Digital assets are in a secured form that only those with granted access rights can access. Even with the proper access privilege, when a secured file is classified, at least a security clearance key is needed to ensure those who have the right security clearance can ultimately access the contents in the classified secured file. According to one embodiment, a secured file or secured document includes two parts: a header, and an encrypted data portion. The header includes security information that points to or includes access rules, a protection key and a file key. The access rules facilitate restrictive access to the encrypted data portion and essentially determine who the secured document can be accessed. The file key is used to encrypt/decrypt the encrypted data portion and protected by the protection key. If the contents in the secured file are classified, the file key is jointly protected by the protection key as well as a security clearance key associated with a user attempting to access the secured file.
|
0. 24. A method, comprising:
encrypting electronic data with a first key in a computing device;
encrypting the first key with a second key, if the electronic data is not classified;
encrypting the first key with the second key and a clearance key, if the electronic data is classified;
encrypting the second key to produce an encrypted version of the second key; and
integrating a header to include the encrypted first key and the encrypted second key.
0. 35. A system, comprising:
a processor; and
a memory in communication with the processor, the memory for storing a plurality of processing instructions for directing the processor to:
encrypt electronic data with a first key;
encrypt the first key with a second key, if the electronic data is not classified;
encrypt the first key with the second key and a clearance key, if the electronic data is classified;
encrypt the second key to produce an encrypted version of the second key; and
integrate a header to include the encrypted first key and the encrypted second key.
0. 37. A non-signal computer-readable medium having instructions stored thereon, the instructions comprising:
instructions to encrypt electronic data with a first key;
instructions to encrypt the first key with a second key, if the electronic data is not classified;
instructions to encrypt the first key with the second key and a clearance key, if the electronic data is classified;
instructions to encrypt the second key to produce an encrypted version of the second key; and
instructions to integrate a header to include the encrypted first key and the encrypted second key.
0. 29. A method, comprising:
determining if a user has proper access privilege to electronic data;
retrieving, at a computing device, a second key if the user is permitted to access the electronic data;
if contents in the electronic data are classified, obtaining a clearance key associated with the user and using the second key and the clearance key to retrieve a first key;
if the contents in the electronic data are not classified, using the second key to retrieve the first key; and
using the first key to decrypt an encrypted data portion representing an encrypted version of the electronic data.
0. 36. A non-transitory computer-readable storage medium having computer program code recorded thereon that, as a result of execution by a processor, causes the processor to perform functions comprising:
determining if a user has proper access privilege to electronic data;
retrieving a second key if the user is permitted to access the electronic data;
if the contents in the electronic data are classified, obtaining a clearance key associated with the user and using the second key and the clearance key to retrieve a first key;
if the contents in the electronic data are not classified, using the second key to retrieve the first key; and
using the first key to decrypt an encrypted data portion representing an encrypted version of the electronic data.
13. In a system for providing restrictive access to electronic data, wherein the electronic data is structured in a format that controls access to contents in the electronic data, a method for accessing the electronic data, the method comprising:
obtaining an authenticated user key associated with a user attempting to access the electronic data;
retrieving access rules embedded in the format to determine if the a user has proper access privilege;
retrieving a second key if the user is permitted to access the electronic data;
if the contents in the electronic data are classified;, obtaining a clearance key associated with the user;
using the second key and the clearance key to ultimately retrieve a first key;
if the contents in the electronic data are not classified;, using the second key to retrieve the first key; and
decrypting, using the first key, an encryption data portion representing an encrypted version of the electronic data.
0. 34. A system, comprising:
a client module configured to control access to a secured document based on a user key;
a store configured to store the secured document that includes a header with a file key and a protection key;
a key store configured to store the user key and a clearance key, the clearance key being utilized to access the secured document when the secured document is also classified; and
a cipher module configured to perform decrypting of the file key and the protection key, wherein
the client module is configured to determine if a user has access privileges to the secured file using the decrypted user key, and if successful,
the cipher module is configured to (1) decrypt the protection key with the user key and decrypt the file key, or (2) decrypt the protection key and the clearance key with the user key and decrypt the file key, if the secured document is also classified.
1. In a system for providing restrictive access to electronic data, wherein the electronic data is structured in a format that controls access to contents in the electronic data, a method for securing the electronic data in the format, the method comprising:
generating an encrypted data portion by encrypting the electronic data with a first key according to a predetermined cipher scheme;
encrypting the first key with a second key, if the electronic data is not classified;
encrypting the first key with the second key together with a clearance key, if the electronic data is classified;
encrypting the second key to produce an encrypted version of the second key;
applying access rules to protect the encrypted version of the second key; and
integrating a header with the encrypted data portion to produce a secured file, wherein the header includes the encrypted first key, the encrypted second key and the access rules.
22. A machine non-transitory computer readable medium having embodied thereon a program, the program being executable by a machine to perform a method for providing restrictive access to electronic data, wherein the electronic data is structured in a format that controls access to contents in the electronic data, the method comprising:
obtaining an authenticated user key associated with a user attempting to access the electronic data;
retrieving access rules embedded in the format to determine if the a user has proper access privilege;
retrieving a second key if the user is permitted to access the electronic data;
if the contents in the electronic data are classified;, obtaining a clearance key associated with the user;
using the second key and the clearance key to ultimately retrieve a first key;
if the contents in the electronic data are not classified;, using the second key to retrieve a first key; and
decrypting, using the first key, an encryption data portion representing an encrypted version of the electronic data.
21. A machine non-transitory computer readable medium having embodied thereon a program, the program being executable by a machine to perform a method for providing restrictive access to electronic data, wherein the electronic data is structured in a format that controls access to contents in the electronic data, the method comprising:
generating an encrypted data portion by encrypting the electronic data with a first key according to a predetermined cipher scheme;
encrypting the first key with a second key, if the electronic data is not classified;
encrypting the first key with the second key together with a clearance key, if the electronic data is classified;
encrypting the second key to produce an encrypted version of the second key;
applying access rules to protect the encrypted version of the second key; and
integrating a header with the encrypted data portion to produce a secured file, wherein the header includes the encrypted first key, the encrypted second key and the access rules.
2. The method of
3. The method of
determining a block size of blocks that are used to divide, respectively, the electronic data; and
encrypting each of the blocks according to the predetermined cipher scheme.
4. The method of
encrypting the first key with the clearance key to produce an initial encrypted version of the first key; and
encrypting the initial encrypted version of the first key with the second key to produce the encrypted version of the first key.
5. The method of
6. The method of
7. The method of
9. The method of
10. The method of
11. The method of
obtaining a public user key associated with a user attempting to secure the electronic data; and
encrypting the second key using the public user key according to the predetermine predetermined cipher scheme.
12. The method of
15. The method of
obtaining an authenticated user key associated with the user attempting to access the electronic data;
decrypting the access rules with the authenticated user key; and
testing if access privilege of the user is within the access rules.
16. The method of
17. The method of
obtaining an authenticated user key associated with the user attempting to access the electronic data; and
decrypting the second key that is encrypted with the authenticated user key after it is determined that the user is permitted to access the electronic data.
18. The method of
19. The method of
20. The method of
23. The method of
encrypting the first key with the second key to produce an initial encrypted version of the first key; and
encrypting the initial encrypted version of the first key with the clearance key to produce the encrypted version of the first key.
0. 25. The method of claim 24, further comprising:
applying encrypted access rules to protect the encrypted version of the second key.
0. 26. The method of claim 24, wherein the encrypting electronic data with a first key further comprises:
dividing the electronic data into one or more blocks of data; and
encrypting each block of data.
0. 27. The method of claim 24, wherein the clearance key corresponds to a security level.
0. 28. The method of claim 24, wherein the encrypting of the second key further comprises:
obtaining a public user key associated with a user; and
encrypting the second key using the public user key.
0. 30. The method of claim 29, wherein the determining further comprises:
applying access rules to measure the access privilege of the user.
0. 31. The method of claim 29, wherein the clearance key corresponds to a security level.
0. 32. The method of claim 31, further comprising:
using the clearance key and the second key to retrieve the first key when the electronic data are classified at or lower than the security level of the clearance key.
0. 33. The method of claim 29, further comprising:
decrypting the second key using a private user key associated with the user.
|
This application is a continuation-in-part of U.S. patent application Ser. No. 10/074,804, filed Feb. 12, 2002, and entitled “Secured Data Format for Access Control,” which is hereby incorporated by reference for all purposes. This application also claims the benefits of U.S. Provisional Application No. 60/339,634, filed Dec. 12, 2001, and entitled “PERVASIVE SECURITY SYSTEMS,” which is hereby incorporated by reference for all purposes. This application is also related to U.S. patent application Ser. No. 10/127,109 and entitled “Evaluation of Access Rights to Secured Digital Assets”, which is hereby incorporated by reference.
1. Field of the Invention
The present invention relates to the area of protecting data in an enterprise environment, and more particularly, relates to a method and apparatus for securing digital assets (e.g. electronic data).
2. Description of Related Art
The Internet is the fastest growing telecommunications medium in history. This growth and the easy access it affords have significantly enhanced the opportunity to use advanced information technology for both the public and private sectors. It provides unprecedented opportunities for interaction and data sharing among businesses and individuals. However, the advantages provided by the Internet come with a significantly greater element of risk to the confidentiality and integrity of information. The Internet is a widely open, public and international network of interconnected computers and electronic devices. Without proper security means, an unauthorized person or machine may intercept any information traveling across the Internet and even get access to proprietary information stored in computers that interconnect to the Internet, but are otherwise generally inaccessible by the public.
There are many efforts in progress aimed at protecting proprietary information traveling across the Internet and controlling access to computers carrying the proprietary information. Cryptography allows people to carry over the confidence found in the physical world to the electronic world, thus allowing people to do business electronically without worries of deceit and deception. Every day hundreds of thousands of people interact electronically, whether it is through e-mail, e-commerce (business conducted over the Internet), ATM machines, or cellular phones. The perpetual increase of information transmitted electronically has lead to an increased reliance on cryptography.
One of the ongoing efforts in protecting the proprietary information traveling across the Internet is to use one or more cryptographic techniques to secure a private communication session between two communicating computers on the Internet. The cryptographic techniques provide a way to transmit information across an insecure communication channel without disclosing the contents of the information to anyone eavesdropping on the communication channel. Using an encryption process in a cryptographic technique, one party can protect the contents of the data in transit from access by an unauthorized third party, yet the intended party can read the data using a corresponding decryption process.
A firewall is another security measure that protects the resources of a private network from users of other networks. However, it has been reported that many unauthorized accesses to proprietary information occur from the inside, as opposed to from the outside. An example of someone gaining unauthorized access from the inside is when restricted or proprietary information is accessed by someone within an organization who is not supposed to do so. Due to the open nature of the Internet, contractual information, customer data, executive communications, product specifications, and a host of other confidential and proprietary intellectual property remains available and vulnerable to improper access and usage by unauthorized users within or outside a supposedly protected perimeter.
A governmental report from General Accounting Office (GAO) details “significant and pervasive computer security weaknesses at seven organizations within the U.S. Department of Commerce, the widespread computer security weaknesses throughout the organizations have seriously jeopardized the integrity of some of the agency's most sensitive systems.” Further it states: “Using readily available software and common techniques, we demonstrated the ability to penetrate sensitive Commerce systems from both inside Commerce and remotely, such as through the Internet,” and “Individuals, both within and outside Commerce, could gain unauthorized access to these systems and read, copy, modify, and delete sensitive economic, financial, personnel, and confidential business data . . . ” The report further concludes “[i]ntruders could disrupt the operations of systems that are critical to the mission of the department.”
In fact, many businesses and organizations have been looking for effective ways to protect their proprietary information. Typically, businesses and organizations have deployed firewalls, Virtual Private Networks (VPNs), and Intrusion Detection Systems (IDS) to provide protection. Unfortunately, these various security means have been proven insufficient to reliably protect proprietary information residing on private networks. For example, depending on passwords to access sensitive documents from within often causes security breaches when the password of a few characters long is leaked or detected. Therefore, there is a need to provide more effective ways to secure and protect digital assets at all times.
This section is for the purpose of summarizing some aspects of the present invention and to briefly introduce some preferred embodiments. Simplifications or omissions may be made to avoid obscuring the purpose of the section. Such simplifications or omissions are not intended to limit the scope of the present invention.
