The invention describes a procedure for the examination of objects by the means of ultrasound waves whereby a volume-of-interest is scanned by a 3D-ultrasound-probe by moving a transmitter/receiver beam in a scan plane within selectable limits. This B-mode scan plane is also simultaneously moved in a direction across to this scan plane. The transmitting of sound pulses and acquiring the echo-signals is done more or less continuously during the movement in B-plane and across to it The echo-signals are stored in a volume memory on addresses which correspond to the spatial position of the echo-generating structure inside the object. These stored data-sets are evaluated by a 3D-processor and are represented on at least one display unit by different algorithms with selectable parameters. Important is that the acquisition and the representation is done continuously.
|
0. 7. A method of examining an object, comprising:
defining a scanning plane of a transmitter/receiver unit in a 3D-ultrasound probe:
continuously scanning a volume of the object with ultrasound waves emitted from the 3D-ultrasound probe to produce echo signals representative of multiple scans of the volume; and
moving the scanning plane of the transmitter/receiver unit transversely across the volume continuously, during the multiple scans while maintaining the 3D-ultrasound probe stationary with respect to the volume.
1. A method of examining an object by means of ultrasound waves, which comprises the steps of
(a) scanning a volume of the object by the ultrasound waves emitted from a 3D-ultrasound probe designed to produce a B-mode image during the scanning while maintaining the probe stationary,
(b) moving a scanning plane in a transmitter/receiver unit in the stationary probe across the volume transversely to the scanning plane,
(1) a volume-of-interest being selected by setting limits for the path of movement of the scanning plane,
(c) at least substantially continuously scanning the volume-of-interest by echo pulses generated and processed during the movement of the scanning plane,
(d) storing signals generated by the echo pulses in a correct position corresponding to the geometric location of the origin of the signals,
(e) evaluating the stored signals by a 3D-processor to produce the B-mode image, and
(f) displaying the image on a display unit.
2. The method of
3. The method of
5. The method of
6. The method of
0. 8. The method of claim 7, further comprising displaying at least first and second images associated with corresponding at least first and second scans of the volume based on echo signals generated while continuously scanning the volume.
0. 9. The method of claim 7, wherein the ultrasound waves emitted from the 3D-ultrasound probe produce echo signals representative of a B-mode image.
0. 10. The method of claim 7, wherein said moving step moves the scanning plane in forward and return directions transverse to the scanning plane to continuously scan the volume.
0. 11. The method of claim 7, further comprising processing the echo signals during movement of the scanning plane in forward and return directions.
0. 12. The method of claim 7, further comprising storing echo signals produced in response to the ultrasound waves emitted by the 3D-ultrasound probe, said echo signals being stored at memory locations corresponding to geometric locations in the volume, at which associated echo signals originated.
0. 13. The method of claim 7, further comprising evaluating echo signals by a 3D-processor, said echo signals being generated in response to the ultrasound waves.
0. 14. The method of claim 7, wherein said moving step further comprises reciprocatingly moving the transmitter/receiver unit in forward and return directions across the volume and receiving echo signals during movement of the transmitter/receiver unit in both of the forward and return directions.
0. 15. The method of claim 7, further comprising reconstructing the echo signals in an arbitrary plane of the volume.
0. 16. The method of claim 7, further comprising visualizing the echo signals in an arbitrary plane of the volume, the arbitrary plane being independent of a position and direction of the scanning plane of the transmitter/receiver unit.
0. 17. The method of claim 7, further comprising visualizing movement, within the volume, of the object.
0. 18. The method of claim 7, wherein said scanning, defining and moving steps are carried out continuously at a volume rate sufficiently high to visualize movement, within the volume, of the object on a display.
0. 19. The method of claim 7, further comprising:
selecting range limits for a range of the volume over which the scanning plane is moved, said range being less than a full size of the volume; and
limiting movement of the scanning plane to remain within said range limits.
0. 20. The method of claim 7, further comprising:
selecting size limits for a size of the scanning plane; and
limiting the size of the scanning plane to remain within said size limits.
0. 21. The method of claim 7, wherein the volume is defined by outer size limits of the scanning plane and outer range limits of the movement of the scanning plane, further comprising limiting at least one of the defining, scanning and moving steps to a limited volume of interest smaller than at least one of said outer size and range limits.
0. 22. The method of claim 7, wherein said moving step mechanically moves the transmitter/receiver unit within the 3D-ultrasound probe while the 3D-ultrasound probe remains stationary with respect to the volume.
0. 23. The method of claim 7, wherein said moving step electronically moves the scanning plane while the transmitter/receiver unit and 3D-ultrasound probe remain stationary with respect to the volume.
0. 24. The method of claim 7, wherein said moving step includes forward and return movement said method further comprising:
generating scan lines during forward movement of the scanning plane at a first set of locations in the volume; and
generating scan lines during return movement of the scanning plane at a second set of locations in the volume, the first and second sets of locations being close to one another.
0. 25. The method of claim 7, further comprising adjusting a size of the volume scanned by adjusting at least one of an angle of the scanning plane with respect to the volume, a swivel angle of the scan plane with respect to the volume, a number of echo pulses used to form each scan, a sweep speed of the scanning plane, a maximum depth of echo pulses within the volume and an arbitrary plane from the volume to be displayed.
0. 26. The method of claim 7, further comprising storing the echo signals in a vector-oriented memory at locations corresponding to points in the volume at which the echo signals originate.
|
More than one reissue application has been filed for the reissue of U.S. Pat. No. 6,106,471. The reissue applications for U.S. Pat. 6,106,471 are U.S. patent application Ser. No. 10/223,941 (the present application) and U.S. patent application Ser. No. 13/667,527, which is a divisional reissue application.
This invention relates to a procedure for an examination of objects by the means of ultrasound waves whereby a volume-of-interest is scanned by a 3D-ultrasound-probe, whereby a scan plane for the acquisition of echo data is moved into a transverse direction referred to the scan plane.
The scanning of a spatial area of an object which should be examined and the storage of the scanned data in a geometrically correct way is well known (see e.g. AT 358 155 B). With this method a scanning plane (B- or C-Plane) is moved over the object of interest. This scanning movement is done either manually (with a simultaneous measurement of the position of the scan-plane in relation to a reference position) or by a special probe which moves the sensor automatically (see e.g. AT 1708 GM).
The volume-scanning has a lot of essential benefits compared to the standard method of scanning only one single plane (B- or C-mode). As an example: with the volume-scanning-method it is possible to reconstruct and visualize the echo-information in an arbitrary plane through the scanned object whereby this visualization plane does not depend on the position and direction of the planes which were used to scan the object. That means that images of the object (e.g. human body) can be visualized which are not obtainable by standard scanning (e.g. due to anatomical reasons). Furthermore by using specific algorithms for visualization it is possible to represent the echo-information generated by a reflecting surface inside the scanned object in a way that the observer gets an 3-dimensional (3D) impression of the object which is defined by that surface. With this method the observer can virtually walk around the object and see the corresponding view of the object on the display because the viewing angle is independent from the direction from which the object is scanned. The known methods using volume-scanning are only capable to make one volume-scan and then reconstruct and visualize the data-set. The reason is that for continuous volume-scanning a special probe is needed for automatic scan-movement, a special 3D data storage and a high-speed 3D data processor. Almost all known methods fulfill only one or two of these requirements. And in addition some methods are needed which are part of this invention.
With the known volume-scan-method and their associated reconstruction technology the observer can move around the object to visualize the different viewing angles but the scanned data of the object are static. If e.g. the scanned object is a fetus then the observer can look to the fetus from different angles but he cannot visualize a movement of the fetus itself because the 3D dataset is “frozen”.
A critical issue for the visualization is the removal of echoes which are in front of the surface of interest and which interfere therefor the view to the surface. A typical scenario in Obstetrics is the abdominal scan of a fetus. It is obvious that between the ultrasound probe and the fetal face the echoes reflected by the maternal tissue is displayed which hide the view to the fetal face. The volume-scanning-method defines a volume of interest and only data which are inside this area are evaluated. But as mentioned above, the object is not scanned in a continuous way.
The invention has been made to allow to scan continuously an object with a volume rate which is high enough to follow its movement (e.g. fetal face) and to visualize it simultaneous on a display. The visualization algorithms comprise methods which result in a 3D impression for the observer as well as methods to reconstruct the echo-information in an arbitrary plane through the scanned object. Also the combination of both in one representation of the volume data is intended. Particularly a high rate of scanned volume per time should be insured by measures like limitation of the scanned volume according to the volume-of-interest for the reconstruction. One aspect of the invention is also to avoid artifacts generated during scanning or during reconstruction. These requirements are fulfilled by the invention in that the received echo signals are sampled and stored on an address which corresponds to the correct position of the echo-generating structure inside the object and these signals are used for volume representation on at least one display unit by selectable parameters comprising a 3D ultrasound probe which scans within selectable limits a B-mode scan plane and which moves this scan plane across to the plane also within selectable limits whereby the transmitting of sound pulses and acquiring the echo-signals is done more or less continuously during the movement in B-plane and across to it and whereby these signals are stored in the volume memory and evaluated by a 3D-processor for a 3D representation of the data sets on the display unit.
The method is applicable with ultrasound probes in which the sensor (transducer) is moved in the scan-plane mechanically as well as with probes in which a multi-element transducer performs the scanning in this plane by electronic means. It is essential to scan only the volume of interest to achieve high scan-rates in the continuous scanning. In the same way it is essential to avoid interruptions of data acquisition between two adjacent scan-planes.
To avoid artifacts or not to reduce the scan rate in the latter case, the transmitter/receiver unit is reciprocatingly moved in a forward and return movement across the volume, the signals during the return movement being generated at least close to the scanning traces during the forward movement. According to this invention the scanning ultrasound beam moves in two directions simultaneously: one is a fast movement (M-B) in the scan plane; the second one is the slower movement (M-3D) of the scan plane over the object. The directions of both movements are more or less perpendicular one to each other; but not necessarily. Therefor the trace of the scan plane is no longer perpendicular to the direction of M3D but has an certain angle (even if the M-B and M-3D directions are perpendicular) because during the time interval need to scan the B-plane the transducer was also moved in M-3D direction. The length and the angle of these traces depend on the scan-conditions (especially on the size of the scanned volume). If the transducer is moved mechanically within the scan-plane then the trace of the scan-planes is saw-tooth-shaped. If a multielement transducer is used for the scan-plane then the image-acquisition can always start from the same side. To fulfill all the intended requirements mentioned, the series of echo pulses during the forward movement is reversed during the return movement whereby the B-mode image has the same spatial position during the return movement as during the forward movement. The storage of the echo-signals reflected from the scanned volume is preferably done in a vector-oriented volume memory.
Furthermore the optimization of the size of the scanned volume respectively the selection of the volume-of-interest can be done by selectively matching the method to the object by a parameter selected from the group consisting of adjusting the scanning angle of the B-mode image, the swivelling angle for the volume scanning, the number of echo pulses forming the B-mode image, the sweeping speed of the canning, the maximum depth of the echo pulses, and the arbitrary plane from which the volume is illuminated.
If the probe is not moved by the user then the content of the volume memory is similar between two adjacent scans; the difference is only caused by the movement of the object itself. To get a smooth representation of the movement of the object there is an interpolation on the display unit between at least two sequentially produced images.
More details and benefits of the present invention will be apparent when the following description of the preferred embodiments are considered taken in conjunction with the accompanying drawings:
To illustrate the idea of the invention a 3D scan procedure (
According to the present invention the volume is scanned continuously whereby both scan-movements (M-B and M-3D) are done simultaneously. This situation is illustrated in
If the traces of the scan planes are considered (
According to the present invention the acquisition and storage of the data are controlled so that during one scan movement (M-3D) the information is collected and stored e.g. from “left” to “right”, and during the scan movement (opposite direction) the data collection is reversed (from “right” to “left”). Using this method the resulting traces of the scan planes coincide as shown in
In a standard 2D ultrasound system the storage of images (CINE-mode) are done in Cartesian coordinates (“Scanconversion”). Doing so the echo data are filled into picture-elements (“Pixel”) according to geometrical considerations. If pixels are not crossed by an ultrasound beam (and therefore have no primary echo information) the value for this pixel is interpolated from the surrounding pixels having a primary echo information. And if several ultrasound beams cross one pixel then only one value can be stored for this pixel. If the reconstruction of 3D data-sets is now based on such Cartesian data-sets then the original echo information is no longer available. Therefore it is part of this invention to store the complete ultrasound information of each ultrasound beam in a vector-oriented storage and to make all 3D reconstruction based on this complete data-set (e.g. Surface rendering, reconstruction of arbitrary planes, etc.). Normally all ultrasound beams forming a scan plane cross one point (apex). If this point is near to the surface of the probe then it is a “Sector-scan”, are the beams parallel (point is “in infinity”) then it is a “Linear-Scan” and all in between is called “Convex-Scan”. Of course also combinations can be applied as e.g. a “Linear scan” in the middle of an area combined with a “Sector-scan” at the edges of the scanned area (such methods are known from patents). The volume scan is normally performed in an orthogonal direction to the B-mode scan plane and is done also either as a “Sector-”, “Linear-” or “Convex”-scan; but not necessarily with the same scan-parameters (e.g. radius of swiveling etc.) as for the B-mode scan. This results in an address control of the vector-oriented storage which is based on toroidal coordinate transformations.
Below a description is made of a preferred embodiment of the present invention. The described embodiment is only one out of several solutions.
A system for the continuous volume scanning of an object by the means of ultrasound waves is shown in
Below a possible realization is shown according to the present invention which performs a continuous volume scan (
This cycle continues until the user stops the continuous volume scanning.
Gritzky, Arthur, Wiesauer, Franz, Fosodeder, Erwin
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4282755, | Dec 05 1979 | Technicare Corporation | Transducer drive and control |
5152294, | Dec 14 1989 | Aloka Co., Ltd. | Three-dimensional ultrasonic scanner |
5704361, | Nov 08 1991 | Mayo Foundation for Medical Education and Research | Volumetric image ultrasound transducer underfluid catheter system |
5787889, | Feb 21 1997 | University of Washington | Ultrasound imaging with real time 3D image reconstruction and visualization |
5844140, | Aug 27 1996 | P D COOP, INC | Ultrasound beam alignment servo |
5924986, | Sep 10 1997 | Siemens Medical Solutions USA, Inc | Method and system for coherent ultrasound imaging of induced, distributed source, bulk acoustic emissions |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 20 2002 | GE Medical Systems Kretztechnik GmbH & Co. OHG | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Mar 26 2013 | ASPN: Payor Number Assigned. |
Date | Maintenance Schedule |
Jan 01 2016 | 4 years fee payment window open |
Jul 01 2016 | 6 months grace period start (w surcharge) |
Jan 01 2017 | patent expiry (for year 4) |
Jan 01 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 01 2020 | 8 years fee payment window open |
Jul 01 2020 | 6 months grace period start (w surcharge) |
Jan 01 2021 | patent expiry (for year 8) |
Jan 01 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 01 2024 | 12 years fee payment window open |
Jul 01 2024 | 6 months grace period start (w surcharge) |
Jan 01 2025 | patent expiry (for year 12) |
Jan 01 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |