of hyperopia by enhancing of hyperopic defocus. The apparatuses used in practice of the present invention alter the defocus equilibrium of the eye to influence axial eye growth in a direction towards emmetropia.

The artificial shift of the defocus equilibrium in the optical system of the eye may be introduced by any desired method, for example by spectacle lens, spectacle lens add-on, contact lens, corneal shape-modification, ocular implant or designated viewing system. It is preferred that the shift be introduced together with the conventional correction so that normal vision can be maintained throughout the treatment. This means that a focused image must be maintained near the macula 34, while one or more defocused images are being introduced into the optical system of the eye.

A treatment method in accordance with the present invention introduces at least a defocused image and a focused image in a superimposed manner. The defocused and focused images can be introduced simultaneously, for example, by a concentric Fresnel type bi-focal or multi-focal lens as shown in FIGS. 4-6, diffractive multi-focal lens and their derivatives, or an optical system as shown in FIG. 7.

Referring now FIGS. 4a and 4b, there shown is the Fresnel concentric bi-focal or multi-focal lens having alternating concentric optic zones 41 and 42 of at least two refractive powers used in practice of the present invention. A common way to manufacture the Fresnel concentric bi-focal lens is to make one of the surfaces with two radius of curvature. For example, the zone 42 with a shorter radius of curvature (i.e. more curved) than the other zone 41 with a longer radius of curvature (i.e. flatter) exhibits a more negative refractive power. The zone with a more negative power 44 and the zone with a less negative power 43 alternate in a concentric manner. As a result, paraxial light rays and peripheral light rays share two common focal points.

FIG. 5a shows a myopic eye fitted with a Fresnel type concentric bi-focal lens 50 having a primary refractive power correcting the myopia and a secondary power to introduce myopic defocus in accordance with the present invention. Light rays 51 entering the optical zones having the primary power are focused on the retina 52, producing a sharp image of a visual object. At the same time, other light rays 53 entering the optical zones having the secondary power are focused at a point 54 in front of the retina 52, producing the myopic defocus 55. When a myopic patient uses the lens 50 to view an object, the myopic defocus 55 prevents the eye from growing or elongating. Consequently, myopic progression in the myopic eye is slowed, stopped or reversed.

FIG. 6a shows a hyperopic eye fitted with a Fresnel type concentric bi-focal lens 60 having a primary refractive power to correct the hyperopia and a secondary power to introduce hyperopic defocus. Light rays 61 entering the optical zones having the primary power are focused onto the retina 62, producing a sharp image of a visual object. Simultaneously, other light rays 63 entering the optical zones having the secondary power are focused at a point 64 behind the retina 62, producing the hyperopic defocus 65. When a hyperopic patient uses the lens 60 to view an object, the hyperopic defocus 65 promotes the eye in growing or elongating. Consequently, myopic progression in the hyperopic eye is increased or induced, and hyperopia is reduced.

A Fresnel type of concentric multi-focal lens is a derivative of the Fresnel type concentric bi-focal lens. It has alternating concentric optic zones of more than two refractive powers. The primary refractive power corrects the refractive error, while the multiple secondary powers introduce optical defocus for treatment. This can be achieved by a minor variation on the radius of curvature of the secondary optical zones.

FIG. 5b shows a myopic eye fitted with a Fresnel type concentric multi-focal lens 56 in accordance with the present invention. Light rays 51 entering the optical zones having the primary power are focused on the retina 52, producing a sharp image of a visual object. At the same time, other light rays 53 entering the optical zones having the secondary powers are focused at points 57 in front of the retina 52, producing multiple myopic defocus 58 of various amplitudes. When a myopic patient uses the lens 56 to view an object, the myopic defocus 58 prevent the eye from growing or elongating. Consequently, myopic progression in the myopic eye is slowed, stopped or reversed.

FIG. 6b shows a hyperopic eye fitted with a Fresnel type concentric multi-focal lens 66. Light rays 61 entering the optical zones having the primary power are focused onto the retina 62, producing a sharp image of a visual object. Simultaneously, other light rays 63 entering the optical zones having the secondary powers are focused at points 67 behind the retina 62, producing multiple hyperopic defocus 68 of various amplitudes. When a hyperopic patient uses the lens 66 to view an object, the hyperopic defocus 68 promotes the eye in growing or elongating. Consequently, myopic progression in the hyperopic eye is increased or induced, and hyperopia is reduced.

FIG. 7a shows a myopic eye fitted with an optical system having a primary semi-transparent front layer 71 and a secondary non-transparent back layer 73 in accordance with the present invention. The front layer 71 matches the focal point of the eye, producing a sharp image 72 on the retina. At the same time, the back layer 73 produces an image 74 in front of the retina causing a myopic defocus 75 superimposed on the sharp image 72. When a myopic patient uses this optical system, the myopic defocus 75 prevents the eye from growing or elongating. Consequently, myopic progression in the myopic eye is slowed, stopped or reversed.

FIG. 7b shows a hyperopic eye fitted with an optical system having a primary non-transparent back layer 76 and a secondary semi-transparent front layer 78 in accordance with the present invention. The back layer 76 matches the focal point of the eye, producing a sharp image 77. In the same time, the front layer 78 produces an image 79 behind the retina causing a hyperopic defocus 80 superimposed on the sharp image 77. When a hyperopic patient uses this optical system, the hyperopic defocus 80 promotes the eye in growing or elongating. Consequently, myopic progression in the hyperopic eye is increased or induced, and hyperopia is reduced.

To improve the visual performance produced by the treatment methods and to avoid the user from mixing up his or her primary and secondary optical components, the optical quality of the retinal image produced by the primary components can be strengthened over the image produced by the secondary components. This can be achieved by manipulating the area ratio between the different zones of the Fresnel lenses and manipulating the transmission proportion of the semi-transparent layers.

An alternative method in accordance with the present invention introduces defocused image at peripheral retina only and keeps focused image at central retina. People habitually maintain a sharp image at central retina by a voluntary fixation reflex. Accordingly, the way to simultaneously present two images is the introduction of the defocus image at peripheral retina through the use of a central-peripheral multi-focal lens as shown in FIGS. 8-10 and a optical system as shown in FIG. 11.

As shown in FIGS. 8a and 8b, the central-peripheral multi-focal lens includes concentric optical zones of two or more optical powers. One way to manufacture this kind of lens is to generate the zones with materials of different refractive index. The central zone 81, which has a higher refractive index than the peripheral zone 82, exhibits higher refractive power. The two zones 81 and 82 are positioned in a generally concentric manner, with the refractive power decreasing from the central towards the peripheral across the lens. The transition can be subtle or progressive, depending on the manufacturing process.

FIG. 9 shows a myopic eye fitted with a negative central-peripheral multi-focal lens, which has a primary central refractive power correcting the myopia and a secondary peripheral refractive power to introduce myopic defocus, in accordance with the present invention. Light rays entering the central zone of the lens from a central visual objects 91 are focused onto the central retina, producing a corresponding central sharp image 92. Simultaneously, light rays entering the peripheral zone of the lens from the peripheral visual objects 93 are focused at points in front of the peripheral retina, producing the peripheral myopic defocus 94 required for the treatment effect for myopia. When a myopic patient uses the lens to view the visual objects 91 and 93, the myopic defocus 94 prevents the eye from growing or elongating. Consequently, myopic progression in the myopic eye is slowed, stopped or reversed.

FIG. 10 shows a hyperopic eye fitted with a positive central-peripheral multi-focal lens, which have a primary central refractive power correcting the hyperopia and a secondary peripheral refractive power to introduce hyperopic defocus, in accordance with the present invention. Light rays entering the central zone of the lens from the central visual objects 101 are focused onto the central retina, producing a corresponding central sharp image 102. Simultaneously, light rays entering the peripheral zone of the lens from the peripheral visual objects 103 are focused at points behind the peripheral retina, producing the peripheral hyperopic defocus 104 required for the treatment effect for hyperopia. When a hyperopic patient uses this optical system, the hyperopic defocus 104 promotes the eye in growing or elongating. Consequently, myopic progression in the hyperopic eye is increased or induced, and hyperopia is reduced.

FIG. 11a shows a myopic eye fitted with a pre-designed visual environment or an optical system, which has peripheral visual objects 113 positioned far away from the eye compared with the central visual object 111, in accordance with the present invention. Light rays from the central object 111, as directed by basic optics and the fixation reflex of the eye, are focused onto the central retina, producing a corresponding central sharp image 112. Simultaneously, light rays from peripheral visual objects 113 are focused at points in front of the peripheral retina, producing peripheral myopic defocus 114 required for the treatment of myopia. When a myopic patient uses this optical system, the myopic defocus 114 prevents the eye from growing or elongating. Consequently, myopic progression in the myopic eye is slowed, stopped or reversed.

FIG. 11b shows a hyperopic eye fitted with a pre-designed visual environment or an optical system, which has peripheral visual objects 117 positioned close to the eye compared with the central visual object 115. Light rays from the central object 115, as directed by basic optics and the fixation reflex of the eye, are focused onto the central retina producing a corresponding central sharp image 116. Simultaneously, light rays from peripheral visual objects 117 are focused at points behind the peripheral retina, producing peripheral hyperopic defocus 118 required for the treatment of hyperopia. When a hyperopic patient uses this optical system, the hyperopic defocus 118 promotes the eye in growing or elongating. Consequently, myopic progression in the hyperopic eye is increased or induced, and hyperopia is reduced.

Although the present invention has particular applications in curing and preventing the progression of refractive disorders of the eye such as myopia and hyperopia, it is to be understood that the invention could be used in other applications such as the prevention of pathological myopic degeneration of the eye.

Although the present invention has been described with reference to preferred methods, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. In addition, the invention is not to be taken as limited to all of the details thereof as modifications and variations thereof may be made without departing from the spirit or scope of the invention.

To, Chi Ho, Lam, Siu Yin, Tse, Yan Yin

Patent Priority Assignee Title
10571717, Aug 01 2016 University of Washington Ophthalmic lenses for treating myopia
10795181, Dec 22 2008 The Medical College of Wisconsin, Inc. Method and apparatus for limiting growth of eye length
10884264, Jan 30 2018 SIGHTGLASS VISION, INC Ophthalmic lenses with light scattering for treating myopia
11048102, Dec 22 2008 The Medical College of Wisconsin, Inc. Method and apparatus for limiting growth of eye length
11493781, Dec 22 2008 The Medical College of Wisconsin, Inc. Method and apparatus for limiting growth of eye length
11543681, Aug 01 2016 University of Washington Ophthalmic lenses for treating myopia
11718052, May 08 2017 SIGHTGLASS VISION, INC Contact lenses for reducing myopia and methods for making the same
11914228, Jan 30 2018 SightGlass Vision, Inc. Ophthalmic lenses with light scattering for treating myopia
12092905, Jul 12 2018 SIGHTGLASS VISION, INC Methods and devices for reducing myopia in children
12111518, Apr 23 2019 SightGlass Vision, Inc. Ophthalmic lenses with dynamic optical properties for reducing development of myopia
ER2396,
Patent Priority Assignee Title
3904281,
4162122, Sep 14 1977 Zonal bifocal contact lens
4210391, Sep 14 1977 Multifocal zone plate
4338005, Dec 18 1978 Multifocal phase place
4340283, Dec 18 1978 Phase shift multifocal zone plate
4618228, Dec 09 1983 TITMUS EUROCON KONTAKLINSEN GMBH A GERMAN CORP Bifocal contact lens of the bivisual type
4636049, Sep 20 1983 University Optical Products Co. Concentric bifocal contact lens
4637697, Oct 27 1982 Novartis AG Multifocal contact lenses utilizing diffraction and refraction
4704016, Oct 13 1982 COOPERVISION TECHNOLOGY, INC Bifocal contact lenses
4752123, Nov 19 1985 University Optical Products Co. Concentric bifocal contact lens with two distance power regions
4828558, Jul 28 1987 KELMAN, ANN G Laminate optic with interior Fresnel lens
4881805, Nov 12 1987 Progressive intensity phase bifocal
4890913, Oct 13 1983 ASPECT VISION CARE LTD Zoned multi-focal contact lens
4900764, Nov 25 1985 Hydrophilic materials
4971432, Dec 07 1989 Bifocal contact lens
4981342, Sep 24 1987 FIALA, WERNER J Multifocal birefringent lens system
4995714, Aug 26 1988 CooperVision International Holding Company, LP Multifocal optical device with novel phase zone plate and method for making
4995715, May 14 1986 Coopervision, Inc Diffractive multifocal optical device
5002382, Dec 07 1989 Multifocal corneal contact lenses
5009497, Nov 12 1987 Contact lenses utilizing keel orientation
5017000, May 14 1986 Multifocals using phase shifting
5024517, Dec 07 1989 Monovision corneal contact lenses
5054905, Nov 12 1987 Progressive intensity phase bifocal
5056908, Nov 12 1987 Optic zone phase channels
5076684, Apr 01 1988 Minnesota Mining and Manufacturing Company Multi-focal diffractive ophthalmic lenses
5096285, May 14 1990 Iolab Corporation Multifocal multizone diffractive ophthalmic lenses
5106180, May 30 1991 JOHNSON & JOHNSON VISION PRODUCTS, INC Multifocal ophthalmic lens
5108169, Feb 22 1991 Contact lens bifocal with switch
5116111, Apr 01 1988 Minnesota Mining and Manufacturing Company Multi-focal diffractive ophthalmic lenses
5117306, Jul 17 1990 Diffraction bifocal with adjusted chromaticity
5121979, May 14 1986 COOPERVISION INTERNATIONAL LIMITED Diffractive multifocal optical device
5121980, Apr 19 1989 Small aperture multifocal
5129718, Apr 01 1988 Minnesota Mining and Manufacturing Company Multi-focal diffractive ophthalmic lenses
5142411, Sep 24 1987 FIALA, WERNER J Multifocal birefringent lens system
5144483, May 14 1986 COOPERVISION INTERNATIONAL LIMITED Diffractive multifocal optical device
5178636, May 14 1990 Iolab Corporation Tuned Fresnel lens for multifocal intraocular applications including small incision surgeries
5229797, Aug 08 1990 MINNESOTA MINING AND MANUFACTURING COMPANY, A CORP OF DE Multifocal diffractive ophthalmic lenses
5278592, May 30 1991 Johnson & Johnson Vision Care, Inc Ophthalmic lens
5349393, Jun 01 1993 Light-transmitting elastomeric suction lens
5406341, Nov 23 1992 Johnson & Johnson Vision Care, Inc Toric single vision, spherical or aspheric bifocal, multifocal or progressive contact lenses and method of manufacturing
5448312, Dec 09 1992 JOHNSON & JOHNSON VISION PRODUCTS, INC Pupil-tuned multifocal ophthalmic lens
5485228, Jul 10 1991 Johnson & Johnson Vision Products, Inc. Multifocal ophthalmic lens pair
5517259, Mar 23 1994 Johnson & Johnson Vision Care, Inc Method of manufacturing toric single vision, spherical or aspheric bifocal, multifocal or progressive contact lenses
5598234, Nov 23 1992 Johnson & Johnson Vision Care, Inc Method of manufacturing toric single vision, spherical or aspheric bifocal, multifocal or progressive contact lenses
5760871, Jan 06 1993 Holo-or Ltd. Diffractive multi-focal lens
5854669, Mar 30 1994 Rodenstock GmbH Series of lenses
5861935, Apr 04 1996 CARL ZEISS VISION AUSTRALIA HOLDINGS LTD Progressive lens elements and methods for designing and using same
5898473, Apr 25 1997 Permeable Technologies, Inc. Multifocal corneal contact lens
5929969, May 04 1995 JOHNSON & JOHNSON VISION PRODUCTS, INC Multifocal ophthalmic lens
5982543, Mar 17 1994 Bifocon Optics Forschungs-Und Entwicklungsgmbh Zoned lens
6045578, Nov 28 1995 Queensland University of Technology Optical treatment method
6120148, Oct 05 1998 Bifocon Optics GmbH Diffractive lens
6270220, Jun 18 1998 Y M S INVESTMENT LTD Multifocal lens
6343861, Apr 26 1996 CARL ZEISS VISION AUSTRALIA HOLDINGS LTD Myopia lens
6364483, Feb 22 2000 Holo or Ltd. Simultaneous multifocal contact lens and method of utilizing same for treating visual disorders
6491394, Jul 02 1999 E-VISION OPTICS, LLC Method for refracting and dispensing electro-active spectacles
6536899, Jul 14 1999 ACRI TEC GMBH; *ACRI TEC GMBH Multifocal lens exhibiting diffractive and refractive powers
6626532, Jun 10 1997 Olympus Optical Co., Ltd. Vari-focal spectacles
6752499, Jul 11 2001 Extang Corporation Myopia progression control using bifocal contact lenses
6814439, Jun 01 1987 Abbott Medical Optics Inc Multifocal ophthalmic lens
6957891, Sep 29 2000 Ophthalmic lens with surface structures
7025460, Nov 19 2003 The Vision CRC Limited Methods and apparatuses for altering relative curvature of field and positions of peripheral, off-axis focal positions
7073906, May 12 2005 VISION ADVANCEMENT LLC Aspherical diffractive ophthalmic lens
7287852, Jun 29 2004 Intra-ocular lens or contact lens exhibiting large depth of focus
7401922, Apr 13 2005 SYNERGEYES, INC Method and apparatus for reducing or eliminating the progression of myopia
7503655, Nov 19 2003 Vision CRC Limited Methods and apparatuses for altering relative curvature of field and positions of peripheral, off-axis focal positions
7665842, Jan 12 2006 Brien Holden Vision Institute Method and apparatus for controlling peripheral image position for reducing progression of myopia
7697750, Dec 06 2004 Specially coherent optics
7766478, Jul 01 2004 Auckland UniServices Limited Contact lens and method for prevention of myopia progression
7766482, Nov 19 2003 Vision CRC Limited Methods and apparatuses for altering relative curvature of field and positions of peripheral, off-axis focal positions
7832859, Mar 09 2007 Auckland UniServices Limited Contact lens and method
20010033363,
20030058404,
20030058407,
20040023791,
20040237971,
20050099597,
20070296916,
20080291393,
20090303442,
20110001923,
EP47811,
EP742463,
EP742464,
EP927905,
,
RU2195233,
RU2197198,
WO2004068214,
WO2004113959,
WO2007146673,
WO2008131479,
WO2009129528,
WO2009152582,
WO9710527,
WO9966366,
WO9710527,
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jan 04 2005TO, CHI HOThe Hong Kong Polytechnic UniversityASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0459010150 pdf
Jan 04 2005LAM, SIU YINThe Hong Kong Polytechnic UniversityASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0459010150 pdf
Jan 04 2005TSE, YAN YINThe Hong Kong Polytechnic UniversityASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0459010150 pdf
Mar 22 2011The Hong Kong Polytechnic University(assignment on the face of the patent)
Date Maintenance Fee Events
Sep 23 2020M2553: Payment of Maintenance Fee, 12th Yr, Small Entity.


Date Maintenance Schedule
Dec 11 20154 years fee payment window open
Jun 11 20166 months grace period start (w surcharge)
Dec 11 2016patent expiry (for year 4)
Dec 11 20182 years to revive unintentionally abandoned end. (for year 4)
Dec 11 20198 years fee payment window open
Jun 11 20206 months grace period start (w surcharge)
Dec 11 2020patent expiry (for year 8)
Dec 11 20222 years to revive unintentionally abandoned end. (for year 8)
Dec 11 202312 years fee payment window open
Jun 11 20246 months grace period start (w surcharge)
Dec 11 2024patent expiry (for year 12)
Dec 11 20262 years to revive unintentionally abandoned end. (for year 12)