The present invention is related to processes, systems, architectures and software products for providing pervasive security to digital assets at all times and is particularly suitable in an inter/intra enterprise environment. In general, pervasive security means that digital assets are secured at all times and can only be accessed by authenticated users with appropriate access rights or privileges, and proper security clearance in some cases, wherein the digital assets may include, but not be limited to, various types of documents, multimedia files, data, executable code, images and texts. According to one aspect of the present invention, the digital assets are in a secured form that only those with granted access rights can access. Even with the proper access privilege, when a secured file is classified, at least a security clearance key is needed to ensure those who have the right security clearance can ultimately access the contents in the classified secured file.
In another aspect of the present invention, the format of the secured file is so designed that the security information stays with the file being secured at all times or pointed to by a pointer in the file. According to one embodiment, a secured file or secured document includes two parts: an attachment, referred to as a header, and an encrypted document or data portion. The header includes security information that points to or includes access rules, a protection key and a file key. The access rules facilitate restrictive access to the encrypted data portion and essentially determine who/how and/or when/where the secured document can be accessed. The file key is used to encrypt/decrypt the encrypted data portion and protected by the protection key. If the contents in the secured file are classified, the file key is jointly protected by the protection key as well as a security clearance key associated with a user attempting to access the secured file. As a result, only those who have the proper access privileges are permitted to obtain the protection key, jointly with the security clearance key, to retrieve the file key to encrypt the encrypted data portion.
In still another aspect of the present invention, the security clearance key is generated and assigned in accordance with a user's security access level. A security clearance key may range from most classified to non-classified. If a user has the need to access a secured file classified with a certain security or confidential level, a corresponding security clearance key with that security level is assigned therefor. In one embodiment, a security clearance key with a security level is so configured that the key can be used to access secured files classified at or lower than the security level. As a result, a user needs to have only one security clearance key. In still another aspect of the present invention, multiple auxiliary keys are provided when a corresponding security clearance key is being requested. The security clearance key is the one being requested, generated in accordance with the determined security level and can be used to facilitate the access to a secured file classified at a corresponding security or confidentiality level. The auxiliary security clearance keys are those keys generated to facilitate access to secured files classified respectively less than the corresponding security or confidentiality level. Depending on implementation, the security clearance key(s) may be further protected by means of secondary authentication, such as biometric information verification or a second password, to increase security level of the security clearance key(s).
Depending on implementation and application, the present invention may be implemented or employed in a client machine and a server machine. Typically, if a user's access privilege (i.e., access rights) to a secured file is locally determined in a client machine, the present invention may be implemented as an executable module configured to operate locally, preferably, in an operating system running in the client machine. If a user's access right to a secured file is remotely determined in a server machine, the present invention may be implemented as an executable module configured to operate in the server machine as well as in the client machine.
Objects, features, and advantages of the present invention will become apparent upon examining the following detailed description of an embodiment thereof, taken in conjunction with the attached drawings.
These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings where:
The present invention pertains to a process, a system, a method and a software product for securing electronic data or digital assets. According to one aspect of the present invention, secured files may be classified in several hierarchical security levels. To access the secured classified files, in addition to a user key, a user is assigned a clearance key that is based on at least two complementary concepts, “Need to Know” and “Sensitivity Level” of the information in a secured classified file. According to another aspect of the present invention, the digital assets are in a form that includes two parts, one being an encrypted data portion and the other being a header including security information controlling restrictive access to the encrypted data portion. The security information employs access rules together with various cipher keys to ensure that only those with proper access privilege or rights can access the encrypted data portion.
There are numerous advantageous, benefits, and features in the present invention. One of them is the mechanism contemplated herein capable of providing pervasive security to digital assets sought to be protected at all times. Another one is that the digital assets are presented in such a way that only those with proper access privilege as well as sufficient security clearance level can access information in the digital assets. Other advantageous, benefits, and features in the present invention can be readily appreciated by those skilled in the art from the detailed description of the invention provided herein.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will become obvious to those skilled in the art that the present invention may be practiced without these specific details. The description and representation herein are the common means used by those experienced or skilled in the art to most effectively convey the substance of their work to others skilled in the art. In other instances, well-known methods, procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the present invention.
Reference herein to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Further, the order of blocks in process flowcharts or diagrams representing one or more embodiments of the invention do not inherently indicate any particular order nor imply any limitations in the invention.
Embodiments of the present invention are discussed herein with reference to
Generally, a content created by a creator for the purpose of an entity is an intellectual property belonging to the creator or the entity. In an enterprise, any kind of information or intellectual property can be content, though it is commonly referred to as “information” instead of “content”. In either case, content or information is independent of its format, it may be in a printout or an electronic document. As used herein, content or information exists in a type of electronic data that is also referred to as a digital asset. A representation of the electronic data may include, but not be limited to, various types of documents, multimedia files, streaming data, dynamic or static data, executable code, images and texts.
To prevent contents in electronic data from an unauthorized access, the electronic data is typically stored in a form that is as close to impossible as possible to read without a priori knowledge. Its purpose is to ensure privacy by keeping the content hidden from anyone for whom it is not intended, even those who have access to the electronic data. Example of a priori knowledge may include, but not be limited to, a password, a secret phrase, biometric information or one or more keys.
After the document 100 is created, edited or opened with an application or authoring tool (e.g., Microsoft WORD), upon an activation of a command, such as “Save,” “Save As” or “Close”, or automatic saving invoked by an operating system, the application itself, or an approved application, the created document 100 is caused to undergo a securing process 101. The securing process 101 starts with an encryption process 102, namely the document 100 that has been created or is being written into a store is encrypted by a cipher (e.g., an encryption process) with a file key (i.e., a cipher key). In other words, the encrypted data portion 112 could not be opened without the file key. For the purpose of controlling the access to the contents in the document 100 or the resultant secured file 108, the file key or keys may be the same or different keys for encryption and decryption and are included as part of security information contained in or pointed to by a header 106. The file key or keys, once obtained, can be used to decrypt the encrypted data portion 112 to reveal the contents therein.
To ensure that only authorized users or members of an authorized group can access the secured file 108, a set of access rules 104 for the document 100 is received or created and associated with the header 106. In general, the access rules 104 determine or regulate who and/or how the document 100, once secured, can be accessed. In some cases, the access rules 104 also determine or regulate when or where the document 100 can be accessed. In addition, security clearance information 107 is added to the header 106 if the secured file 108 is classified. In general, the security clearance information 107 is used to determine a level of access privilege or security level of a user who is attempting to access the contents in the secured file 108. For example, a secured file may be classified as “Top secret”, “Secret”, “Confidential”, and “Unclassified”.
According to one embodiment, the security clearance information 107 includes another layer of encryption of the file key with another key referred to herein as a clearance key. An authorized user must have a clearance key of proper security level in addition to an authenticated user key and proper access privilege to retrieve the file key. As used herein, a user key or a group key is a cipher key assigned to an authenticated user and may be used to access a secured file or secure a file, or create a secured file. The detail of obtaining such a user key upon a user being authenticated is provided in U.S. patent application Ser. No. 10/074,804.
According to another embodiment, the security clearance information 107 includes a set of special access rules to guard the file key. The retrieval of the file key requires that the user passes an access rule measurement. Since access privilege of a user may be controlled via one or more system parameters (e.g., a policy), the access rule measurement can determine if the user has sufficient access privilege to retrieve the file key in conjunction with the corresponding user key. With the detailed description to follow, those skilled in the art can appreciate that other forms of the security clearance information 107 may be possible. Unless otherwise specified, the following description is based on the security clearance information 107 being another layer of encryption with one or more clearance keys.
In accordance with the security clearance information 107, a user may be assigned a hierarchical security clearance level based on, perhaps, a level of trust assigned to the user. A level of trust implies that one user may be more trusted than another and hence the more trusted user may access more classified files. Depending on implementation, a level of trust may be based on job responsibility of the user or a role of the user in a project or an organization background checks, psychological profiles, or length of service, etc. In any case, a level of trust assigned to the user augments additional aspect to the access privilege of the user such that the user must have proper security clearance to access a classified secured file even if the user is permitted by the access rules to access the file.
As will be further described in detail below, unless the level of security clearance of the user permits, a secured classified file (i.e., the file that is both secured and classified) may not be accessed even if the user has an authenticated user (or group) key and permitted by the access rules in the secured classified file. In one embodiment, the level of security clearance of the user is determined by one or more clearance keys assigned thereto. In general, a clearance key permits a user to access a secured file classified as “top secret”, the same clearance key may permit the user to access all secured files classified less secure, such as “secret” or “confidential”, where it has been assumed that the user has proper access privilege to be granted by the access rules in the file. In one embodiment, a clearance key is further secured by means of secondary authentication, such as biometric information verification and a second password. In other words, a clearance key may not be automatically released to or activated for a user upon an authenticated login, unless the user provides additional information.
In general, a header is a file structure, preferably small in size, and includes, or perhaps links to, security information about a resultant secured document. Depending on an exact implementation, the security information can be entirely included in a header or pointed to by a pointer that is included in the header. According to one embodiment, the access rules 104, as part of the security information, are included in the header 106. The security information further includes the file key and/or one or more clearance keys, in some cases, an off-line access permit (e.g. in the access rules) should such access be requested by an authorized user. The security information is then encrypted by a cipher (i.e., an en/decryption scheme) with a user key associated with an authorized user to produce encrypted security information 110. The encrypted header 106, if no other information is added thereto, is attached to or integrated with the encrypted data portion 112 to generate the resultant secured file 108. In a preferred embodiment, the header is placed at the beginning of the encrypted document (data portion) to facilitate an early detection of the secured nature of a secured file. One of the advantages of such placement is to enable an access application (i.e., an authoring or viewing tool) to immediately activate a document securing module (to be described where it deems appropriate) to decrypt the header if permitted. Nevertheless, there is no restriction as to where the encrypted header 106 is integrated with the encrypted data portion 112.
It is understood that a cipher may be implemented based on one of many available encryption/decryption schemes. Encryption and decryption generally require the use of some secret information, referred to as a key. For some encryption mechanisms, the same key is used for both encryption and decryption; for other mechanisms, the keys used for encryption and decryption are different. In any case, data can be encrypted with a key according to a predetermined cipher (i.e., encryption/decryption) scheme. Examples of such schemes may include, but not be limited to, Data Encryption Standard algorithm (DES), Blowfish block cipher and Twofish cipher. Therefore, the operations of the present invention are not limited to a choice of those commonly-used encryption/decryption schemes. Any cipher scheme that is effective and reliable may be used. Hence, the details of a particular scheme are not further discussed herein so as to avoid obscuring aspects of the present invention.
In essence, the secured document 108 includes two parts, the encrypted data portion 112 (i.e., encrypted version of the document itself) and the header 110 that may point to or include security information for the secured document 108. To access the contents in the encrypted data portion 112, one needs to obtain the file key to decrypt the encrypted data portion 112. To obtain the file key, one needs to be authenticated to get a user or group key and pass an access test in which at least the access rules in the security information are measured against the user's access privilege (i.e., access rights). If the secured file is classified, it further requires a security level clearance on the user. In general, the security clearance level of the user must be high enough before the file key can be retrieved. Alternatively, part of the access rules may be left non-encrypted for users authorized or non-authorized alike to view embedded access permissions of a secured file in a display application or markup language interpreter (e.g., a browser).
At 222, the process 220 awaits a request for a clearance key. It is described that a secured file can be classified or unclassified. When it is determined that a user needs to access a secured file that is classified, such request is provided to activate the process 220. In general, the request pertains to a specific user or some members in a group. At 224, a corresponding account for the user is retrieved, provided there is the account for the user. If the account is not available, then the account shall be opened accordingly. Alternatively, the process 220 may be part of the process of opening an appropriate account for a user who has the need-to-know basis to access secured files at certain security or confidential level(s). Depending on implementation, the corresponding account information may include a username or identifier, membership information, designated access privilege, and a corresponding user key (which sometimes is a pair of a private key and a public key). At 226, a security level for the user is determined, which is usually done by the necessity. For example, an executive of an enterprise may be assigned the highest security clearance level and a front desk receptionist may be assigned the lowest security clearance level. Once the security level is determined, a clearance key is generated at 228.
Referring now to
Returning to
All access rules are encrypted with a user key (e.g., a public user key) and stored in the rule block 312. A user attempting to access the secured file uses must have a proper user key (e.g., a private user key) to decrypt the access rules in the rule block 312. The access rules are then applied to measure the access privilege of the user. If the user is permitted to access the secured file in view of the access rules, the protection key 320 in the key block 310 is retrieved to retrieve the file key 309 so as to access the encrypted data portion 304. However, when it is detected that the secured file is classified, which means that the file key can not be retrieved with only the protection key, the user must posses a clearance key. Only does the user have the clearance key, together with the retrieved protection key 320, the file key 309 may be retrieved to proceed with the decryption of the encrypted data portion 304.
According to one embodiment, the encrypted data portion 304 is produced by encrypting a file that is non-secured. For example, a non-secured document can be created by an authoring tool (e.g., Microsoft Word). The non-secured document is encrypted by a cipher with the file key. The encryption information and the file key are then stored in the security information.
According to another embodiment, the non-secured document (data) is encrypted using the following aspects, a strong encryption using a CBC mode, a fast random access to the encrypted data, and an integrity check. To this end, the data is encrypted in blocks. The size of each block may be a predetermined number or specific to the document. For example, the predetermined number may be a multiple of an actual encryption block size used in an encryption scheme. One of the examples is a block cipher (i.e., a type of symmetric-key encryption algorithm that transforms a fixed-length block of plaintext (unencrypted text) data into a block of ciphertext (encrypted text) data of the same length. This transformation takes place under the action of a cipher key (i.e., a file key). Decryption is performed by applying the reverse transformation to the ciphertext block using another cipher key or the same cipher key used for encryption. The fixed length is called the block size, such as 64 bits or 128. Each block is encrypted using a CBC mode. A unique initiation vector (IV) is generated for each block.
Other encryption of the non-secured data can be designed in view of the description herein. In any case, the encryption information and the file key are then stored in the security information. One of the important features in the present invention is that the integration of a header and the encrypted data portion will not alter the original meaning of the data that is otherwise not secured. In other words, a designated application may still be activated when a secured file is selected or “clicked”. For example, a document “xyz.doc”, when selected, will activate an authoring tool, Microsoft Word, commonly seen in a client machine. After the document “xyz.doc” is secured in accordance with the present invention, the resultant secured file is made to appear the same, “xyz.doc” that still can activate the same authorizing tool, except now the secured file must go through a process to verify that a user is authenticated, the user has the proper access privilege and sufficient security clearance.
Another one of the important features in the present invention is the use of the protection key. With the protection key, the file key can be updated without having to modify the key-blocks. For example, the file key in the file key block 308 can be updated without having to modify the key-blocks. This feature helps improve security of the secured files and make file copy operations work faster.
The header structure 350 is preferably structured in a descriptive language such as a markup language. Examples of such a markup language include HTML, WML, and SGML. In a preferred embodiment, the markup language is Extensible Access Control Markup Language (XACML) that is essentially an XML specification for expressing policies for information access. In general, XACML can address fine grained control of authorized activities, the effect of characteristics of the access requester, the protocol over which the request is made, authorization based on classes of activities, and content introspection (i.e., authorization based on both the requestor and attribute values within the target where the values of the attributes may not be known to the policy writer). In addition, XACML can suggest a policy authorization model to guide implementers of the authorization mechanism.
One portion in the header structure 350 is referred to as a key block list 352 that may contain one or more key blocks. A key block 354 contains an encrypted protection key that is sometimes referred to as document/file-encryption-key key, namely a key to the file key. To ensure that the protection key is indeed protected, it is encrypted and can only be retrieved by a designated entity. For example, a secured file is created by a member of engineering group and permitted for full access by every member in the engineering group. The same secured file meanwhile is also permitted for limited access (e.g., only read and print) by every member in the marketing group. Accordingly, the key block list 352 may include two key blocks, one for the engineering group and the other for the marketing group. In other words, each of the two key blocks has an encrypted protection key that can be only accessed by a member of the corresponding group (via a group or individual private key).
The key block version value 356 provides necessary details of the encryption algorithm used to protect the protection key 340. In one embodiment, the RSA-OAEP (RSA—Optimal Asymmetric Encryption Padding) which is a public-key encryption scheme combining the RSA algorithm with the OAEP method is used. In particular, the uuid of the key pair 358 identifies a certificate and a private key (the details thereof are not shown) that are used to decrypt this value. In addition, attributes of the key pair, such as whether the key is 1024 or 2048 bits long, are also included to facilitate the protection of the protection key 340.
The block 342 of the header structure 350 includes at least three segments 344, 346 and 348. The segment 344 includes an encrypted file key that must be retrieved in clear to decrypt the encrypted data portion. The segment 346 includes security level information to indicate what security level the secured file is at, for example, “top secret”, “secret”, “confidential” or “unclassified” or “none”. The segment 348 includes information about the size of the encryption block for the encrypted data portion in the secured file. According to one embodiment, this is a multiple of the algorithm encryption block size. The encrypted data portion is created by an encryption with a symmetric key that is called the document/file-encryption-key or file key herein.
There is another portion 360 of the header structure 350 that is encrypted by a user or group key. The portion 360 (the details thereof are not shown) contains essentially the access rules embedded with the secured file to govern who/where the secured file can be accessed. Various conditions of accessing the file can be placed or realized in the access rules. Additional details of the access rules can be references U.S. patent application Ser. No. 10/074,804.
The above description is based on one embodiment in which the access rules are encrypted with a user's public key. Those skilled in the art can appreciate that the access rules may be also encrypted with a file encryption key (i.e., the file key) or the protection key. In this case, the protection key is encrypted with a user's public key or together with a clearance key associated with the user if a subject secured file is secured. Now instead of retrieving the protection key after the access rules are successfully measured against access privilege of the user attempting to access a secured file, the protection key is retrieved first with a user's private key. The protection key can be used to retrieve the access rules that are subsequently used to measure against the access privilege of the user if the protection key was used to encrypt the access rules. If the user is permitted to access the contents in the file, the file key is then retrieved with the protection key (or together with the clearance key). Alternatively, right after the protection key is retrieved, the protection key (or together with the clearance key) is used to retrieve the file key. The file key is then to retrieve the access rules that are subsequently used to measure against the access privilege of the user. In any case, if the user is determined that the user has sufficient access privilege in view of all access policies, if there are any, the retrieved file key can be used to continue the description of the encrypted data portion.
In any case, at 402, such desired document is identified to be accessed. Before proceeding with the selected document, the process 400 needs to determine whether the selected file is secured or non-secured. At 404, the selected document is examined. In general, there are at least two ways to examine the secure nature of the selected document. A first possible way is to look for a flag or signature at the beginning of the document. As described above, in some secured documents, a flag, such as a set of predetermined data, is placed in the header of a secured document to indicate that the document being accessed is secured. If no such flag is found, the process 400 goes to 420, namely, the selected documented is assumed non-secured and thus allowed to pass and load to a selected application or place desired by the user. A second possible way is to look for a header in a selected document. Being a secured document, there is a header attached to an encrypted data portion. The data format of the header shall be irregular in comparison with the selected document if it is non-secured. If it is determined that the selected document has no irregular data format as required by a selected application, the process 400 goes to 420, namely, the selected document is assumed to be non-secured and thus allowed to pass and load to a selected application or place desired by the user.
Now if it is determined at 404 that the selected document is indeed secured, the process 400 goes to 406, wherein the user and/or the client machine being used by the user are checked to determine if the user and/or the client machine are authenticated. The details of the user authenticating himself/herself/itself may be provided in U.S. patent application No. 10/074,804. In the case that the user and/or the client machine are not authenticated, the process 400 goes to 418 that may display an appropriate error message to the user. It is now assumed that the user and/or the client machine are authenticated, the header or security information therein is decrypted with the authenticated user key.
At 408, the access rules in the decrypted security information are retrieved. As described above, there may be sets of access rules, each set designated for a particular user or members of a particular group. With the authenticated user key and/or a corresponding user identifier, a corresponding set of access rules is retrieved. At 410, the retrieved access rules are compared to (or measured against) the access privileges associated with the user. If the measurement fails, which means that the user is not permitted to access this particular document, a notification or alert message may be generated to be displayed to the user at 418. If the measurement passes successfully, which means that the user is permitted to access this particular document, the process 400 moves on to decrypt and retrieve the protection key at 411 and then determine if the secured document is classified at 412. When it is determined that the secured document is not classified or there is no security clearance requirement in the security information, the process 400 goes to 416, wherein a file key is retrieved and, subsequently, used to decrypt the encrypted data portion in the selected (secured) document. When it is determined that the secured document is classified, the process 400 goes to 414 that checks if the authenticated user possesses a clearance key matching the security clearance requirement. In general, the security level of the clearance key must be equal to or higher than the security clearance requirement in the secured classified document. If the security level of the clearance key is not sufficient enough, the process 400 goes to 418 that can be configured to display an appropriate error message to the user. If the security level of the clearance key is sufficient enough, the process 400 goes to 416.
In any case, a file key is retrieved with the protection key alone if the secured document is not classified or the protection key together with the clearance key if the secured document is classified. As a result, the decrypted document or clear contents of the selected document is provided at 420.
At 502, a blank document is opened or created by an authoring application chosen and activated by a user. The authoring application may be Microsoft Word, Microsoft PowerPoint or WordPerfect. In a preferred procedure, the user may save the document into a folder or a protected store that has already setup with a set of access rules. If not, one or more sets of access rules may be created. Optionally, the access rules may be received by importation of a previously created file including desirable access rules, defaults of the user access privileges or individually created user access privileges. At 504, the set of predetermined access rules is received, preferably, in a descriptive language such as a plain test or a mark-up language (e.g., XACML).
At 506, a secret cipher key (i.e., a file key) is generated from a cipher module for the document and typically stored in a temp file that is generally not accessible by an ordinary user. The temp file will be erased automatically when the secured document is done (e.g., at a “Close” command from the application). At 508, the document is checked to see if a request to write the document into a local store is made. If such request is detected (which could be made manually by the user or periodically by the authoring tool or an OS procedure), the document is encrypted with the file key at 510. One of the features in the present invention is that the stored document is always encrypted in storage even if it is still being processed (e.g., authored, edited or revised). When the user is done with the document, a “Close” request is activated to close the document. At 512, such a request is detected. As soon as such request is received, it means that a secured version of the document needs to be written into the store. At 514, it is assumed that the document is classified and that that user who is working with the document has been previously assigned a clearance key. The generated file key is then encrypted with a protection/clearance key and further with a clearance/protection key. The protection key may be generated from a cipher module. At 516, the protection key is encrypted with the authenticated user key.
To protect the encrypted protection key, at 518, appropriate access rules are applied and inserted along with the encrypted protection key in the security information that may be further encrypted with the authenticated user key. The encrypted version of the security information is then packed in the header. Depending on implementation, a flag or signature can be further included in the header. Alternatively, the header could include the security information without a flag. At 520, the header is attached to or integrated with the encrypted document from 510 and subsequently the secured document is placed into the store at 524.
As described above, the secured document includes two encrypted portions, the header with encrypted security information and the encrypted data portion (i.e., the encrypted document). The two parts in the secured documents are encrypted respectively with two different keys, the file key and the user key. Alternatively, the two encrypted portions may be encrypted again with another key (or use the same user key) at 522.
In the case that there are a number of sets of access rules, each for a particular user or a group of users, it can be understood that the encrypted access rules at 518 are integrated with other sets of the encrypted access rules in a rules block as illustrated in
An application 606 (e.g. a registered application, such as Microsoft Word) operates in the user mode or the OS 604 and may be activated to access a document stored in a store 608. The store 608 may be a local storage place (e.g., hard disk) or remotely located (e.g., another device). Depending on the security nature (secured vs. non-secured) of the document being accessed, the client module 602 may activate a key store 609 (or an interface thereto) and a cipher module 610. The key store 609 retains an authenticated user key after the user is authenticated. If the user has the need to access some secured classified files, the key store 609 may retain a corresponding clearance key. Depending on implementation, the key store 609 may be configured to retrieve a clearance key from another location or activate a clearance key from an encrypted version thereof. The cipher module 610 implements one or more en/decryption schemes and is, preferably, modular so that a different cipher module implementing alternative en/decryption schemes may be readily used, if desired.
According to one embodiment, the client module 202 is analogous in many ways to a device driver that essentially converts more general input/output instructions of an operating system to messages that a device/module being supported can understand. Depending on the OS in which the present invention is implemented, the client module 602 may be implemented as a VxD (virtual device driver), a kernel or other applicable format.
In operation, the user selects a document that is associated with an application 606 (e.g., MS WORD, PowerPoint, or printing). The application 606 acts on the document and calls an API (e.g., createFile, a Common Dialog File Open Dialog with Win32 API in MS Windows) to access the installable file system (IFS) manger 612. If it is detected that an “Open” request is made from the application 206, the request is passed to an appropriate file system driver (FSD) 614 to access the requested document. When it is detected that the requested document is secured, the key store 209 and the cipher module 610 are activated and an authenticated user (private) key is retrieved. The encrypted security information in the header of the requested secure document is decrypted with the user key. Now the access rules in the secured document are available, a rules measurement is carried out in the client module 602 to determine if the user is permitted to access the selected secured document. If the measurement is successful, that means the user is permitted to access the secured document, a file key is retrieved from the security information with a retrieved protection key as well as the clearance key and, subsequently, the cipher module 610 proceeds to decrypt the encrypted document (i.e., the encrypted data portion) in the client module 602. The clear contents are then returned to the application 606 through the IFS manager 612. For example, if the application 606 is an authoring tool, the clear contents are displayed. If the application 606 is a printing tool, the clear contents are sent to a designated printer.
In another embodiment, an operating system (OS) access, known as the ProcessID property, can be used to activate an application (as an argument to the AppActivate method). The parameter ProcessID identifies the application and an event handler thereof takes necessary parameters to continue the OS access to the Installable File System (IFS) Manager 612 that is responsible for arbitrating access to different file system components. In particular, the IFS Manager 612 acts as an entry point to perform various operations such as opening, closing, reading, writing files and etc. With one or more flags or parameters passed along, the access activates the client module 602. If the document being accessed by the application is regular (non-secured), the document will be fetched from one of the File System Driver (FSD) (e.g., FSD 614) and passed through the client module 602 and subsequently loaded into the application through the IFS Manager 612. On the other hand, if the document being accessed by the application is secured, the client module 602 activates the the key store 609 and the cipher module 610 and proceeds to obtain an authenticated user key to retrieve the access rules therein. Pending the outcome from the access test module 609, a file key may be retrieved to decrypt the encrypted data portion of the secured document by the cipher in the cipher module 610. As a result, the data portion or the document in clear mode will be loaded into the application through the IFS Manager 612.
The present invention has been described in sufficient details with a certain degree of particularity. It is understood to those skilled in the art that the present disclosure of embodiments has been made by way of examples only and that numerous changes in the arrangement and combination of parts may be resorted without departing from the spirit and scope of the invention as claimed. Accordingly, the scope of the present invention is defined by the appended claims rather than the foregoing description of embodiments.
Patent | Priority | Assignee | Title |
10033700, | Dec 12 2001 | Intellectual Ventures I LLC | Dynamic evaluation of access rights |
10229279, | Dec 12 2001 | Intellectual Ventures I LLC | Methods and systems for providing access control to secured data |
10454674, | Nov 16 2009 | ARM Limited | System, method, and device of authenticated encryption of messages |
10769288, | Dec 12 2001 | INTELLECTUAL PROPERTY VENTURES I LLC | Methods and systems for providing access control to secured data |
8687813, | Nov 16 2009 | ARM Limited | Methods circuits devices and systems for provisioning of cryptographic data to one or more electronic devices |
8918839, | Dec 12 2001 | Intellectual Ventures I LLC | System and method for providing multi-location access management to secured items |
9129120, | Dec 12 2001 | Intellectual Ventures I LLC | Methods and systems for providing access control to secured data |
9231758, | Nov 16 2009 | ARM Limited | System, device, and method of provisioning cryptographic data to electronic devices |
9542560, | Dec 12 2001 | Intellectual Ventures I LLC | Methods and systems for providing access control to secured data |
9608811, | Nov 18 2010 | Hewlett-Packard Development Company, L.P.; HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Managing access to a secure digital document |
9705673, | Nov 16 2009 | ARM Limited | Method, device, and system of provisioning cryptographic data to electronic devices |
9866376, | Nov 16 2009 | ARM Limited | Method, system, and device of provisioning cryptographic data to electronic devices |
9886585, | Jun 14 2013 | SAP SE | Multi-layer data security |
Patent | Priority | Assignee | Title |
4203166, | Dec 05 1977 | International Business Machines Corporation | Cryptographic file security for multiple domain networks |
4238854, | Dec 05 1977 | International Business Machines Corporation | Cryptographic file security for single domain networks |
4423287, | Jun 26 1981 | VISA U.S.A., Inc. | End-to-end encryption system and method of operation |
4734568, | Jul 31 1985 | Toppan Moore Company, Ltd. | IC card which can set security level for every memory area |
4757533, | Sep 11 1985 | SECURITY SOFTWARE AMERICA, INC , A CORP OF DE | Security system for microcomputers |
4796220, | Dec 15 1986 | Pride Software Development Corp. | Method of controlling the copying of software |
4799258, | Feb 13 1984 | British Technology Group Limited | Apparatus and methods for granting access to computers |
4827508, | Oct 14 1985 | ELECTRONIC PUBLISHING RESOURCES, INC | Database usage metering and protection system and method |
4887204, | Feb 13 1987 | International Business Machines Corporation | System and method for accessing remote files in a distributed networking environment |
4888800, | Mar 03 1987 | Hewlett-Packard Company | Secure messaging systems |
4912552, | Apr 19 1988 | ARBITRON INC ; ARBITRON, INC A DELAWARE CORPORATION | Distributed monitoring system |
4972472, | Mar 15 1985 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Method and apparatus for changing the master key in a cryptographic system |
5032979, | Jun 22 1990 | International Business Machines Corporation | Distributed security auditing subsystem for an operating system |
5052040, | May 25 1990 | FIFTH GENERATION SYSTEMS, INC ; Symantec Corporation | Multiple user stored data cryptographic labeling system and method |
5058164, | May 03 1990 | NATIONAL SEMICONDUCTOR CORPORATION, A CORP OF DE | Encryption of streams of addressed information to be used for program code protection |
5144660, | Aug 31 1988 | Securing a computer against undesired write operations to or read operations from a mass storage device | |
5204897, | Jun 28 1991 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Management interface for license management system |
5212788, | May 22 1990 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | System and method for consistent timestamping in distributed computer databases |
5220657, | Dec 02 1987 | Xerox Corporation | Updating local copy of shared data in a collaborative system |
5235641, | Mar 13 1990 | Hitachi, Ltd. | File encryption method and file cryptographic system |
5247575, | Aug 16 1988 | WAVE SYSTEMS, CORP GRANTEE | Information distribution system |
5276735, | Apr 17 1992 | Secure Computing Corporation | Data enclave and trusted path system |
5301247, | Jul 23 1992 | Crest Industries, Inc. | Method for ensuring secure communications |
5319705, | Oct 21 1992 | IBM Corporation | Method and system for multimedia access control enablement |
5369702, | Oct 18 1993 | TecSec Incorporated | Distributed cryptographic object method |
5375169, | May 28 1993 | CROWLEY, JOHN J | Cryptographic key management method and apparatus |
5404404, | Jul 01 1993 | Motorola Mobility LLC | Method for updating encryption key information in communication units |
5406628, | Mar 04 1993 | TTI Inventions C LLC | Public key authentication and key agreement for low-cost terminals |
5414852, | Oct 30 1992 | International Business Machines Corporation | Method for protecting data in a computer system |
5434918, | Dec 14 1993 | Hughes Electronics Corporation | Method for providing mutual authentication of a user and a server on a network |
5461710, | Mar 20 1992 | International Business Machines Corporation | Method for providing a readily distinguishable template and means of duplication thereof in a computer system graphical user interface |
5467342, | Jan 12 1994 | Cisco Technology, Inc | Methods and apparatus for time stamp correction in an asynchronous transfer mode network |
5495533, | Apr 29 1994 | GOOGLE LLC | Personal key archive |
5497422, | Sep 30 1993 | Apple Inc | Message protection mechanism and graphical user interface therefor |
5499297, | Apr 17 1992 | McAfee, Inc | System and method for trusted path communications |
5502766, | Apr 17 1992 | McAfee, Inc | Data enclave and trusted path system |
5535375, | Apr 20 1992 | International Business Machines Corporation | File manager for files shared by heterogeneous clients |
5557765, | Aug 11 1994 | McAfee, Inc | System and method for data recovery |
5570108, | Jun 27 1994 | AUTODESK, Inc | Method and apparatus for display calibration and control |
5584023, | Dec 27 1993 | OMNISECURE, INC | Computer system including a transparent and secure file transform mechanism |
5600722, | Oct 06 1993 | Nippon Telegraph & Telephone Corp. | System and scheme of cipher communication |
5606663, | Dec 24 1993 | NEC Corporation | Password updating system to vary the password updating intervals according to access frequency |
5619576, | Mar 14 1994 | Variable-key cryptography system | |
5638501, | May 10 1993 | Apple Inc | Method and apparatus for displaying an overlay image |
5640388, | Dec 21 1995 | Cisco Technology, Inc | Method and apparatus for removing jitter and correcting timestamps in a packet stream |
5655119, | Mar 06 1995 | RAXCO SOFTWARE, INC | Method for moving an open file being accessed by at least one user |
5661668, | May 25 1994 | VMWARE, INC | Apparatus and method for analyzing and correlating events in a system using a causality matrix |
5661806, | Mar 29 1994 | France Telecom | Process of combined authentication of a telecommunication terminal and of a user module |
5671412, | Jul 28 1995 | FLEXERA SOFTWARE, INC | License management system for software applications |
5673316, | Mar 29 1996 | International Business Machines Corporation | Creation and distribution of cryptographic envelope |
5677953, | Sep 14 1993 | SPEX TECHNOLOGIES, INC | System and method for access control for portable data storage media |
5680452, | Sep 13 1994 | TECSEC Inc.; TecSec Incorporated | Distributed cryptographic object method |
5682537, | Aug 31 1995 | Unisys Corporation | Object lock management system with improved local lock management and global deadlock detection in a parallel data processing system |
5684987, | Dec 24 1993 | Canon Kabushiki Kaisha | Management system of multimedia |
5689688, | Nov 16 1993 | International Business Machines Corporation | Probabilistic anonymous clock synchronization method and apparatus for synchronizing a local time scale with a reference time scale |
5689718, | Dec 01 1992 | Mitsubishi Denki Kabushiki Kaisha | System and method for processing document information using password protected icons that represent document content |
5693652, | Sep 30 1991 | EISAI R&D MANAGEMENT CO , LTD | Benzimidazoles for ischemic heart conditions |
5699428, | Jan 16 1996 | Symantec Corporation | System for automatic decryption of file data on a per-use basis and automatic re-encryption within context of multi-threaded operating system under which applications run in real-time |
5708709, | Dec 08 1995 | Oracle America, Inc | System and method for managing try-and-buy usage of application programs |
5715403, | Nov 23 1994 | CONTENTGUARD HOLDINGS, INC | System for controlling the distribution and use of digital works having attached usage rights where the usage rights are defined by a usage rights grammar |
5717755, | Oct 18 1993 | TECSEC,Inc.; TECSEC, INC | Distributed cryptographic object method |
5719941, | Jan 12 1996 | Microsoft Technology Licensing, LLC | Method for changing passwords on a remote computer |
5720033, | Jun 30 1994 | THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT | Security platform and method using object oriented rules for computer-based systems using UNIX-line operating systems |
5729734, | Nov 03 1995 | Apple Computer, Inc.; Apple Computer, Inc | File privilege administration apparatus and methods |
5732265, | Nov 02 1995 | Microsoft Technology Licensing, LLC | Storage optimizing encoder and method |
5745573, | Aug 11 1994 | McAfee, Inc | System and method for controlling access to a user secret |
5745750, | Dec 15 1995 | International Business Machines Corporation | Process and article of manufacture for constructing and optimizing transaction logs for mobile file systems |
5748736, | Jun 14 1996 | System and method for secure group communications via multicast or broadcast | |
5751287, | Nov 06 1995 | ADVANCED MESSAGING TECHNOLOGIES, INC | System for organizing document icons with suggestions, folders, drawers, and cabinets |
5757920, | Jul 18 1994 | Microsoft Technology Licensing, LLC | Logon certification |
5765152, | Oct 13 1995 | DIGIMARC CORPORATION AN OREGON CORPORATION | System and method for managing copyrighted electronic media |
5768381, | Sep 14 1993 | Chantilley Corporation Limited | Apparatus for key distribution in an encryption system |
5778065, | Feb 08 1996 | International Business Machines Corporation | Method and system for changing an authorization password or key in a distributed communication network |
5778350, | Nov 30 1995 | GOOGLE LLC | Data collection, processing, and reporting system |
5781711, | Nov 28 1995 | Xerox Corporation | Document server for processing a distribution job in a document processing system |
5787169, | Dec 28 1995 | International Business Machines Corp | Method and apparatus for controlling access to encrypted data files in a computer system |
5787173, | May 28 1993 | TecSec Incorporated | Cryptographic key management method and apparatus |
5787175, | Oct 23 1995 | JPMORGAN CHASE BANK, N A , AS SUCCESSOR AGENT | Method and apparatus for collaborative document control |
5790789, | Aug 02 1996 | Method and architecture for the creation, control and deployment of services within a distributed computer environment | |
5790790, | Oct 24 1996 | AXWAY INC | Electronic document delivery system in which notification of said electronic document is sent to a recipient thereof |
5813009, | Jul 28 1995 | UNIVIRTUAL CORP | Computer based records management system method |
5821933, | Sep 14 1995 | International Business Machines Corporation | Visual access to restricted functions represented on a graphical user interface |
5825876, | Dec 04 1995 | RPX CLEARINGHOUSE LLC | Time based availability to content of a storage medium |
5835592, | Jun 01 1995 | CHANG, CHUNG NAN | Secure, swift cryptographic key exchange |
5835601, | Mar 15 1994 | Kabushiki Kaisha Toshiba | File editing system and shared file editing system with file content secrecy, file version management, and asynchronous editing |
5850443, | Aug 15 1996 | ENTRUST INC | Key management system for mixed-trust environments |
5857189, | May 08 1996 | Apple Inc | File sharing in a teleconference application |
5862325, | Feb 29 1996 | Intermind Corporation | Computer-based communication system and method using metadata defining a control structure |
5870468, | Mar 01 1996 | International Business Machines Corporation; IBM Corporation | Enhanced data privacy for portable computers |
5870477, | Sep 29 1993 | Pumpkin House Incorporated | Enciphering/deciphering device and method, and encryption/decryption communication system |
5881287, | Aug 12 1994 | SOL LABS K G LIMITED LIABILITY COMPANY | Method and apparatus for copy protection of images in a computer system |
5892900, | Aug 30 1996 | INTERTRUST TECHNOLOGIES CORP | Systems and methods for secure transaction management and electronic rights protection |
5893084, | Apr 07 1995 | STARGATE, LTD , A TEXAS CORPORATION | Method for creating specific purpose rule-based n-bit virtual machines |
5898781, | Oct 18 1993 | TecSec Incorporated | Distributed cryptographic object method |
5922073, | Jan 10 1996 | Canon Kabushiki Kaisha | System and method for controlling access to subject data using location data associated with the subject data and a requesting device |
5923754, | May 02 1997 | Hewlett Packard Enterprise Development LP | Copy protection for recorded media |
5933498, | Jan 11 1996 | HANGER SOLUTIONS, LLC | System for controlling access and distribution of digital property |
5944794, | Sep 30 1994 | Kabushiki Kaisha Toshiba | User identification data management scheme for networking computer systems using wide area network |
5953419, | May 06 1996 | Symantec Corporation | Cryptographic file labeling system for supporting secured access by multiple users |
5968177, | Oct 14 1997 | Entrust Technologies Limited | Method and apparatus for processing administration of a secured community |
5970502, | Apr 23 1996 | RPX CLEARINGHOUSE LLC | Method and apparatus for synchronizing multiple copies of a database |
5978802, | Jun 07 1995 | Microsoft Technology Licensing, LLC | System and method for providing opportunistic file access in a network environment |
5987440, | Jul 22 1996 | CYVA RESEARCH HOLDINGS, LLC | Personal information security and exchange tool |
5991879, | Oct 23 1997 | Bull HN Information Systems Inc. | Method for gradual deployment of user-access security within a data processing system |
5999907, | Dec 06 1993 | CALLAHAN CELLULAR L L C | Intellectual property audit system |
6011847, | Jun 01 1995 | KEYBYTE TECHNOLOGIES, INC | Cryptographic access and labeling system |
6014730, | Dec 26 1996 | NEC Corporation | Dynamic adding system for memory files shared among hosts, dynamic adding method for memory files shared among hosts, and computer-readable medium recording dynamic adding program for memory files shared among hosts |
6023506, | Oct 26 1995 | Hitachi, Ltd. | Data encryption control apparatus and method |
6031584, | Sep 26 1997 | Intel Corporation | Method for reducing digital video frame frequency while maintaining temporal smoothness |
6032216, | Jul 11 1997 | International Business Machines Corporation | Parallel file system with method using tokens for locking modes |
6035404, | Sep 09 1997 | International Business Machines Corporation | Concurrent user access control in stateless network computing service system |
6038322, | Oct 20 1998 | Cisco Technology, Inc | Group key distribution |
6044155, | Jun 30 1997 | Microsoft Technology Licensing, LLC | Method and system for securely archiving core data secrets |
6055314, | Mar 22 1996 | Rovi Technologies Corporation | System and method for secure purchase and delivery of video content programs |
6058424, | Nov 17 1997 | SAP SE | System and method for transferring a session from one application server to another without losing existing resources |
6061790, | Nov 20 1996 | Intellisync Corporation | Network computer system with remote user data encipher methodology |
6069057, | May 18 1998 | POWERCHIP SEMICONDUCTOR CORP | Method for fabricating trench-isolation structure |
6070244, | Nov 10 1997 | JPMORGAN CHASE BANK, N A | Computer network security management system |
6085323, | Apr 15 1996 | Kabushiki Kaisha Toshiba | Information processing system having function of securely protecting confidential information |
6088717, | Feb 29 1996 | OneName Corporation | Computer-based communication system and method using metadata defining a control-structure |
6088805, | Feb 13 1998 | International Business Machines Corporation | Systems, methods and computer program products for authenticating client requests with client certificate information |
6098056, | Nov 24 1997 | ACTIVISION PUBLISHING, INC | System and method for controlling access rights to and security of digital content in a distributed information system, e.g., Internet |
6101507, | Feb 11 1997 | MICRO FOCUS LLC | File comparison for data backup and file synchronization |
6105131, | Jun 13 1997 | International Business Machines Corporation | Secure server and method of operation for a distributed information system |
6122630, | Jun 08 1999 | RPX Corporation | Bidirectional database replication scheme for controlling ping-ponging |
6134327, | Oct 24 1997 | Entrust Technologies Ltd. | Method and apparatus for creating communities of trust in a secure communication system |
6134658, | Jun 09 1997 | Microsoft Technology Licensing, LLC | Multi-server location-independent authentication certificate management system |
6134660, | Jun 30 1997 | TUMBLEWEED HOLDINGS LLC | Method for revoking computer backup files using cryptographic techniques |
6134664, | Jul 06 1998 | Northrop Grumman Systems Corporation | Method and system for reducing the volume of audit data and normalizing the audit data received from heterogeneous sources |
6141754, | Nov 28 1997 | UNILOC 2017 LLC | Integrated method and system for controlling information access and distribution |
6145084, | Oct 08 1998 | TUMBLEWEED HOLDINGS LLC | Adaptive communication system enabling dissimilar devices to exchange information over a network |
6148338, | Apr 03 1998 | Hewlett Packard Enterprise Development LP | System for logging and enabling ordered retrieval of management events |
6158010, | Oct 28 1998 | Oracle International Corporation | System and method for maintaining security in a distributed computer network |
6161139, | Jul 10 1998 | ENTRUST, INC | Administrative roles that govern access to administrative functions |
6182142, | Jul 10 1998 | ENTRUST, INC | Distributed access management of information resources |
6185684, | Aug 28 1998 | Adobe Systems, Inc.; Adobe Systems, Inc; Adobe Systems Incorporated | Secured document access control using recipient lists |
6192408, | Sep 26 1997 | EMC IP HOLDING COMPANY LLC | Network file server sharing local caches of file access information in data processors assigned to respective file systems |
6199070, | Jun 18 1998 | International Business Machines Corporation | Using a database for program logs |
6205549, | Aug 28 1998 | Adobe Systems, Inc.; Adobe Systems, Inc; Adobe Systems Incorporated | Encapsulation of public key cryptography standard number 7 into a secured document |
6212561, | Oct 08 1998 | Cisco Technology, Inc | Forced sequential access to specified domains in a computer network |
6223285, | Oct 24 1997 | Sony Corporation | Method and system for transferring information using an encryption mode indicator |
6226618, | Aug 13 1998 | SANDPIPER CDN, LLC | Electronic content delivery system |
6226745, | Mar 21 1997 | Information sharing system and method with requester dependent sharing and security rules | |
6240188, | Jul 06 1999 | Matsushita Electric Industrial Co., Ltd. | Distributed group key management scheme for secure many-to-many communication |
6249755, | May 25 1994 | VMWARE, INC | Apparatus and method for event correlation and problem reporting |
6249873, | Feb 28 1997 | EMC IP HOLDING COMPANY LLC | Method of and apparatus for providing secure distributed directory services and public key infrastructure |
6253193, | Feb 13 1995 | Intertrust Technologies Corporation | Systems and methods for the secure transaction management and electronic rights protection |
6260040, | Jan 05 1998 | International Business Machines Corporation | Shared file system for digital content |
6260141, | Mar 01 2000 | Software license control system based on independent software registration server | |
6263348, | Jun 19 1998 | BARCLAYS BANK PLC, AS ADMINISTATIVE AGENT | Method and apparatus for identifying the existence of differences between two files |
6266420, | Oct 08 1998 | Entrust Corporation | Method and apparatus for secure group communications |
6272631, | Jun 30 1997 | Microsoft Technology Licensing, LLC | Protected storage of core data secrets |
6272632, | Feb 21 1995 | McAfee, Inc | System and method for controlling access to a user secret using a key recovery field |
6282649, | Sep 19 1997 | International Business Machines Corporation | Method for controlling access to electronically provided services and system for implementing such method |
6289450, | May 28 1999 | EMC Corporation | Information security architecture for encrypting documents for remote access while maintaining access control |
6289458, | Sep 21 1998 | Microsoft Technology Licensing, LLC | Per property access control mechanism |
6292895, | Nov 25 1998 | Hush Communication Corporation | Public key cryptosystem with roaming user capability |
6292899, | Sep 23 1998 | RPX Corporation | Volatile key apparatus for safeguarding confidential data stored in a computer system memory |
6295361, | Jun 30 1998 | Oracle America, Inc | Method and apparatus for multicast indication of group key change |
6299069, | Dec 26 1997 | RAKUTEN, INC | Integrated circuit for embedding in smart cards, and method of issuing smart cards |
6301614, | Nov 02 1999 | R2 SOLUTIONS LLC | System and method for efficient representation of data set addresses in a web crawler |
6308256, | Aug 18 1999 | Oracle America, Inc | Secure execution of program instructions provided by network interactions with processor |
6308273, | Jun 12 1998 | Microsoft Technology Licensing, LLC | Method and system of security location discrimination |
6314408, | Jul 15 1997 | Open Text Corporation | Method and apparatus for controlling access to a product |
6314409, | Nov 05 1997 | HANGER SOLUTIONS, LLC | System for controlling access and distribution of digital property |
6317777, | Apr 26 1999 | Intel Corporation | Method for web based storage and retrieval of documents |
6332025, | Mar 10 1997 | Kabushiki Kaisha Toshiba | Software distribution system and software utilization scheme for improving security and user convenience |
6336114, | Sep 03 1998 | Liberty Peak Ventures, LLC | System and method for restricting access to a data table within a database |
6339423, | Oct 23 1999 | Entrust Corporation | Multi-domain access control |
6339825, | May 28 1999 | EMC Corporation | Method of encrypting information for remote access while maintaining access control |
6341164, | Jul 22 1998 | Entrust Corporation | Method and apparatus for correcting improper encryption and/or for reducing memory storage |
6343316, | Feb 13 1998 | NEC Corporation | Cooperative work support system |
6347374, | Jun 05 1998 | INTRUSION INC | Event detection |
6349337, | Jun 08 1998 | Microsoft Technology Licensing, LLC | Maintaining a first session on a first computing device and subsequently connecting to the first session via different computing devices and adapting the first session to conform to the different computing devices system configurations |
6351813, | Feb 09 1996 | Digital Privacy, Inc. | Access control/crypto system |
6356903, | Dec 30 1998 | CGI TECHNOLOGIES AND SOLUTIONS INC | Content management system |
6356941, | Feb 22 1999 | Cyber-Ark Software Ltd | Network vaults |
6357010, | Feb 17 1998 | JPMORGAN CHASE BANK, N A ; MORGAN STANLEY SENIOR FUNDING, INC | System and method for controlling access to documents stored on an internal network |
6363480, | Sep 14 1999 | Oracle America, Inc | Ephemeral decryptability |
6370249, | Jul 25 1997 | Entrust Technologies, Ltd. | Method and apparatus for public key management |
6381698, | May 21 1997 | AT&T Corp | System and method for providing assurance to a host that a piece of software possesses a particular property |
6385644, | Sep 26 1997 | Verizon Patent and Licensing Inc | Multi-threaded web based user inbox for report management |
6389433, | Jul 16 1999 | Microsoft Technology Licensing, LLC | Method and system for automatically merging files into a single instance store |
6389538, | Aug 13 1998 | SANDPIPER CDN, LLC | System for tracking end-user electronic content usage |
6393420, | Jun 03 1999 | Alibaba Group Holding Limited | Securing Web server source documents and executables |
6405315, | Sep 11 1997 | International Business Machines Corporation | Decentralized remotely encrypted file system |
6405318, | Mar 12 1999 | CISCO SYSTEMS INC ; Cisco Technology, Inc | Intrusion detection system |
6408404, | Jul 29 1998 | Northrop Grumman Systems Corporation | System and method for ensuring and managing situation awareness |
6421714, | Oct 14 1997 | Lucent Technologies, INC | Efficient mobility management scheme for a wireless internet access system |
6442688, | Aug 29 1997 | Entrust Technologies Limited | Method and apparatus for obtaining status of public key certificate updates |
6442695, | Dec 03 1998 | LinkedIn Corporation | Establishment of user home directories in a heterogeneous network environment |
6446090, | Oct 08 1999 | Unisys Corporation | Tracker sensing method for regulating synchronization of audit files between primary and secondary hosts |
6449721, | May 28 1999 | EMC Corporation | Method of encrypting information for remote access while maintaining access control |
6453353, | Jul 10 1998 | Entrust Corporation | Role-based navigation of information resources |
6453419, | Mar 18 1998 | JPMORGAN CHASE BANK, N A ; MORGAN STANLEY SENIOR FUNDING, INC | System and method for implementing a security policy |
6466932, | Aug 14 1998 | Microsoft Technology Licensing, LLC | System and method for implementing group policy |
6477544, | Jul 16 1999 | Microsoft Technology Licensing, LLC | Single instance store for file systems |
6487662, | May 14 1999 | BIOLINK TECHNOLOGIES INTERNATIONAL, INC | Biometric system for biometric input, comparison, authentication and access control and method therefor |
6490680, | Dec 04 1997 | TecSec Incorporated | Access control and authorization system |
6505300, | Jun 12 1998 | Microsoft Technology Licensing, LLC | Method and system for secure running of untrusted content |
6510349, | Oct 28 1997 | Georgia Tech Research Corporation | Adaptive data security system and method |
6519700, | Oct 23 1998 | CONTENTGUARD HOLDINGS, INC | Self-protecting documents |
6529956, | Oct 24 1996 | Tumbleweed Communications Corp. | Private, trackable URLs for directed document delivery |
6530020, | Jun 20 1997 | Fuji Xerox Co., Ltd. | Group oriented public key encryption and key management system |
6530024, | Nov 20 1998 | CHECK POINT SOFTWARE TECHNOLOGIES, INC | Adaptive feedback security system and method |
6542608, | Feb 13 1997 | TecSec Incorporated | Cryptographic key split combiner |
6549623, | Feb 13 1997 | TecSec, Incorporated | Cryptographic key split combiner |
6550011, | Aug 05 1998 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Media content protection utilizing public key cryptography |
6557039, | Nov 13 1998 | JPMORGAN CHASE BANK, N A | System and method for managing information retrievals from distributed archives |
6567914, | Jul 22 1998 | Entrust Corporation | Apparatus and method for reducing transmission bandwidth and storage requirements in a cryptographic security system |
6571291, | May 01 2000 | Advanced Micro Devices, Inc. | Apparatus and method for validating and updating an IP checksum in a network switching system |
6574733, | Jan 25 1999 | Entrust Corporation | Centralized secure backup system and method |
6584466, | Apr 07 1999 | Microsoft Technology Licensing, LLC | Internet document management system and methods |
6587946, | Dec 29 1998 | WSOU Investments, LLC | Method and system for quorum controlled asymmetric proxy encryption |
6588673, | Feb 08 2000 | MIST INC | Method and system providing in-line pre-production data preparation and personalization solutions for smart cards |
6594662, | Jul 01 1998 | CPA GLOBAL FIP LLC | Method and system for gathering information resident on global computer networks |
6598161, | Aug 09 1999 | International Business Machines Corporation | Methods, systems and computer program products for multi-level encryption |
6601170, | Dec 30 1999 | SECURE AXCESS LLC | Secure internet user state creation method and system with user supplied key and seeding |
6603857, | Jul 14 1997 | Entrust Technologies Limited | Method and apparatus for controlling release of time sensitive information |
6608636, | May 13 1992 | NCR Voyix Corporation | Server based virtual conferencing |
6611599, | Sep 29 1997 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Watermarking of digital object |
6611846, | Oct 30 1999 | MEDTECH GLOBAL LIMITED | Method and system for medical patient data analysis |
6615349, | Feb 23 1999 | SIGHTSOUND TECHNOLOGIES, LLC | System and method for manipulating a computer file and/or program |
6615350, | Mar 23 1998 | EMC IP HOLDING COMPANY LLC | Module authentication and binding library extensions |
6625650, | Jun 27 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | System for multi-layer broadband provisioning in computer networks |
6625734, | Apr 26 1999 | CHECK POINT SOFTWARE TECHNOLOGIES, INC | Controlling and tracking access to disseminated information |
6629243, | Oct 07 1998 | Cisco Technology, Inc | Secure communications system |
6633311, | Feb 18 2000 | Meta Platforms, Inc | E-service to manage and export contact information |
6640307, | Feb 17 1998 | JPMORGAN CHASE BANK, N A ; MORGAN STANLEY SENIOR FUNDING, INC | System and method for controlling access to documents stored on an internal network |
6646515, | Dec 14 2001 | Electronics and Telecommunications Research Institute | Isolator/circulator having propeller resonator loaded with a plurality of symmetric magnetic walls |
6647388, | Dec 16 1999 | International Business Machines Corporation | Access control system, access control method, storage medium and program transmission apparatus |
6678835, | Jun 10 1999 | Alcatel Lucent | State transition protocol for high availability units |
6683954, | Oct 23 1999 | ENTRIQ INC ; IRDETO USA, INC | Key encryption using a client-unique additional key for fraud prevention |
6687822, | Jun 11 1999 | WSOU Investments, LLC | Method and system for providing translation certificates |
6698022, | Dec 15 1999 | SOCIONEXT INC | Timestamp-based timing recovery for cable modem media access controller |
6711683, | May 29 1998 | Texas Instruments Incorporated | Compresses video decompression system with encryption of compressed data stored in video buffer |
6718361, | Apr 07 2000 | NetApp, Inc | Method and apparatus for reliable and scalable distribution of data files in distributed networks |
6735701, | Jun 25 1998 | LONGHORN HD LLC | Network policy management and effectiveness system |
6738908, | May 06 1999 | GOLDMAN SACHS SPECIALTY LENDING GROUP L P | Generalized network security policy templates for implementing similar network security policies across multiple networks |
6751573, | Jan 10 2000 | Keysight Technologies, Inc | Performance monitoring in distributed systems using synchronized clocks and distributed event logs |
6754657, | Aug 24 2001 | ServiceNow, Inc | Time stamping of database records |
6754665, | Jun 24 1999 | Sony Corporation | Information processing apparatus, information processing method, and storage medium |
6775779, | Apr 06 1999 | Microsoft Technology Licensing, LLC | Hierarchical trusted code for content protection in computers |
6779031, | Dec 12 1997 | Level 3 Communications, LLC | Network architecture with event logging |
6782403, | Nov 26 1999 | Mitsubishi Denki Kabushiki Kaisha | Inter-application data transmitting system and method |
6801999, | May 20 1999 | Microsoft Technology Licensing, LLC | Passive and active software objects containing bore resistant watermarking |
6807534, | Oct 13 1995 | DIGIMARC CORPORATION AN OREGON CORPORATION | System and method for managing copyrighted electronic media |
6807636, | Feb 13 2002 | Hitachi Computer Products (America), Inc. | Methods and apparatus for facilitating security in a network |
6810389, | Nov 08 2000 | Synopsys, Inc | System and method for flexible packaging of software application licenses |
6810479, | Mar 11 1996 | Microsoft Technology Licensing, LLC | System and method for configuring and managing resources on a multi-purpose integrated circuit card using a personal computer |
6816871, | Dec 22 2000 | ORACLE, USA; Oracle International Corporation; Oracle Corporation | Delivering output XML with dynamically selectable processing |
6816969, | Dec 07 2000 | Hitachi, LTD | Digital signature generating method and digital signature verifying method |
6826698, | Sep 15 2000 | Musarubra US LLC | System, method and computer program product for rule based network security policies |
6834333, | Oct 20 2000 | Sony Corporation | Data processing device, data storage device, data processing method, and program providing medium for storing content protected under high security management |
6834341, | Feb 22 2000 | Microsoft Technology Licensing, LLC | Authentication methods and systems for accessing networks, authentication methods and systems for accessing the internet |
6842825, | Aug 07 2002 | International Business Machines Corporation | Adjusting timestamps to preserve update timing information for cached data objects |
6845452, | Mar 12 2002 | Cisco Technology, Inc | Providing security for external access to a protected computer network |
6851050, | Sep 08 2000 | Reefedge Networks, LLC | Providing secure network access for short-range wireless computing devices |
6862103, | Jan 29 1999 | Canon Kabushiki Kaisha | Network print system, and information processing apparatus and its control method |
6865555, | Nov 21 2001 | ARRIS ENTERPRISES LLC | System and method for providing conditional access to digital content |
6870920, | Jun 02 1999 | Nuance Communications, Inc | System and method for multi-stage data logging |
6874139, | May 15 2000 | CONTROLGUARD SOFTWARE TECHNOLOGIES LTD | Method and system for seamless integration of preprocessing and postprocessing functions with an existing application program |
6877010, | Nov 30 1999 | Charles Smith Enterprises, LLC | System and method for computer-assisted manual and automatic logging of time-based media |
6877136, | Oct 26 2001 | UNITED SERVICES AUTOMOBILE ASSOCIATION, INC | System and method of providing electronic access to one or more documents |
6882994, | Jun 12 2000 | Hitachi, Ltd. | Method and system for querying database, as well as a recording medium for storing a database querying program |
6889210, | Dec 12 2001 | Guardian Data Storage, LLC | Method and system for managing security tiers |
6891953, | Jun 27 2000 | Microsoft Technology Licensing, LLC | Method and system for binding enhanced software features to a persona |
6892201, | Sep 05 2001 | International Business Machines Corporation | Apparatus and method for providing access rights information in a portion of a file |
6892306, | Sep 24 1998 | Samsung Electronics Co., Ltd. | Digital content cryptograph and process |
6898627, | Jul 25 1997 | Canon Kabushiki Kaisha | Communication device having the capability of performing information exchange between a facsimile medium and an electronic information medium such as an e-mail medium |
6907034, | Apr 08 1999 | Intel Corporation | Out-of-band signaling for network based computer session synchronization |
6909708, | Nov 18 1996 | Verizon Patent and Licensing Inc | System, method and article of manufacture for a communication system architecture including video conferencing |
6915425, | Dec 13 2000 | SAFENET DATA SECURITY ISRAEL LTD | System for permitting off-line playback of digital content, and for managing content rights |
6915434, | Dec 18 1998 | Fujitsu Limited | Electronic data storage apparatus with key management function and electronic data storage method |
6915435, | Feb 09 2000 | Oracle America, Inc | Method and system for managing information retention |
6920558, | Mar 20 2001 | Musarubra US LLC | Method and apparatus for securely and dynamically modifying security policy configurations in a distributed system |
6922785, | May 11 2000 | Lenovo PC International | Apparatus and a method for secure communications for network computers |
6924425, | Apr 09 2001 | Namco Holding Corporation | Method and apparatus for storing a multipart audio performance with interactive playback |
6931450, | Dec 18 2000 | Oracle America, Inc | Direct access from client to storage device |
6931530, | Jul 22 2002 | THALES DIS CPL USA, INC | Secure network file access controller implementing access control and auditing |
6931597, | Apr 17 2002 | GAMEHANCEMENT LLC | Indications of secured digital assets |
6938042, | Apr 03 2002 | Microsoft Technology Licensing, LLC | Peer-to-peer file sharing |
6941355, | Sep 08 2000 | Raytheon BBN Technologies Corp | System for selecting and disseminating active policies to peer device and discarding policy that is not being requested |
6941456, | May 02 2001 | Oracle America, Inc | Method, system, and program for encrypting files in a computer system |
6941472, | Oct 28 1998 | Oracle International Corporation | System and method for maintaining security in a distributed computer network |
6944183, | Jun 10 1999 | Alcatel-Lucent USA Inc | Object model for network policy management |
6947556, | Aug 21 2000 | International Business Machines Corporation | Secure data storage and retrieval with key management and user authentication |
6950818, | Aug 14 1998 | Microsoft Technology Licensing, LLC | System and method for implementing group policy |
6950936, | Mar 16 1999 | RPX Corporation | Secure intranet access |
6950941, | Sep 24 1998 | SAMSUNG ELECTRONICS CO , LTD | Copy protection system for portable storage media |
6950943, | Dec 23 1998 | International Business Machines Corporation | System for electronic repository of data enforcing access control on data search and retrieval |
6952780, | Jan 28 2000 | SAFECOM A S | System and method for ensuring secure transfer of a document from a client of a network to a printer |
6957261, | Jul 17 2001 | Intel Corporation | Resource policy management using a centralized policy data structure |
6959308, | Feb 17 2000 | International Business Machines Corporation | Archiving and retrieval method and apparatus |
6961849, | Oct 21 1999 | International Business Machines Corporation; IBM Corporation | Selective data encryption using style sheet processing for decryption by a group clerk |
6961855, | Dec 16 1999 | Cisco Technology, Inc | Notification of modifications to a trusted computing base |
6968060, | Feb 11 1999 | Bull, S.A. | Method for verifying the use of public keys generated by an on-board system |
6968456, | Aug 08 2000 | Oracle International Corporation | Method and system for providing a tamper-proof storage of an audit trail in a database |
6971018, | Apr 28 2000 | Microsoft Technology Licensing, LLC | File protection service for a computer system |
6976259, | Sep 29 2000 | Microsoft Technology Licensing, LLC | Method for abstract state transitions without requiring state machine knowledge |
6978366, | Nov 01 1999 | International Business Machines Corporation | Secure document management system |
6978376, | Dec 15 2000 | EMC Corporation | Information security architecture for encrypting documents for remote access while maintaining access control |
6978377, | Apr 16 1999 | Sony Corporation | Copy protection using detailed copy control information |
6987752, | Sep 15 1999 | RPX Corporation | Method and apparatus for frequency offset estimation and interleaver synchronization using periodic signature sequences |
6988133, | Oct 31 2000 | Cisco Technology, Inc | Method and apparatus for communicating network quality of service policy information to a plurality of policy enforcement points |
6988199, | Jul 07 2000 | BAE SYSTEMS APPLIED INTELLIGENCE US CORP | Secure and reliable document delivery |
6993135, | Mar 13 2000 | Kabushiki Kaisha Toshiba | Content processing system and content protecting method |
6996718, | Apr 21 2000 | AT&T Corp. | System and method for providing access to multiple user accounts via a common password |
7000150, | Jun 12 2002 | Microsoft Technology Licensing, LLC | Platform for computer process monitoring |
7003117, | Feb 05 2003 | MICRO FOCUS LLC | Identity-based encryption system for secure data distribution |
7003560, | Nov 03 1999 | Accenture Global Services Limited | Data warehouse computing system |
7003661, | Oct 12 2001 | CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS SUCCESSOR AGENT | Methods and systems for automated authentication, processing and issuance of digital certificates |
7010689, | Aug 21 2000 | International Business Machines Corporation | Secure data storage and retrieval in a client-server environment |
7010809, | Mar 13 2001 | Sanyo Electric Co., Ltd. | Reproduction device stopping reproduction of encrypted content data having encrypted region shorter than predetermined length |
7013332, | Jan 09 2001 | Microsoft Technology Licensing, LLC | Distributed policy model for access control |
7013485, | Mar 06 2000 | JDA SOFTWARE GROUP, INC | Computer security system |
7020645, | Apr 19 2001 | ALTO DYNAMICS, LLC | Systems and methods for state-less authentication |
7024427, | Dec 19 2001 | EMC IP HOLDING COMPANY LLC | Virtual file system |
7035854, | Apr 23 2002 | International Business Machines Corporation | Content management system and methodology employing non-transferable access tokens to control data access |
7035910, | Jun 29 2000 | Microsoft Technology Licensing, LLC | System and method for document isolation |
7043637, | Mar 21 2001 | Microsoft Technology Licensing, LLC | On-disk file format for a serverless distributed file system |
7046807, | Nov 10 2000 | Fujitsu Limited | Data administration method |
7047404, | May 16 2000 | Surety, LLC; WORLDGATE MANAGEMENT, LLC | Method and apparatus for self-authenticating digital records |
7051213, | Mar 18 1998 | Fujitsu Client Computing Limited | Storage medium and method and apparatus for separately protecting data in different areas of the storage medium |
7058696, | Nov 22 1996 | GOOGLE LLC | Internet-based shared file service with native PC client access and semantics |
7058978, | Dec 27 2000 | Microsoft Technology Licensing, LLC | Security component for a computing device |
7073063, | Mar 27 1999 | Microsoft Technology Licensing, LLC | Binding a digital license to a portable device or the like in a digital rights management (DRM) system and checking out/checking in the digital license to/from the portable device or the like |
7073073, | Jul 06 1999 | Sony Corporation | Data providing system, device, and method |
7076067, | Feb 21 2001 | RPK New Zealand Limited | Encrypted media key management |
7076312, | Aug 02 2002 | Fisher-Rosemount Systems, Inc | Integrated electronic signatures for approval of process control and safety system software objects |
7076469, | May 17 1999 | Kioba Processing, LLC | Copyright protection of digital images transmitted over networks |
7076633, | Mar 28 2001 | Virtuozzo International GmbH | Hosting service providing platform system and method |
7080077, | Jul 10 2000 | ORACLE, USA; Oracle International Corporation; Oracle Corporation | Localized access |
7095853, | Feb 24 2000 | RPX Corporation | System and method for preventing an illegal copy of contents |
7096266, | Jan 08 2001 | Akamai Technologies, Inc.; AKAMAI TECHNOLOGIES, INC | Extending an Internet content delivery network into an enterprise |
7099926, | Jul 06 2000 | International Business Machines Corporation | Object caching and update queuing technique to improve performance and resource utilization |
7103911, | Oct 17 2003 | ENTIT SOFTWARE LLC | Identity-based-encryption system with district policy information |
7107185, | May 25 1994 | VMWARE, INC | Apparatus and method for event correlation and problem reporting |
7107269, | Jun 13 2000 | Alcatel Lucent | Methods and apparatus for providing privacy-preserving global customization |
7107416, | Sep 08 2003 | GOOGLE LLC | Method, system, and program for implementing retention policies to archive records |
7113594, | Aug 13 2001 | BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, THE; Regents of the University of California, The | Systems and methods for identity-based encryption and related cryptographic techniques |
7116785, | Jul 24 2000 | Sony Corporation | Data processing system, data processing method, and program providing medium |
7117322, | Sep 08 2003 | GOOGLE LLC | Method, system, and program for retention management and protection of stored objects |
7120635, | Dec 16 2002 | LinkedIn Corporation | Event-based database access execution |
7120757, | Feb 26 2002 | Hitachi, LTD | Storage management integrated system and storage control method for storage management integrated system |
7124164, | Apr 17 2001 | Method and apparatus for providing group interaction via communications networks | |
7126957, | Mar 07 2002 | UTSTARCOM, INC | Media flow method for transferring real-time data between asynchronous and synchronous networks |
7130964, | Jul 06 2000 | International Business Machines Corporation | Object caching and update queuing technique to improve performance and resource utilization |
7131071, | Mar 29 2002 | Oracle America, Inc | Defining an approval process for requests for approval |
7134041, | Sep 20 2001 | OPEN TEXT INC | Systems and methods for data backup over a network |
7136903, | Nov 22 1996 | GOOGLE LLC | Internet-based shared file service with native PC client access and semantics and distributed access control |
7139399, | Jun 06 1997 | CA, INC | Cryptographic system with methods for user-controlled message recovery |
7140044, | Nov 13 2000 | Digital Doors, Inc. | Data security system and method for separation of user communities |
7145898, | Nov 18 1996 | Verizon Patent and Licensing Inc | System, method and article of manufacture for selecting a gateway of a hybrid communication system architecture |
7146388, | Oct 07 2003 | GOOGLE LLC | Method, system, and program for archiving files |
7146498, | Feb 22 1999 | Godo Kaisha IP Bridge 1 | Computer and program recording medium |
7159036, | Dec 10 2001 | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | Updating data from a source computer to groups of destination computers |
7168094, | Dec 29 2000 | INTRALINKS, INC | Method and system for managing access to information and the transfer thereof |
7171557, | Oct 31 2001 | HEWLETT-PACKARD DEVELOPMENT COMPANY L P | System for optimized key management with file groups |
7174563, | Dec 08 1997 | Entrust, Limited | Computer network security system and method having unilateral enforceable security policy provision |
7177427, | Oct 24 1997 | Sony Corporation; Sony Electronics, INC | Method and system for transferring information using an encryption mode indicator |
7177839, | Dec 13 1996 | CERTCO, INC | Reliance manager for electronic transaction system |
7178033, | Dec 12 2001 | KUEIBISHAN BIOMEDICINE SCIENCE TECHNOLOGY CO | Method and apparatus for securing digital assets |
7181017, | Mar 23 2001 | RPX Corporation | System and method for secure three-party communications |
7185364, | Mar 21 2001 | ORACLE, USA; Oracle International Corporation; Oracle Corporation | Access system interface |
7187033, | Jul 14 2004 | Texas Instruments Incorporated | Drain-extended MOS transistors with diode clamp and methods for making the same |
7188181, | Jun 30 1999 | Oracle America, Inc | Universal session sharing |
7194764, | Jul 10 2000 | ORACLE, USA; Oracle International Corporation; Oracle Corporation | User authentication |
7197638, | Aug 21 2000 | CA, INC | Unified permissions control for remotely and locally stored files whose informational content may be protected by smart-locking and/or bubble-protection |
7200747, | Oct 31 2001 | Hewlett Packard Enterprise Development LP | System for ensuring data privacy and user differentiation in a distributed file system |
7203317, | Oct 31 2001 | VALTRUS INNOVATIONS LIMITED | System for enabling lazy-revocation through recursive key generation |
7203968, | Sep 07 2000 | Sony Corporation | Method and apparatus for selectively executing information recording using a cognizant mode and a non-cognizant mode |
7219230, | May 08 2002 | VALTRUS INNOVATIONS LIMITED | Optimizing costs associated with managing encrypted data |
7224795, | Oct 20 1999 | Fujitsu Limited; Taishin, Nishida | Variable-length key cryptosystem |
7225256, | Nov 30 2001 | ORACLE, USA; Oracle International Corporation; Oracle Corporation | Impersonation in an access system |
7227953, | Dec 21 2001 | Mitsubishi Denki K.K. | MPEG data recorder having IEEE 1394 interface |
7233948, | Mar 16 1998 | Intertrust Technologies Corporation | Methods and apparatus for persistent control and protection of content |
7237002, | Jan 04 2000 | SNAP INC | System and method for dynamic browser management of web site |
7249044, | Oct 05 2000 | BLUE YONDER GROUP, INC | Fulfillment management system for managing ATP data in a distributed supply chain environment |
7249251, | Jan 21 2004 | EMC IP HOLDING COMPANY LLC | Methods and apparatus for secure modification of a retention period for data in a storage system |
7260555, | Dec 12 2001 | Intellectual Ventures I LLC | Method and architecture for providing pervasive security to digital assets |
7265764, | Aug 27 2002 | Nvidia Corporation | System and method for providing a hardware icon with magnification and security |
7266684, | Aug 08 2000 | WELLS FARGO BANK, N A | Internet third-party authentication using electronic tickets |
7280658, | Jun 01 2001 | SNAP INC | Systems, methods, and computer program products for accelerated dynamic protection of data |
7281272, | May 17 1999 | Kioba Processing, LLC | Method and system for copyright protection of digital images |
7287055, | Oct 22 1997 | Open Text SA ULC | Web-based groupware system |
7287058, | Feb 25 2002 | Microsoft Technology Licensing, LLC | Methods, systems and computer program products for performing document-inclusion operations over a network |
7290148, | Feb 21 2002 | Renesas Electronics Corporation; NEC Electronics Corporation | Encryption and decryption communication semiconductor device and recording/reproducing apparatus |
7308702, | Jan 14 2000 | JPMORGAN CHASE BANK, N A ; MORGAN STANLEY SENIOR FUNDING, INC | Locally adaptable central security management in a heterogeneous network environment |
7313824, | Jul 13 2001 | Liquid Machines, Inc. | Method for protecting digital content from unauthorized use by automatically and dynamically integrating a content-protection agent |
7319752, | Sep 07 2000 | Sony Corporation | Information recording device, information playback device, information recording method, information playback method, and information recording medium and program providing medium used therewith |
7340600, | Jan 14 2000 | Hewlett Packard Enterprise Development LP | Authorization infrastructure based on public key cryptography |
7359517, | Oct 09 2001 | Adobe Inc | Nestable skeleton decryption keys for digital rights management |
7362868, | Oct 20 2000 | FARRUKH, ABDALLAH, DR ; CENTRAL VALLEY ADMINISTRATORS | Hidden link dynamic key manager for use in computer systems with database structure for storage of encrypted data and method for storage and retrieval of encrypted data |
7380120, | Dec 12 2001 | Intellectual Ventures I LLC | Secured data format for access control |
7383586, | Jan 17 2003 | Microsoft Technology Licensing, LLC | File system operation and digital rights management (DRM) |
7386529, | Dec 19 2002 | MATHON SYSTEMS, INC | System and method for managing content with event driven actions to facilitate workflow and other features |
7386599, | Sep 30 1999 | RICOH CO LTD | Methods and apparatuses for searching both external public documents and internal private documents in response to single search request |
7401220, | Mar 21 2001 | Microsoft Technology Licensing, LLC | On-disk file format for a serverless distributed file system |
7406596, | Mar 10 2000 | Herbert Street Technologies | Data transfer and management system |
7415608, | Mar 21 2001 | Microsoft Technology Licensing, LLC | On-disk file format for a serverless distributed file system |
7434048, | Sep 09 2003 | Adobe Inc | Controlling access to electronic documents |
7454612, | Mar 21 2001 | Microsoft Technology Licensing, LLC | On-disk file format for a serverless distributed file system |
7461157, | Jun 27 2001 | Hyglo Systems AB | Distributed server functionality for emulated LAN |
7461405, | Apr 26 2001 | AUTODESK, Inc | Mixed-media data encoding |
7478243, | Mar 21 2001 | Microsoft Technology Licensing, LLC | On-disk file format for serverless distributed file system with signed manifest of file modifications |
7478418, | Dec 12 2001 | Intellectual Ventures I LLC | Guaranteed delivery of changes to security policies in a distributed system |
7496959, | Jun 23 2003 | WATCHGUARD TECHNOLOGIES, INC | Remote collection of computer forensic evidence |
7509492, | Mar 27 2001 | Microsoft Technology Licensing, LLC | Distributed scalable cryptographic access control |
7512810, | Sep 11 2002 | Kioba Processing, LLC | Method and system for protecting encrypted files transmitted over a network |
7539867, | Mar 21 2001 | Microsoft Technology Licensing, LLC | On-disk file format for a serverless distributed file system |
7555558, | Aug 15 2003 | LONGHORN AUTOMOTIVE GROUP LLC | Method and system for fault-tolerant transfer of files across a network |
7562232, | Dec 12 2001 | Intellectual Ventures I LLC | System and method for providing manageability to security information for secured items |
7565683, | Dec 12 2001 | Intellectual Ventures I LLC | Method and system for implementing changes to security policies in a distributed security system |
7631184, | May 14 2002 | Intellectual Ventures I LLC | System and method for imposing security on copies of secured items |
7681034, | Dec 12 2001 | Intellectual Ventures I LLC | Method and apparatus for securing electronic data |
7698230, | Feb 15 2002 | CONTRACTPAL, INC | Transaction architecture utilizing transaction policy statements |
7702909, | Dec 22 2003 | Intellectual Ventures I LLC | Method and system for validating timestamps |
7703140, | Sep 30 2003 | Intellectual Ventures I LLC | Method and system for securing digital assets using process-driven security policies |
7707427, | Jul 19 2004 | Intellectual Ventures I LLC | Multi-level file digests |
7729995, | Dec 12 2001 | Intellectual Ventures I LLC | Managing secured files in designated locations |
7730543, | Jun 30 2003 | Intellectual Ventures I LLC | Method and system for enabling users of a group shared across multiple file security systems to access secured files |
7748045, | Mar 30 2004 | Citrix Systems, Inc | Method and system for providing cryptographic document retention with off-line access |
20010000265, | |||
20010011254, | |||
20010018743, | |||
20010021255, | |||
20010021926, | |||
20010023421, | |||
20010032181, | |||
20010033611, | |||
20010034839, | |||
20010042110, | |||
20010044903, | |||
20010056541, | |||
20010056550, | |||
20020003886, | |||
20020007335, | |||
20020010679, | |||
20020013772, | |||
20020016921, | |||
20020016922, | |||
20020023208, | |||
20020026321, | |||
20020027886, | |||
20020029340, | |||
20020031230, | |||
20020035624, | |||
20020036984, | |||
20020041391, | |||
20020042756, | |||
20020046350, | |||
20020050098, | |||
20020052981, | |||
20020056042, | |||
20020062240, | |||
20020062245, | |||
20020062451, | |||
20020069077, | |||
20020069272, | |||
20020069363, | |||
20020073320, | |||
20020077986, | |||
20020077988, | |||
20020078239, | |||
20020078361, | |||
20020087479, | |||
20020089602, | |||
20020091532, | |||
20020091745, | |||
20020091928, | |||
20020093527, | |||
20020099947, | |||
20020112035, | |||
20020120851, | |||
20020124180, | |||
20020129158, | |||
20020129235, | |||
20020133500, | |||
20020133699, | |||
20020138571, | |||
20020138726, | |||
20020138762, | |||
20020143710, | |||
20020143906, | |||
20020150239, | |||
20020152302, | |||
20020156726, | |||
20020157016, | |||
20020162104, | |||
20020165870, | |||
20020166053, | |||
20020169963, | |||
20020169965, | |||
20020172367, | |||
20020174030, | |||
20020174109, | |||
20020174415, | |||
20020176572, | |||
20020178271, | |||
20020184217, | |||
20020184488, | |||
20020194484, | |||
20020198798, | |||
20030005168, | |||
20030009685, | |||
20030014391, | |||
20030023559, | |||
20030026431, | |||
20030028610, | |||
20030033528, | |||
20030037029, | |||
20030037133, | |||
20030037237, | |||
20030037253, | |||
20030046176, | |||
20030046238, | |||
20030046270, | |||
20030050919, | |||
20030051039, | |||
20030056139, | |||
20030061506, | |||
20030074580, | |||
20030078959, | |||
20030079175, | |||
20030081784, | |||
20030081785, | |||
20030081787, | |||
20030081790, | |||
20030088517, | |||
20030088783, | |||
20030093457, | |||
20030095552, | |||
20030099248, | |||
20030101072, | |||
20030110169, | |||
20030110266, | |||
20030110280, | |||
20030110397, | |||
20030115146, | |||
20030115218, | |||
20030115570, | |||
20030120601, | |||
20030120684, | |||
20030126434, | |||
20030132949, | |||
20030154381, | |||
20030154396, | |||
20030154401, | |||
20030159048, | |||
20030159066, | |||
20030163704, | |||
20030165117, | |||
20030172280, | |||
20030177070, | |||
20030177378, | |||
20030182310, | |||
20030182579, | |||
20030182584, | |||
20030196096, | |||
20030197729, | |||
20030200202, | |||
20030204692, | |||
20030208485, | |||
20030217264, | |||
20030217281, | |||
20030217333, | |||
20030220999, | |||
20030222141, | |||
20030226013, | |||
20030233650, | |||
20040022390, | |||
20040025037, | |||
20040039781, | |||
20040041845, | |||
20040049702, | |||
20040064507, | |||
20040064710, | |||
20040068524, | |||
20040068664, | |||
20040073660, | |||
20040073718, | |||
20040088548, | |||
20040098580, | |||
20040103202, | |||
20040103280, | |||
20040117371, | |||
20040131191, | |||
20040133544, | |||
20040158586, | |||
20040186845, | |||
20040193602, | |||
20040193905, | |||
20040193912, | |||
20040199514, | |||
20040205576, | |||
20040215956, | |||
20040215962, | |||
20040243853, | |||
20040254884, | |||
20050021467, | |||
20050021629, | |||
20050028006, | |||
20050039034, | |||
20050050098, | |||
20050071275, | |||
20050071657, | |||
20050071658, | |||
20050081029, | |||
20050086531, | |||
20050091289, | |||
20050091484, | |||
20050097061, | |||
20050120199, | |||
20050138371, | |||
20050138383, | |||
20050168766, | |||
20050177716, | |||
20050177858, | |||
20050193397, | |||
20050198326, | |||
20050223242, | |||
20050223414, | |||
20050235154, | |||
20050256909, | |||
20050268033, | |||
20050273600, | |||
20050283610, | |||
20050288961, | |||
20060005021, | |||
20060075258, | |||
20060075465, | |||
20060093150, | |||
20060101285, | |||
20060149407, | |||
20060168147, | |||
20060184637, | |||
20060230437, | |||
20060277316, | |||
20070006214, | |||
20070067837, | |||
20070083575, | |||
20070192478, | |||
20080075126, | |||
20090254843, | |||
20100047757, | |||
EP672991, | |||
EP674253, | |||
EP809170, | |||
EP913966, | |||
EP913967, | |||
EP950941, | |||
EP1107504, | |||
EP1130492, | |||
EP1154348, | |||
EP1324565, | |||
GB2328047, | |||
JP2001036517, | |||
JP2006244044, | |||
JP2009020720, | |||
WO56028, | |||
WO161438, | |||
WO163387, | |||
WO177783, | |||
WO178285, | |||
WO184271, | |||
WO9641288, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 12 2002 | GARCIA, DENIS JACQUES PAUL | SECRETSEAL INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025665 | /0175 | |
Jun 03 2002 | SECRETSEAL INC | PERVASIVE SECURITY SYSTEMS, INC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 022107 | /0527 | |
Jan 17 2003 | PERVASIVE SECURITY SYSTEMS, INC | PSS SYSTEMS, INC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 025665 | /0156 | |
Jan 24 2007 | PSS SYSTEMS, INC | Guardian Data Storage LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025665 | /0158 | |
Dec 09 2008 | Guardian Data Storage LLC | (assignment on the face of the patent) | / | |||
Mar 04 2013 | Guardian Data Storage, LLC | Intellectual Ventures I LLC | MERGER SEE DOCUMENT FOR DETAILS | 030638 | /0219 |
Date | Maintenance Fee Events |
Jul 25 2014 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jul 16 2018 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jan 01 2016 | 4 years fee payment window open |
Jul 01 2016 | 6 months grace period start (w surcharge) |
Jan 01 2017 | patent expiry (for year 4) |
Jan 01 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 01 2020 | 8 years fee payment window open |
Jul 01 2020 | 6 months grace period start (w surcharge) |
Jan 01 2021 | patent expiry (for year 8) |
Jan 01 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 01 2024 | 12 years fee payment window open |
Jul 01 2024 | 6 months grace period start (w surcharge) |
Jan 01 2025 | patent expiry (for year 12) |
Jan 01 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |