A system and method for imaging of a sample, e.g., biological sample, are provided. In particular, at least one source electro-magnetic radiation forwarded to the sample and a reference may be generated. A plurality of detectors may be used, at least one of the detectors capable of detecting a signal associated with a combination of at least one first electro-magnetic radiation received from the sample and at least one second electro-magnetic radiation received from the reference. At least one particular detector may have a particular electrical integration time, and can receive at least a portion of the signal for a time duration which has a first portion with a first power level greater than a predetermined threshold and a second portion immediately preceding or following the first portion. The second portion may have a second power level that is less than the predetermined threshold, and extends for a time period which may be, e.g., approximately more than 10% of the particular electrical integration time.
|
31. A method for imaging at least a portion of a sample, comprising:
generating at least one source electro-magnetic radiation forwarded to the sample and a reference; and
detecting at least a portion of a signal associated with a combination of at least one first electro-magnetic radiation received from the sample and at least one second electro-magnetic radiation received from the reference using at least one detector of a plurality of detectors of a detection arrangement, wherein the signal is at least one of frequency components of the combination;
separating spectrum of at least one of the first electro-magnetic radiation, the second electro-magnetic radiation or the combination into the at least one of the frequency components,
wherein at least one particular detector of the detectors has a particular electrical integration time, and wherein the at least one particular detector receives at least a portion of the signal for a time duration which has a first portion with a first power level greater than a predetermined threshold and a second portion immediately preceding or following the first portion, the second portion having a second power level less than the predetermined threshold, and extending for a time period which is approximately more than 10% of the particular electrical integration time; and
generating at least one image associated with the sample based on the detected signal which is provided for the particular electrical integration time, the at least one image including at least one portion associated with the sample below a surface thereof, and the at least one portion of the at least one image illustrates the sample at multiple depths thereof immediately below a surface location at which the forwarded radiation impacts the sample.
1. A system for imaging at least a portion of a sample, comprising:
a source arrangement generating at least one source electro-magnetic radiation forwarded to the sample and a reference; and
at least one detection arrangement including a plurality of detectors, at least one of the detectors capable of detecting a signal associated with a combination of at least one first electro-magnetic radiation received from the sample and at least one second electro-magnetic radiation received from the reference, wherein the signal is at least one of frequency components of the combination;
at least one spectral separating unit which separates spectrum of at least one of the first electro-magnetic radiation, the second electro-magnetic radiation or the combination into the at least one of the frequency components,
wherein at least one particular detector of the detectors has a particular electrical integration time, wherein the at least one particular detector receives at least a portion of the signal for a time duration which has at least one first portion with at least one first power level greater than a predetermined threshold and at least one second portion immediately preceding or following the at least one first portion, the at least one second portion having at least one second power level less than the predetermined threshold, and wherein the at least one second portion is extended for a time period which is approximately at least 10% of the particular electrical integration time; and
at least one processing arrangement which is configured to generate at least one image associated with the sample based on the detected signal which is provided for the particular electrical integration time, the at least one image including at least one portion associated with the sample below a surface thereof, and the at least one portion of the at least one image illustrates the sample at multiple depths thereof immediately below a surface location at which the forwarded radiation impacts the sample.
0. 2. The system according to
4. The system according to
5. The system according to claim 2 1, wherein the at least one particular detector receives the at least one of the frequency components.
7. The system according to
8. The system according to
9. The system according to
11. The system according to
0. 12. The system according to
13. The system according to
14. The system according to
15. The system according to
16. The system according to
17. The system according to
18. The system according to
19. The system according to
20. The system according to
21. The system according to
24. The system according to
26. The system according to
27. The system according to
28. The system according to
30. The system according to
0. 32. The method according to
33. The method according to
34. The method according to
35. The method according to claim 32 31, wherein the at least one particular detector receives the at least one of the frequency components.
36. The method according to
37. The method according to
38. The method according to
39. The method according to
41. The method according to
0. 42. The method according to
43. The method according to
44. The method according to
45. The method according to
46. The method according to
47. The method according to
48. The method according to
49. The method according to
50. The method according to
51. The method according to
54. The method according to
55. The method according to
56. The method according to
57. The method according to
58. The method according to
59. The method according to
60. The method according to
|
The present invention claims priority from U.S. Patent Application Ser. No. 60/608,800 filed on Sep. 10, 2004, the entire disclosure of which incorporated herein by reference.
The present invention relates generally to optical coherence tomography imaging, and more particularly, to a system and method that uses optical coherence tomography that permits imaging of biological samples with high sensitivity and reduced artifacts, e.g., due to sample and probe motion.
Image artifacts resulting from motion have been important issues of research in many medical imaging modalities because they may degrade the image quality and cause inaccurate clinical interpretation of images. Artifacts can arise when an object being imaged (sample) is moved during data acquisition but is assumed stationary in the image reconstruction process. In each imaging modality, motion artifacts can be present in different forms and with different magnitudes. Understanding basic motion effects in a particular imaging method is an essential step toward the development of techniques to avoid or compensate resulting artifacts. Optical interferometric imaging methods using frequency domain ranging have recently received considerable interest due to their high image acquisition speed and sensitivity.
Two frequency domain techniques have been demonstrated: spectral-domain optical coherence tomography (SD-OCT) as described in A. F. Fercher et al., “Measurements of intraocular distances by backscattering spectral interferometry,” Opt. Comm. 117, 43-48 (1995), G. Hausler et al., “Coherence radar and spectral radar—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21-31 (1998), M. Wojtkowski et al., “Real time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett. 28, 1745-1747 (2003), N. Nassif et al., “In-vivo human retinal imaging by ultra high-speed spectral domain optical coherence tomography,” Opt. Lett. 29, 480-482 (2004), S. H. Yun et al., “High-speed spectral domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express 11, 3598-3604 (2003), and optical frequency domain imaging (“OFDI”) S. R. Chinn, E. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340-342 (1997), B. Golubovic et al., “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser,” Opt. Lett. 22, 1704-1706 (1997), F. Lexer et al., “Wavelength-tuning interferometry of intraocular distances,” Appl. Opt. 36, 6548-6553 (1997), S. H. Yun et al, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953-2963 (2003), the entire disclosures of all of which are incorporated herein by reference. Using the SD-OCT technique, the spectral interference fringe can be measured in the spatial domain by means of a diffraction grating and a charge-coupled device (“CCD”) array. In exemplary OFDI techniques, the spectral fringe is mapped to the time domain by use of a frequency-swept light source and measured with a photodetector as a function of time. In both methods; axial reflectance profile (A-line) is obtained by performing a discrete Fourier transform of the acquired data. Since the Fourier transform process involves integration of the entire data set obtained in single A-line period, the signal-to-noise ratio (“SNR”) is enhanced relative to time domain ranging, as described in S. H. Yun et al., “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953-2963 (2003), R. Leitgeb, et al. “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889-894 (2003), J. F. de Boer et al., “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067-2069 (2003), and M. A. Choma et al., “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183-2189 (2003), the entire disclosures of all of which are incorporated herein by reference This improvement in SNR is particularly advantageous for applications requiring high image acquisition rates such as screening for disease and surveillance of large tissue volumes. It is, however, possible that the integration effect enhances the sensitivity to sample motion because the motion-induced change in signal is also integrated over the entire A-line acquisition period.
Spectral-domain optical coherence tomography (“SD-OCT”) makes use of low-coherence spectral interferometry to obtain cross-sectional images of a biological sample. Interference fringes as a function of wavelength are measured using a broadband light source and a spectrometer based on a charge-coupled-device (“CCD”) camera. The axial reflectivity profile of a sample, or an A-line, can be obtained by a discrete Fourier transform of the camera readout data. This imaging technique has recently gone through rapid technical development to demonstrate high quality imaging of biological samples with fast image acquisition time, an order of magnitude faster than state-of-the-art time-domain OCT systems. The recent advancement in imaging speed may lead to the utilization of SD-OCT in a number of clinical applications in the near future.
The SD-OCT systems that have been used to date utilized either a continuous-wave (“cw”) broad-spectrum light source, such as super luminescent diodes (“SLD”), or ultrashort mode-locked pulses with a high repetition rate in the range of 10-100 MHz. In both cases, the CCD array is generally illuminated constantly, and therefore the exposure time of the CCD camera determines the signal acquisition time for a single A-line. In this case, a path length change in the interferometer during image acquisition results in phase drift in the interference fringe. If the phase drifts over more than μ during a single A-line acquisition, the interference fringe can be completely erased, resulting in a degradation of SNR. This motion artifact can be caused by axial motion of a sample relative to the probe beam. By comparison, transverse sample motion or transverse beam scanning does not result in fringe washout. However, the transverse motion can result in degradation in transverse resolution and SNR. In medical imaging in vivo, the motion effects can arise from various sources. The main causes include patient motion, physiological phenomena such as cardiac motion, blood flow, pulsation, and catheter movement associated with beam scanning or uncontrolled movement of operator's hand. Furthermore, environmental changes such as mechanical vibration, sound waves, and temperature drift can alter the path length difference in the interferometer, resulting in SNR degradation through fringe washout. Considering that cameras appropriate for SD-OCT typically provide exposures times longer than 10 μs, a solution to the fringe washout problem will be required for biomedical applications where sample and probe motion is common.
Therefore, one of the objects of the present invention is to reduce or eliminate the motion artifacts.
According to the present invention, an imaging apparatus/system is provided which includes an optical source and at least one detector array. In one exemplary embodiment of the present invention, an optical source can emit a broadband spectrum in a pulsed mode, for example, by Q-switching or mode locking, with a pulse repetition rate preferably being equal to a readout rate of a detector array. The pulsed source can produce enough average optical power to provide sufficient signal to noise ratio required for imaging, while the relatively short duration of the output pulses results in an effective signal integration time substantially shorter than the detector's integration time, leading to high-sensitivity motion-artifact-free imaging. This pulsed-source approach may pertain to full-field optical coherence tomography and/or spectral-domain optical coherence tomography. In another exemplary embodiment of the present invention, the optical source is a wavelength-swept source emitting relatively narrowband spectrum swept over a wide range with a repetition rate preferably being equal to the readout rate of the detector array or A-line rate. This exemplary embodiment of the present invention allows the interference signal associated with each spectral component to be measured with an effective integration time substantially shorter than an A-line acquisition time. This exemplary scheme may also eliminate the fringe washout problem as in the prior art using continuous-wave broadband source or high-repetition mode-locked pulses. The above-described exemplary embodiments of the present invention may employ two or more detector arrays for dual-balanced detection and/or polarization diversity and further employ fiber-optic probes, allowing for medical imaging in vivo with high sensitivity, high speed, and the immunity from motion artifacts.
Accordingly, an exemplary embodiment of a system and method for imaging at least a portion of a sample are provided. In particular, at least one source electro-magnetic radiation can be generated and forwarded to the sample and a reference. A signal associated with a combination of at least one first electro-magnetic radiation received from the sample and at least one second electro-magnetic radiation received from the reference can be detected using at least one of a plurality of detectors. At least one particular detector can have a particular electrical integration time. Such detector may received at least a portion of the signal for a time duration which has at least one first portion with at least one first power level that is greater than a predetermined threshold and at least one second portion immediately preceding or following the at least one first portion. The second portion can have at least one second power level which is less than the predetermined threshold, and may be extended for a time period which is approximately at least 10% of the particular electrical integration time.
In addition, the signal may be at least one of frequency components of the combination, and the particular detector can receive such frequency component. The source electro-magnetic radiation can be generated by a source arrangement which may be a pulsed broadband source. The source electro-magnetic radiation generated by the pulsed source may be a single pulse per the particular electrical integration time. The pulsed source may be a Q-switched laser, a cavity-dumped mode-lock laser, and/or a gain-switched laser. The source electro-magnetic radiation generated by the source arrangement may be a burst of radiation that extends for at most approximately 90% of the particular electrical integration time. The burst of radiation may include multiple pulses. The source electro-magnetic radiation generated by the pulsed broadband source can have a spectrum with (i) a center wavelength between approximately 700 nanometers and 2000 nanometers, and/or (ii) a spectral width of approximately greater than 1% of the center wavelength. The source electro-magnetic radiation generated by the pulsed broadband source may have a pulse width approximately shorter than 1 μsec. A duration of the burst of radiation can be approximately shorter than 1 μsec.
According to another exemplary embodiment of the present invention, the source arrangement generating the source electro-magnetic radiation may include an optical gating switch. A frequency of the source electro-magnetic radiation can vary over time. A mean frequency of the source electro-magnetic radiation may change (i) substantially continuously over time at a tuning speed that is greater than 100 terahertz per millisecond, and/or (ii) with a repetition period that is less than approximately 90% of the particular electrical integration time. The source electro-magnetic radiation can have a tuning range (i) with a center wavelength between approximately 700 nanometers and 2000 nanometers, and/or (ii) of approximately greater than 1% of the center wavelength. The source electro-magnetic radiation may have an instantaneous line width and a tuning range, with the instantaneous line width being less than approximately 10% of the tuning range. The source arrangement may include (i)a tunable laser, (ii) a tunable filter, and/or (iii) a medium, and can generate the source electro-magnetic radiation based on a non-linearity associated with the medium. The frequency may vary substantially (i) linearly with time, and/or (ii) sinusoidally with time.
A detector arrangement which includes the detectors can be provided, that includes an electrical shutter that is adapted to gate a transmission of photoelectrons associated with the combination of the first and second electro-magnetic radiation, wherein a time period for the gating to allow the transmission of the photoelectrons is less than approximately 90% of the particular electrical integration time. The sample can be a biological sample. The detection arrangement may include at least one charged-coupled device. The source arrangement may be a pulsed broadband source. At least one spectral separating unit can be provided which separates spectrum of the first electro-magnetic radiation, the second electro-magnetic radiation and/or the combination into the at least one of the frequency components.
These and other objects, features and advantages of the present invention will become apparent upon reading the following detailed description of embodiments of the invention, when taken in conjunction with the appended claims.
Further objects, features and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying figures showing illustrative embodiments of the invention, in which:
FIGS. 4(a)-(c) are block diagrams of exemplary embodiments of low-repetition broadband source arrangements according to the present invention;
FIGS. 5(a)-(d) are exemplary graphs of spectrum and temporal characteristics obtained from an exemplary wavelength-swept source;
FIGS. 6(a)-(c) are block diagrams of exemplary embodiments of an exemplary wavelength-swept source arrangements according to the present invention;
The broadband optical source used in prior art can be categorized into two types: continuous wave (“cw”) as shown in
One exemplary embodiment of the present invention relates to a system for imaging of a sample, e.g., biological sample, which may include a source arrangement that generates at least one source electro-magnetic radiation forwarded to the sample and a reference. Such exemplary system may include at least one detection arrangement that has a plurality of detectors, at least one of the detectors capable of detecting a signal associated with a combination of at least one first electro-magnetic radiation received from the sample and at least one second electro-magnetic radiation received from the reference. At least one particular detector may have a particular electrical integration time, and can receive at least a portion of the signal for a time duration which has a first portion with a first power level greater than a predetermined threshold and a second portion immediately preceding or following the first portion. The second portion may have a second power level that is less than the predetermined threshold, and extends for a time period which is approximately more than 10% of the particular electrical integration time.
The electro-magnetic radiation is preferably light with a center wavelength in the range of 700 to 2000 nm. The detector array is preferably charge-coupled devices (“CCD”). Using the exemplary SD-OCT system, the signal detected in the detector array is frequency components of the combination, or the spectrum. Typically the spectrum is obtained using a spectrally separating device such as a diffraction grating. A number of methods to obtain the spectrum with detector arrays are well known in the art. For full-field OCT, the signal is the optical power of the combination, which is linked to specific transverse locations in the sample.
In another exemplary embodiment of the present invention, the source arrangement can be a pulsed broadband source generating a single pulse per the particular electrical integration time or producing a burst of radiation that extends for at most approximately 90% of the particular electrical integration time. Each burst may include multiple ultrashort optical pulses in it. Examples of the pulsed sources include a Q-switched laser, a cavity-dumped mode-lock laser, and a gain-switched laser. Preferably, the spectrum of the pulsed source may have a spectral width of approximately greater than 1% of the center wavelength and a pulse width or a duration of the burst of radiation approximately shorter than 1 microseconds. The source arrangement may comprise a broadband cw source and an optical gating switch or electrical shutter integrated in the CCD array. The time window where the optical power is less than the threshold can be considered as OFF state, and the window where the power is greater than the threshold as ON state. The threshold is preferably less than 50% of the power level during ON state, however a typical pulsed source may provide much larger power extinction between the ON and OFF state. During a single detector integration time, one or multiple ON states may exist, however the total illumination span, or the duration from the start of the first ON state to the end of the last ON state is preferably shorter than 90% of the detector integration time. For example, the shorter the illumination span, the more suppression of motion artifacts can be obtained.
In yet another exemplary embodiment of the present invention, the source arrangement can be a wavelength swept source where a mean frequency of the output spectrum varies over time. The mean frequency of the source electro-magnetic radiation may change substantially continuously over time at a tuning speed that is greater than 100 terahertz per millisecond and repeatedly with a repetition period that is less than approximately 90% of the particular electrical integration time. The tuning range of the source electro-magnetic radiation may have a tuning range with a center wavelength between approximately 700 nanometers and 2000 nm, a tuning width of approximately greater than 1% of the center wavelength, and an instantaneous line width of less than approximately 10% of the tuning range. Such a source arrangement includes a tunable laser, soliton laser in conjunction with Raman self frequency shift, or cw broadband source in conjunction with a tunable filter. The mean frequency may vary substantially linearly or sinusoidally with time. As for the pulsed source, the time window where the optical power received by a specific pixel is less than the threshold can be considered as OFF state for the particular pixel, and the window where the power is greater than the threshold as ON state. The threshold is preferably less than 50% of the power level during ON state, however a typical pulsed source may provide much larger power extinction between the ON and OFF state. During the detector integration time of the pixel, one or multiple ON states may exist, however the total illumination span, or the duration from the start of the first ON state to the end of the last ON state is preferably shorter than 90% of the pixel integration time. The shorter the illumination span is, the more suppression of motion artifacts can be obtained.
According to still another exemplary embodiment of the present invention, a method may be provided for imaging of a sample, typically biological sample. For example, at least one source electro-magnetic radiation may be generated to be forwarded to the sample and a reference. At least a portion of a signal associated may be detected with a combination of at least one first electro-magnetic radiation received from the sample and at least one second electro-magnetic radiation received from the reference using at least one detector of a plurality of detectors of a detection arrangement. At least one particular detector may have a particular electrical integration time, and can receive at least a portion of the signal for a time duration which has a first portion with a first power level greater than a predetermined threshold and a second portion immediately preceding or following the first portion. The second portion may have a second power level less than the predetermined threshold, and can extend for a time period which is approximately more than 10% of the particular electrical integration time.
FIGS. 5(a)-(d) illustrate graphs to explain the principle of another exemplary embodiment of the present invention based on a wavelength-swept source which emits substantially narrowband spectrum that is swept over a wide spectral range, repeatedly in time.
As shown in FIGS. 6(a)-(c), a wavelength-swept source may be implemented by using a conventional broadband source 300 followed by a wavelength scanning filter 310. According to an exemplary variant of the present invention, a wavelength-swept laser may be used using a gain medium 320, tunable filter 330 and output coupler 340 in a laser cavity 350. A wavelength-swept laser may be configured to yield a linewidth that is narrower than the resolution of the spectrometer; in this case the complexity and tolerance in spectrometer design may be relaxed. The combination of wavelength-swept source and detector array described above may be analogized with optical frequency domain imaging and exhibits motion artifacts such as Doppler distortion. To further reduce the motion artifacts, the wavelength-swept source may be operated in a low-duty-cycle or Q-switched regime, with an advantage of further reduction of effective signal integration time. Another possible source can includes a broadly tunable source based on soliton self frequency shift using a soliton source 360 and Raman medium 370.
Exemplary conventional SD-OCT systems utilize either a continuous-wave (cw) broad-spectrum light source, such as super luminescent diodes (SLD), or ultrashort mode-locked pulses with a high repetition rate in the range of 10-100 MHz. Full field OCT systems have typically employed cw thermal light source. For such conventional systems, the CCD array is illuminated constantly, and therefore the exposure time of the CCD camera determines the signal acquisition time for a single A-line. However, sample or probe motion during the A-line acquisition time can result in various undesirable artifacts such as signal fading and spatial resolution degradation. In particular, due to axial sample motion, the visibility of detected spectral fringes can diminish significantly resulting in significant image fading. Considering that cameras appropriate for SD-OCT typically provide exposures times longer than 10 μs, a solution to the fringe washout problem is preferable for biomedical applications where sample and probe motion is common.
FIGS. 7(a)-(c) illustrates exemplary illustration of a detection signal with a CCD array in a spectrometer how the signal detection in the exemplary SD-OCT system for three different light sources: broadband cw source (see FIG. 7(a)), broadband pulsed source (see FIG. 7(a)), and narrowband wavelength-swept source (see
In particular,
To understand the imaging characteristics of a pulsed-source SD-OCT system, the signal-to-noise ratio (SNR) for pulsed and cw operation in the presence of axial motion may be reviewed. For example, let Ts and Te denote the duration of the pulse and the electrical integration time of the camera, respectively. For a sample moving axially in parallel to an optical probe beam with a speed vz, the signal power S, normalized to the signal at vz=0, is given by
S≈|∫oT
where P(t) represents time-varying optical power of the pulse, and ko=2π/λo denotes the wave number corresponding to the center wavelength λo. Equation 1 yields S≈sin2 (koΔz)/(koΔz)2 for a square pulse and S≈exp[−ko2Δz2 /(2ln 2)]0 for a Gaussian pulse with Ts as the full-width-at-half-maximum (“FWHM”) pulse duration, where Δz=vzTs represents the total sample movement during pulse duration Ts. These expressions imply that significant signal fading occurs if the sample movement is greater than a half optical wavelength during the pulse duration. Therefore, the short pulsed technique (Ts<<Te) offers a significant advantage over the conventional cw operation in terms of motion-induced signal fading. Similarly, one can see that pulsed operation can also suppress other motion artifacts, such as spatial resolution degradation due to sample motion and transverse beam scanning.
The fundamental noise characteristics of pulsed operation are likely approximately identical to those of cw operation, because the detection bandwidth is solely determined by the integration time of the camera. If both a pulsed and cw sources produce the same average optical power and relative intensity noise (“RIN”), both would yield the same SNR in the limit of a stationary sample.
For a linear sweep shown in
For example, pulsed and wavelength-swept sources may be constructed according to an exemplary embodiment of the present invention. A block diagram of the exemplary system of the present invention which includes a gating device is shown in
The camera readout can be triggered by an external TTL signal generated from the source output. In the case of the pulsed light source, the electrical trigger pulses were generated directly from the optical pulses, as illustrated in the dotted box in
As described above, both lasers may be operated at a repetition rate of 18.939 kHz. This rate corresponded to the maximum readout rate of the camera. Upon receiving the trigger, the camera integrates photo-generated electrons for 24.4 μs; in the subsequent 28.4 μs period, the integrated voltage can be read out. By adjusting the phase delay in a PPL pulse generator, the integration time window of the camera was aligned to the output of the light sources, as shown in
SD-OCT imaging can be performed using three different light sources: (a) the cw ASE obtained directly from the SOA, (b) the intensity-gated ASE pulses (as shown in FIG. 8(a)), and (c) the wavelength swept laser (as shown in
To quantify the amount of signal fading, a sum of the pixel values in the unit of linear power along each A-line may be obtained from the exemplary images shown in
In each graph, the integrated signal power is plotted as a function of A-line index for the stationary-sample image (a lighter line) and the moving-sample image (a darker line). As depicted by the lighter lines, the signal power for the stationary sample exhibits random fluctuation due to speckle as the probe beam is scanned across the sample with standard deviation of approximately 2 dB. The speckle-averaged mean value varies linearly over transverse locations of the sample, a variation that was attributed to the finite confocal parameter and resulting depth-dependent light collection efficiency. The signal power traces obtained from
The time gated pulses may provide a factor 8.6 reduction in signal integration time, from 24.4 μs to 2.85 μs. For the swept source with an instantaneous linewidth of 0.4 nm, individual CCD pixels may be illuminated for only 75 ns per each A-line acquisition representing a 325-fold reduction in signal integration time. Theoretical curves based on Eq. (1) show good correspondence with the experimental results with the following exceptions. The experimental noise floor can prohibit detection of signal loss greater than −14 dB; the small discrepancy between the blue and black curves in
An exemplary SNR analysis indicates that the pulsed ASE source produced essentially the same noise characteristics as cw ASE of the same average optical power. However, images which may be acquired using the wavelength swept laser exhibited a noise floor that can be 10-20 dB higher, depending on depth, than that observed when using the ASE source of the same average power. We attribute this increased noise floor to the RIN of the swept laser in the frequency band from DC to 41 kHz corresponding to a reciprocal of the CCD integration time. The best sensitivity obtained with the swept source may be approximately −95 dB at a reference-arm power of 1-2 μW.
Exemplary SD-OCT imaging of a human coronary artery in vitro may be conducted by use of a fiber-optic catheter. The fiber-optic catheter comprised a graded-index lens and a 90-degree prism at its distal end and was connected to the interferometer through a high-speed rotational joint which could provide a rotational speed of up 100 revolutions per second (rps).
Image A may represent a typical OCT image of a vessel. In contrast, Image B can exhibit distinct radial streaks due to loss of signal This image fading may be attributed mainly to catheter-induced modulation in path length, increasing with the rotational speed. The path length modulation can result from three mechanisms: (a) rotational beam scanning of an off-center object inevitably results in axial path length variation of the probe beam, as if the probe was retracting or approaching to the sample; (b) the tip of a rotating catheter can wobble in a protection sheath to modulate the distance between the probe and the sample; (c) mechanical vibration from a rotation joint can modulate the length of the optical fiber inside the catheter by twist or strain. Such third mechanism was thought to a dominant cause in this particular experiment, since the circle (p) corresponding to the prism surface also suffers from significant loss of contrast at the same radial locations. Images C and D of
Thus, multiple strategies can be applied to realize the benefit of pulsed or gated illumination. Traditional light sources include cw SLD's, supercontinuum sources, or mode-locked lasers. Each of these sources can be converted into a pulsed source by use of an external intensity modulation scheme. As an intensity modulator or switch, one may consider electro-optic or acousto-optic modulators or injection current modulation. Alternatively, CCD cameras with built-in electrical shutters may be used. This external gating approach, however, has a main drawback in that it results in a loss of optical power and therefore may degrade the detection sensitivity. However, in situations where motion causes significant signal fading through fringe washout, external gating can lead to a better sensitivity despite the loss of optical power. In other applications, however, the usable optical power in the system is often limited by the maximum permissible exposure of the sample. In this case, external gating would be an effective way to attenuate the power level entering the system from a powerful source. For example, ophthalmologic retinal imaging has been performed with SD-OCT at a wavelength of 800-nm. At this wavelength, the maximum permissible cw exposure to the eyes is limited to approximately 600-700 μW according to American National Standards Institute (ANSI). For this application, one could gate the output from a commercially available mode-locked Ti:Sapphire laser and, while still providing sufficient power to the system, reduce sensitivity to motion by more than an order of magnitude.
Instead of external gating, various power-efficient internal modulation techniques may be employed. For example, Q-switching and cavity dumping are well known techniques applicable to ultrashort pulsed lasers. Q-switched supercontinuum sources with repetition rates of a few to tens of kHz have been reported and may be suitable for use in the exemplary SD-OCT systems. Beside the benefit of reducing motion artifacts, the reduced fringe washout of the pulsed source approach may also facilitate quadrature fringe detection based on sequential phase dithering.
The use of a wavelength swept source as described in this manuscript is essentially a hybrid between the OFDI and SD-OCT techniques that may permit otherwise less-flexible OFDI source requirements including narrow instantaneous linewidth and tuning linearity to be relaxed. In this case, the high resolution and linearity of the spectrometer can accommodate a swept laser with a nonlinear tuning element such as a resonantly scanned Fabry-Perot filter or a tunable source based on soliton self-frequency shifting in nonlinear fibers. Furthermore, the relaxed requirement on the instantaneous linewidth of a swept laser may facilitate the generation of higher output powers.
In another exemplary embodiment of the system according to the present invention, each of the CCD arrays can be a 2-dimensional array. Two dimensional simultaneous scanning can be performed by using the 2-dimensional array, where along one axis of the array spectral information is encoded, while across the second dimension spatial information is encoded.
As yet another exemplary embodiment of the present invention, a pulsed source can be employed in full-field optical coherence tomography, as depicted in
The invention disclosed here may be used in various imaging applications, ranging from coronary artery imaging, GI tract, ophthalmologic imaging, to monitoring of dynamic biological or chemical process, moving materials and components, where high-sensitivity, high-speed, motion-artifact-free imaging is preferred.
The foregoing merely illustrates the principles of the invention. Various modifications and alterations to the described embodiments will be apparent to those skilled in the art in view of the teachings herein. For example, the invention described herein is usable with the exemplary methods, systems and apparatus described in U.S. Provisional Patent Application No. 60/514,769 filed Oct. 27, 2003, and International Patent Application No. PCT/US03/02349 filed on Jan. 24, 2003, the disclosures of which are incorporated by reference herein in their entireties. It will thus be appreciated that those skilled in the art will be able to devise numerous systems, arrangements and methods which, although not explicitly shown or described herein, embody the principles of the invention and are thus within the spirit and scope of the present invention. In addition, all publications, patents and patent applications referenced above are incorporated herein by reference in their entireties.
Tearney, Guillermo J., Bouma, Brett Eugene, Yun, Seok-Hyun, de Boer, Johannes F.
Patent | Priority | Assignee | Title |
10092190, | Sep 04 2009 | The Johns Hopkins University | Multimodal laser speckle imaging |
8825140, | May 17 2001 | Xenogen Corporation | Imaging system |
8875066, | Mar 15 2013 | Synopsys, Inc. | Performing image calculation based on spatial coherence |
Patent | Priority | Assignee | Title |
2339754, | |||
3090753, | |||
3872407, | |||
4030831, | Mar 22 1976 | The United States of America as represented by the Secretary of the Navy | Phase detector for optical figure sensing |
4140364, | Jun 23 1973 | Olympus Optical Co., Ltd. | Variable field optical system for endoscopes |
4224929, | Nov 08 1977 | Olympus Optical Co., Ltd. | Endoscope with expansible cuff member and operation section |
4295738, | Aug 30 1979 | United Technologies Corporation | Fiber optic strain sensor |
4300816, | Aug 30 1979 | United Technologies Corporation | Wide band multicore optical fiber |
4585349, | Sep 12 1983 | Battelle Memorial Institute | Method of and apparatus for determining the position of a device relative to a reference |
4601036, | Sep 30 1982 | Honeywell Inc. | Rapidly tunable laser |
4631498, | Apr 26 1985 | Agilent Technologies Inc | CW Laser wavemeter/frequency locking technique |
4639999, | Nov 02 1984 | Xerox Corporation | High resolution, high efficiency I.R. LED printing array fabrication method |
4650327, | Oct 28 1985 | HOSPIRA, INC | Optical catheter calibrating assembly |
4734578, | Mar 27 1985 | Olympus Optical Co., Ltd. | Two-dimensional scanning photo-electric microscope |
4744656, | Dec 08 1986 | BECTON DICKINSON CRITICAL CARE SYSTEMS PTE LTD | Disposable calibration boot for optical-type cardiovascular catheter |
4751706, | Dec 31 1986 | SAIC | Laser for providing rapid sequence of different wavelengths |
4763977, | Jan 09 1985 | HER MAJESTY IN RIGHT OF CANADA AS REPRESENTED BY THE MINISTER OF COMMUNICATIONS | Optical fiber coupler with tunable coupling ratio and method of making |
4770492, | Oct 28 1986 | Fitel USA Corporation | Pressure or strain sensitive optical fiber |
4827907, | Nov 28 1986 | Teac Optical Co., Ltd. | Intra-observation apparatus |
4834111, | Jan 12 1987 | TRUSTEES OF COLUMBIA UNIVERSITY, THE, A CORP OF NEW YORK | Heterodyne interferometer |
4868834, | Sep 14 1988 | UNITED STATES GOVERNMENT AS REPRESENTED BY THE SECRETAY OF THE ARMY | System for rapidly tuning a low pressure pulsed laser |
4890901, | Dec 22 1987 | Victor Company of Japan, Limited | Color corrector for embedded prisms |
4905169, | May 30 1986 | Los Alamos National Security, LLC | Method and apparatus for simultaneously measuring a plurality of spectral wavelengths present in electromagnetic radiation |
4909631, | Dec 18 1987 | GENERAL SIGNAL CORPORATION, A CORP OF NY | Method for film thickness and refractive index determination |
4925302, | Apr 13 1988 | Agilent Technologies Inc | Frequency locking device |
4928005, | Jan 25 1988 | Thomson-CSF | Multiple-point temperature sensor using optic fibers |
4940328, | Nov 04 1988 | Georgia Tech Research Corporation | Optical sensing apparatus and method |
4965441, | Jan 27 1988 | Commissariat a l'Energie Atomique | Method for the scanning confocal light-optical microscopic and indepth examination of an extended field and devices for implementing said method |
4966589, | Nov 14 1988 | FLUIDICS INTERNATIONAL, INC | Intravenous catheter placement device |
4984888, | Dec 13 1989 | IMO INDUSTRIES, INC | Two-dimensional spectrometer |
4993834, | Oct 03 1988 | Fried. Krupp GmbH | Spectrometer for the simultaneous measurement of intensity in various spectral regions |
4998972, | Apr 28 1988 | Thomas J., Fogarty | Real time angioscopy imaging system |
5039193, | Apr 03 1990 | Focal Technologies Corporation | Fibre optic single mode rotary joint |
5040889, | May 30 1986 | BYK -GARDNER USA, DIVISION OF ALTANA INC , | Spectrometer with combined visible and ultraviolet sample illumination |
5045936, | Jul 25 1988 | KEYMED MEDICAL & INDUSTRIAL EQUIPMENT LIMITED | Laser scanning imaging apparatus and method of ranging |
5046501, | Jan 18 1989 | Wayne State University | Atherosclerotic identification |
5065331, | May 19 1985 | General Electric Company | Apparatus and method for determining the stress and strain in pipes, pressure vessels, structural members and other deformable bodies |
5085496, | Mar 31 1989 | SHARP KABUSHIKI KAIHSA, | Optical element and optical pickup device comprising it |
5120953, | Jul 13 1988 | OPTISCAN PTY LIMITED | Scanning confocal microscope including a single fibre for transmitting light to and receiving light from an object |
5121983, | Dec 14 1989 | Goldstar Co., Ltd. | Stereoscopic projector |
5127730, | Aug 10 1990 | REGENTS OF THE UNIVERSITY OF MINNESOTA, A NON-PROFIT CORP OF MN | Multi-color laser scanning confocal imaging system |
5197470, | Jul 16 1990 | CLINICAL DIAGNOSTIC SYSTEMS INC | Near infrared diagnostic method and instrument |
5202745, | Nov 07 1990 | Agilent Technologies Inc | Polarization independent optical coherence-domain reflectometry |
5202931, | Oct 06 1987 | Cell Analysis Systems, Inc. | Methods and apparatus for the quantitation of nuclear protein |
5208651, | Jul 16 1991 | Regents of the University of California, The | Apparatus and method for measuring fluorescence intensities at a plurality of wavelengths and lifetimes |
5212667, | Feb 03 1992 | General Electric Company | Light imaging in a scattering medium, using ultrasonic probing and speckle image differencing |
5214538, | Jul 25 1988 | Keymed (Medical and Industrial Equipment) Limited | Optical apparatus |
5217456, | Feb 24 1992 | PDT Cardiovascular, Inc. | Device and method for intra-vascular optical radial imaging |
5241364, | Oct 19 1990 | Fuji Photo Film Co., Ltd. | Confocal scanning type of phase contrast microscope and scanning microscope |
5248876, | Apr 21 1992 | International Business Machines Corporation | Tandem linear scanning confocal imaging system with focal volumes at different heights |
5250186, | Oct 23 1990 | Cetus Corporation | HPLC light scattering detector for biopolymers |
5251009, | Jan 22 1990 | Ciba-Geigy Corporation | Interferometric measuring arrangement for refractive index measurements in capillary tubes |
5262644, | Jun 29 1990 | Southwest Research Institute | Remote spectroscopy for raman and brillouin scattering |
5275594, | Nov 09 1990 | RARE EARTH MEDICAL, INC | Angioplasty system having means for identification of atherosclerotic plaque |
5281811, | Jun 17 1991 | MOOG COMPONENTS GROUP INC | Digital wavelength division multiplex optical transducer having an improved decoder |
5283795, | Apr 21 1992 | HE HOLDINGS, INC , A DELAWARE CORP ; Raytheon Company | Diffraction grating driven linear frequency chirped laser |
5291885, | Nov 27 1990 | Kowa Company Ltd. | Apparatus for measuring blood flow |
5293872, | Apr 03 1991 | MEDISCIENCE TECHNOLOGY CORP , A CORP OF NEW JERSEY | Method for distinguishing between calcified atherosclerotic tissue and fibrous atherosclerotic tissue or normal cardiovascular tissue using Raman spectroscopy |
5293873, | Aug 29 1991 | Siemens Aktiengesellschaft | Measuring arrangement for tissue-optical examination of a subject with visible, NIR or IR light |
5302025, | Aug 06 1982 | Optical systems for sensing temperature and other physical parameters | |
5304173, | Mar 22 1985 | Massachusetts Institute of Technology | Spectral diagonostic and treatment system |
5304810, | Jul 18 1990 | Medical Research Council | Confocal scanning optical microscope |
5305759, | Sep 26 1990 | Olympus Optical Co., Ltd. | Examined body interior information observing apparatus by using photo-pulses controlling gains for depths |
5317389, | Jun 12 1989 | California Institute of Technology | Method and apparatus for white-light dispersed-fringe interferometric measurement of corneal topography |
5318024, | Mar 22 1985 | Massachusetts Institute of Technology | Laser endoscope for spectroscopic imaging |
5321501, | Apr 29 1991 | Massachusetts Institute of Technology | Method and apparatus for optical imaging with means for controlling the longitudinal range of the sample |
5348003, | Sep 03 1992 | Nellcor Puritan Bennett Incorporated | Method and apparatus for chemical analysis |
5353790, | Jan 17 1992 | Board of Regents, The University of Texas System | Method and apparatus for optical measurement of bilirubin in tissue |
5383467, | Nov 18 1992 | SPECTRASCIENCE, INC A K A GV MEDICAL, INC | Guidewire catheter and apparatus for diagnostic imaging |
5394235, | Mar 17 1993 | Ando Electric Co., Ltd.; Nippon Telegraph and Telephone Corporation | Apparatus for measuring distortion position of optical fiber |
5404415, | Jan 27 1993 | Shin-Etsu Chemical Co., Ltd. | Optical fiber coupler and method for preparing same |
5419323, | Nov 17 1989 | Massachusetts Institute of Technology | Method for laser induced fluorescence of tissue |
5424827, | Apr 30 1993 | B F GOODRICH COMPANY, THE | Optical system and method for eliminating overlap of diffraction spectra |
5439000, | Nov 18 1992 | SPECTRASCIENCE, INC | Method of diagnosing tissue with guidewire |
5441053, | May 03 1991 | UNIV OF KY RESEARCH FOUNDATION | Apparatus and method for multiple wavelength of tissue |
5450203, | Dec 22 1993 | MARTEK, INC | Method and apparatus for determining an objects position, topography and for imaging |
5454807, | May 14 1993 | Boston Scientific Scimed, Inc | Medical treatment of deeply seated tissue using optical radiation |
5459325, | Jul 19 1994 | GE Healthcare Bio-Sciences Corp | High-speed fluorescence scanner |
5459570, | Apr 29 1991 | Massachusetts Institute of Technology | Method and apparatus for performing optical measurements |
5465147, | Apr 29 1991 | Massachusetts Institute of Technology | Method and apparatus for acquiring images using a ccd detector array and no transverse scanner |
5486701, | Jun 16 1992 | Prometrix Corporation | Method and apparatus for measuring reflectance in two wavelength bands to enable determination of thin film thickness |
5491524, | Oct 05 1994 | Carl Zeiss, Inc. | Optical coherence tomography corneal mapping apparatus |
5491552, | Mar 29 1993 | Bruker Medizintechnik | Optical interferometer employing mutually coherent light source and an array detector for imaging in strongly scattered media |
5522004, | Apr 30 1993 | Telefonaktiebolaget LM Ericsson | Device and method for dispersion compensation in a fiber optic transmission system |
5526338, | Mar 10 1995 | Yeda Research & Development Co. Ltd. | Method and apparatus for storage and retrieval with multilayer optical disks |
5555087, | Jun 15 1993 | TOPCON CORPORATION | Method and apparatus for employing a light source and heterodyne interferometer for obtaining information representing the microstructure of a medium at various depths therein |
5562100, | Dec 21 1988 | Massachusetts Institute of Technology | Method for laser induced fluorescence of tissue |
5565983, | May 26 1995 | Perkin Elmer LLC | Optical spectrometer for detecting spectra in separate ranges |
5565986, | Mar 30 1994 | ISIS Sentronics GmbH | Stationary optical spectroscopic imaging in turbid objects by special light focusing and signal detection of light with various optical wavelengths |
5566267, | Dec 15 1994 | CERAMOPTEC INDUSTRIES, INC | Flat surfaced optical fibers and diode laser medical delivery devices |
5583342, | Jun 03 1993 | Hamamatsu Photonics K.K. | Laser scanning optical system and laser scanning optical apparatus |
5590660, | Mar 28 1994 | NOVADAQ TECHNOLOGIES INC | Apparatus and method for imaging diseased tissue using integrated autofluorescence |
5600486, | Jan 30 1995 | Lockheed Corporation; Lockheed Martin Corporation | Color separation microlens |
5601087, | Nov 18 1992 | SpectraScience, Inc. | System for diagnosing tissue with guidewire |
5623336, | Apr 30 1993 | Method and apparatus for analyzing optical fibers by inducing Brillouin spectroscopy | |
5635830, | Mar 29 1993 | Matsushita Electric Industrial Co., Ltd. | Optical magnetic field sensor employing differently sized transmission lines |
5649924, | Jun 10 1988 | CATHETER ABLATION SOLUTIONS LLC | Medical device for irradiation of tissue |
5697373, | Mar 14 1995 | Board of Regents, The University of Texas System | Optical method and apparatus for the diagnosis of cervical precancers using raman and fluorescence spectroscopies |
5698397, | Jun 07 1995 | SRI International | Up-converting reporters for biological and other assays using laser excitation techniques |
5710630, | May 05 1994 | Boehringer Mannheim GmbH | Method and apparatus for determining glucose concentration in a biological sample |
5719399, | Dec 18 1995 | RESEARCH FOUNDATION OF CITY COLLEGE OF NEW YORK, THE | Imaging and characterization of tissue based upon the preservation of polarized light transmitted therethrough |
5730731, | Apr 28 1988 | Thomas J., Fogarty | Pressure-based irrigation accumulator |
5735276, | Mar 21 1995 | Method and apparatus for scanning and evaluating matter | |
5748318, | Aug 06 1996 | Brown University Research Foundation | Optical stress generator and detector |
5748598, | Dec 22 1995 | Massachusetts Institute of Technology | Apparatus and methods for reading multilayer storage media using short coherence length sources |
5752518, | Oct 28 1996 | EP Technologies, Inc. | Systems and methods for visualizing interior regions of the body |
5784352, | Jul 21 1995 | Massachusetts Institute of Technology | Apparatus and method for accessing data on multilayered optical media |
5785651, | Jun 07 1995 | ADDITION TECHNOLOGY, INC | Distance measuring confocal microscope |
5795295, | Jun 25 1996 | Carl Zeiss, Inc. | OCT-assisted surgical microscope with multi-coordinate manipulator |
5801826, | Feb 18 1997 | WILLIAMS FAMILY TRUST B, RICHARD K WILLIAMS, TRUSTEE | Spectrometric device and method for recognizing atomic and molecular signatures |
5801831, | Sep 20 1996 | CENTRE FOR RESEARCH IN EARTH AND SPACE TECHNOLOGY CRESTECH | Fabry-Perot spectrometer for detecting a spatially varying spectral signature of an extended source |
5803082, | Nov 09 1993 | Staplevision Inc. | Omnispectramammography |
5807261, | Feb 26 1993 | JB IP ACQUISITION LLC | Noninvasive system for characterizing tissue in vivo |
5810719, | Aug 25 1992 | Fuji Photo Film Co., Ltd. | Endoscope |
5817144, | Oct 25 1994 | THE SPECTRANETICS CORPORATION | Method for contemporaneous application OF laser energy and localized pharmacologic therapy |
5836877, | Feb 24 1997 | CALIBER IMAGING & DIAGNOSTICS, INC | System for facilitating pathological examination of a lesion in tissue |
5840023, | Jan 31 1996 | SENO MEDICAL INSTRUMENTS, INC | Optoacoustic imaging for medical diagnosis |
5842995, | Jun 28 1996 | Board of Regents, The University of Texas System | Spectroscopic probe for in vivo measurement of raman signals |
5843000, | May 07 1996 | The General Hospital Corporation | Optical biopsy forceps and method of diagnosing tissue |
5843052, | Oct 04 1996 | Irrigation kit for application of fluids and chemicals for cleansing and sterilizing wounds | |
5847827, | Jun 23 1995 | Carl Zeiss Jena GmbH | Coherence biometry and coherence tomography with dynamic coherent |
5865754, | Aug 23 1996 | Texas A&M University System | Fluorescence imaging system and method |
5867268, | Mar 01 1995 | Imalux Corporation | Optical fiber interferometer with PZT scanning of interferometer arm optical length |
5871449, | Dec 27 1996 | Volcano Corporation | Device and method for locating inflamed plaque in an artery |
5877856, | May 14 1996 | Carl Zeiss Jena GmbH | Methods and arrangement for increasing contrast in optical coherence tomography by means of scanning an object with a dual beam |
5887009, | May 22 1997 | OPTICAL BIOPSY TECHNOLOGIES, INC | Confocal optical scanning system employing a fiber laser |
5892583, | Aug 21 1997 | High speed inspection of a sample using superbroad radiation coherent interferometer | |
5910839, | Feb 05 1996 | Lawrence Livermore National Security LLC | White light velocity interferometer |
5912764, | Sep 18 1996 | Olympus Optical Co., Ltd. | Endoscope optical system and image pickup apparatus |
5920373, | Sep 24 1997 | Heidelberg Engineering Optische Messysteme GmbH | Method and apparatus for determining optical characteristics of a cornea |
5920390, | Jun 26 1997 | University of North Carolina; Charlotte-Mecklenburg Hospital Authority | Fiberoptic interferometer and associated method for analyzing tissue |
5921926, | Jul 28 1997 | Research Foundation of the University of Central Florida, Inc | Three dimensional optical imaging colposcopy |
5926592, | Mar 24 1995 | Optiscan PTY LTD | Optical fibre confocal imager with variable near-confocal control |
5949929, | Nov 25 1996 | Boston Scientific Corporation | Rotatably connecting optical fibers |
5951482, | Oct 03 1997 | THE SPECTRANETICS CORPORATION | Assemblies and methods for advancing a guide wire through body tissue |
5955737, | Oct 27 1997 | Systems & Processes Engineering Corporation | Chemometric analysis for extraction of individual fluorescence spectrum and lifetimes from a target mixture |
5956355, | Apr 29 1991 | Massachusetts Institute of Technology | Method and apparatus for performing optical measurements using a rapidly frequency-tuned laser |
5968064, | Feb 28 1997 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Catheter system for treating a vascular occlusion |
5975697, | Nov 25 1998 | OPTOS PLC | Optical mapping apparatus with adjustable depth resolution |
5983125, | Dec 13 1993 | The Research Foundation of City College of New York | Method and apparatus for in vivo examination of subcutaneous tissues inside an organ of a body using optical spectroscopy |
5987346, | Feb 26 1993 | JB IP ACQUISITION LLC | Device and method for classification of tissue |
5991697, | Dec 31 1996 | CALIFORNIA, UNIVERSITY OF, REGENTS OF THE, THE | Method and apparatus for optical Doppler tomographic imaging of fluid flow velocity in highly scattering media |
5994690, | Mar 17 1997 | Image enhancement in optical coherence tomography using deconvolution | |
5995223, | Jun 01 1998 | Apparatus for rapid phase imaging interferometry and method therefor | |
6002480, | Jun 02 1997 | Depth-resolved spectroscopic optical coherence tomography | |
6004314, | Aug 18 1994 | Carl Zeiss, Inc. | Optical coherence tomography assisted surgical apparatus |
6006128, | Jun 02 1997 | Doppler flow imaging using optical coherence tomography | |
6007996, | Dec 12 1995 | Applied Spectral Imaging Ltd. | In situ method of analyzing cells |
6010449, | Feb 28 1997 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Intravascular catheter system for treating a vascular occlusion |
6016197, | Aug 25 1995 | CeramOptec Industries Inc. | Compact, all-optical spectrum analyzer for chemical and biological fiber optic sensors |
6020963, | Jun 04 1996 | Northeastern University | Optical quadrature Interferometer |
6025956, | Dec 26 1995 | Olympus Optical Co., Ltd. | Incident-light fluorescence microscope |
6033721, | Oct 26 1994 | Fei Company | Image-based three-axis positioner for laser direct write microchemical reaction |
6037579, | Nov 13 1997 | Biophotonics Information Laboratories, Ltd. | Optical interferometer employing multiple detectors to detect spatially distorted wavefront in imaging of scattering media |
6044288, | Nov 08 1996 | Imaging Diagnostics Systems, Inc. | Apparatus and method for determining the perimeter of the surface of an object being scanned |
6045511, | Apr 21 1997 | Dipl-Ing. Lutz Ott | Device and evaluation procedure for the depth-selective, noninvasive detection of the blood flow and/or intra and/or extra-corporeally flowing liquids in biological tissue |
6048742, | Feb 26 1998 | The United States of America as represented by the Secretary of the Air | Process for measuring the thickness and composition of thin semiconductor films deposited on semiconductor wafers |
6053613, | May 15 1998 | Carl Zeiss, Inc. | Optical coherence tomography with new interferometer |
6069698, | Aug 28 1997 | Olympus Corporation | Optical imaging apparatus which radiates a low coherence light beam onto a test object, receives optical information from light scattered by the object, and constructs therefrom a cross-sectional image of the object |
6078047, | Mar 14 1997 | THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT | Method and apparatus for terahertz tomographic imaging |
6091496, | Jan 28 1997 | Zetetic Institute | Multiple layer, multiple track optical disk access by confocal interference microscopy using wavenumber domain reflectometry and background amplitude reduction and compensation |
6091984, | Oct 10 1997 | Massachusetts Institute of Technology | Measuring tissue morphology |
6094274, | Jun 05 1998 | Olympus Corporation | Fluorescence detecting device |
6107048, | Nov 20 1997 | MEDICAL COLLEGE OF GEORGIA RESEARCH INSTITUTE, INC , A CORPORATION OF GEORGIA | Method of detecting and grading dysplasia in epithelial tissue |
6111645, | Apr 29 1991 | Massachusetts Institute of Technology | Grating based phase control optical delay line |
6117128, | Apr 30 1997 | Providence Health System - Oregon | Energy delivery catheter and method for the use thereof |
6120516, | Feb 28 1997 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Method for treating vascular occlusion |
6134003, | Apr 29 1991 | General Hospital Corporation, The | Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope |
6134010, | Nov 07 1997 | CALIBER IMAGING & DIAGNOSTICS, INC | Imaging system using polarization effects to enhance image quality |
6134033, | Feb 26 1998 | TYCO TELECOMMUNICATIONS US INC | Method and apparatus for improving spectral efficiency in wavelength division multiplexed transmission systems |
6141577, | Jul 28 1997 | Research Foundation of the University of Central Florida, Inc | Three dimensional optical imaging colposcopy |
6151522, | Mar 16 1998 | Avery Dennison Corporation; RESEARCH FOUNDATION OF CUNY, THE | Method and system for examining biological materials using low power CW excitation raman spectroscopy |
6159445, | Dec 04 1997 | GE HEALTHCARE AS | Light imaging contrast agents |
6160826, | Apr 29 1991 | Massachusetts Institute of Technology | Method and apparatus for performing optical frequency domain reflectometry |
6161031, | Aug 10 1990 | Board of Regents of the University of Washington | Optical imaging methods |
6166373, | Jul 21 1998 | The Institute for Technology Development | Focal plane scanner with reciprocating spatial window |
6174291, | Mar 09 1998 | SpectraScience, Inc. | Optical biopsy system and methods for tissue diagnosis |
6175669, | Mar 30 1998 | Lawrence Livermore National Security LLC | Optical coherence domain reflectometry guidewire |
6185271, | Feb 16 1999 | Helical computed tomography with feedback scan control | |
6191862, | Jan 20 1999 | LIGHTLAB IMAGING, INC | Methods and apparatus for high speed longitudinal scanning in imaging systems |
6193676, | Oct 03 1997 | THE SPECTRANETICS CORPORATION | Guide wire assembly |
6198956, | Sep 30 1999 | OPTOS PLC | High speed sector scanning apparatus having digital electronic control |
6201989, | Mar 13 1997 | BIOMAX TECHNOLOGIES, INC | Methods and apparatus for detecting the rejection of transplanted tissue |
6208415, | Jun 12 1997 | Regents of the University of California, The | Birefringence imaging in biological tissue using polarization sensitive optical coherent tomography |
6208887, | Jun 24 1999 | PRESCIENT MEDICAL, INC | Catheter-delivered low resolution Raman scattering analyzing system for detecting lesions |
6245026, | Jul 29 1996 | VOLCANO THERAPEUTICS, INC | Thermography catheter |
6249349, | Sep 27 1996 | Microscope generating a three-dimensional representation of an object | |
6249381, | May 13 1998 | Sony Corporation | Illuminating method and illuminating device |
6249630, | Dec 13 1996 | Imra America | Apparatus and method for delivery of dispersion-compensated ultrashort optical pulses with high peak power |
6263234, | Oct 01 1996 | Leica Microsystems CMS GmbH | Confocal surface-measuring device |
6272376, | Jan 22 1999 | SOUTHERN CALIFORNIA, UNIVERSITY OF | Time-resolved, laser-induced fluorescence for the characterization of organic material |
6282011, | Apr 29 1991 | Massachusetts Institute of Technology | Grating based phase control optical delay line |
6297018, | Sep 24 1998 | MDS ANALYTICAL TECHNOLOGIES US INC | Methods and apparatus for detecting nucleic acid polymorphisms |
6301048, | May 19 2000 | Avanex Corporation | Tunable chromatic dispersion and dispersion slope compensator utilizing a virtually imaged phased array |
6308092, | Oct 13 1999 | C. R. Bard Inc. | Optical fiber tissue localization device |
6324419, | Oct 27 1998 | MEDICINE AND DENTISTRY OF NEW JERSEY, UNIVERSITY OF; NEW JERSEY INSTITUTE OF TECHNOLOGY UNIVERSITY HEIGHTS | Apparatus and method for non-invasive measurement of stretch |
6341036, | Feb 26 1998 | The General Hospital Corporation | Confocal microscopy with multi-spectral encoding |
6353693, | May 31 1999 | Yamaha Hatsudoki Kabushiki Kaisha | Optical communication device and slip ring unit for an electronic component-mounting apparatus |
6374128, | Nov 20 1998 | FUJIFILM Corporation | Blood vessel imaging system |
6377349, | Mar 30 1998 | Carl Zeiss Jena GmbH | Arrangement for spectral interferometric optical tomography and surface profile measurement |
6384915, | Mar 30 1998 | Lawrence Livermore National Security LLC | Catheter guided by optical coherence domain reflectometry |
6393312, | Oct 13 1999 | C. R. Bard, Inc. | Connector for coupling an optical fiber tissue localization device to a light source |
6394964, | Mar 09 1998 | SPECTRASCIENCE, INC | Optical forceps system and method of diagnosing and treating tissue |
6396941, | Aug 23 1996 | EVIDENT SCIENTIFIC, INC | Method and apparatus for internet, intranet, and local viewing of virtual microscope slides |
6421164, | Apr 29 1991 | Massachusetts Institute of Technology | Interferometeric imaging with a grating based phase control optical delay line |
6437867, | Dec 04 1996 | RESEARCH FOUNDATION OF THE CITY UNIVERSITY OF NEW YORK, THE | Performing selected optical measurements with optical coherence domain reflectometry |
6441892, | Nov 19 1999 | HORIBA INSTRUMENTS INCORPORATED | Compact spectrofluorometer |
6441959, | May 19 2000 | II-VI Incorporated; MARLOW INDUSTRIES, INC ; EPIWORKS, INC ; LIGHTSMYTH TECHNOLOGIES, INC ; KAILIGHT PHOTONICS, INC ; COADNA PHOTONICS, INC ; Optium Corporation; Finisar Corporation; II-VI OPTICAL SYSTEMS, INC ; M CUBED TECHNOLOGIES, INC ; II-VI PHOTONICS US , INC ; II-VI DELAWARE, INC; II-VI OPTOELECTRONIC DEVICES, INC ; PHOTOP TECHNOLOGIES, INC | Method and system for testing a tunable chromatic dispersion, dispersion slope, and polarization mode dispersion compensator utilizing a virtually imaged phased array |
6445485, | Jan 21 2000 | AT&T Corp. | Micro-machine polarization-state controller |
6445939, | Aug 09 1999 | LIGHTLAB IMAGING, INC | Ultra-small optical probes, imaging optics, and methods for using same |
6445944, | Feb 01 1999 | Boston Scientific Scimed, Inc | Medical scanning system and related method of scanning |
6463313, | Jul 09 1997 | THE SPECTRANETICS CORPORATION | Systems for guiding a medical instrument through a body |
6469846, | Jun 29 2000 | Riken | Grism |
6475159, | Sep 20 1995 | Board of Regents, University of Texas System | Method of detecting vulnerable atherosclerotic plaque |
6475210, | Feb 11 2000 | PHELPS, DAVID Y | Light treatment of vulnerable atherosclerosis plaque |
6477403, | Aug 09 1999 | Asahi Kogaku Kogyo Kabushiki Kaisha | Endoscope system |
6485413, | Apr 29 1991 | General Hospital Corporation, The | Methods and apparatus for forward-directed optical scanning instruments |
6485482, | Jul 30 1999 | Boston Scientific Scimed, Inc | Rotational and translational drive coupling for catheter assembly |
6501551, | Apr 29 1991 | Massachusetts Institute of Technology | Fiber optic imaging endoscope interferometer with at least one faraday rotator |
6516014, | Nov 13 1998 | Montana State University | Programmable frequency reference for laser frequency stabilization, and arbitrary optical clock generator, using persistent spectral hole burning |
6517532, | May 15 1997 | PALOMAR MEDICAL TECHNOLOGIES, LLC | Light energy delivery head |
6538817, | Oct 25 1999 | Lockheed Martin Corporation | Method and apparatus for optical coherence tomography with a multispectral laser source |
6540391, | Apr 27 2000 | IRIDEX Corporation | Method and apparatus for real-time detection, control and recording of sub-clinical therapeutic laser lesions during ocular laser photocoagulation |
6549801, | Jun 11 1998 | Regents of the University of California, The | Phase-resolved optical coherence tomography and optical doppler tomography for imaging fluid flow in tissue with fast scanning speed and high velocity sensitivity |
6552796, | Apr 06 2001 | LIGHTLAB IMAGING, INC | Apparatus and method for selective data collection and signal to noise ratio enhancement using optical coherence tomography |
6556305, | Feb 17 2000 | Bruker Nano Inc | Pulsed source scanning interferometer |
6556853, | Dec 12 1995 | Applied Spectral Imaging Ltd. | Spectral bio-imaging of the eye |
6558324, | Nov 22 2000 | Siemens Medical Solutions, Inc., USA | System and method for strain image display |
6564087, | Apr 29 1991 | Massachusetts Institute of Technology | Fiber optic needle probes for optical coherence tomography imaging |
6564089, | Feb 04 1999 | Olympus Corporation | Optical imaging device |
6567585, | Apr 04 2000 | Optiscan PTY LTD | Z sharpening for fibre confocal microscopes |
6593101, | Mar 28 2000 | Board of Regents, The University of Texas System | Enhancing contrast in biological imaging |
6611833, | Jun 23 1999 | Ventana Medical Systems, Inc | Methods for profiling and classifying tissue using a database that includes indices representative of a tissue population |
6615071, | Sep 20 1995 | Board of Regents, The University of Texas System | Method and apparatus for detecting vulnerable atherosclerotic plaque |
6622732, | Jul 15 1998 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Methods and devices for reducing the mineral content of vascular calcified lesions |
6654127, | Mar 01 2001 | CARL ZEISS MEDITEC, INC | Optical delay line |
6657730, | Jan 04 2001 | Interferometer with angled beam entry | |
6658278, | Oct 17 2001 | TERUMO CORPORATION OF JAPAN | Steerable infrared imaging catheter having steering fins |
6680780, | Dec 23 1999 | Bell Semiconductor, LLC | Interferometric probe stabilization relative to subject movement |
6685885, | Jun 22 2001 | Purdue Research Foundation | Bio-optical compact dist system |
6687007, | Dec 14 2000 | Kestrel Corporation | Common path interferometer for spectral image generation |
6687010, | Sep 09 1999 | Olympus Corporation | Rapid depth scanning optical imaging device |
6692430, | Apr 10 2000 | GYRUS ACMI, INC D B A OLYMPUS SURGICAL TECHNOLOGIES AMERICA | Intra vascular imaging apparatus |
6701181, | May 31 2001 | INFRAREDX, INC | Multi-path optical catheter |
6721094, | Mar 05 2001 | National Technology & Engineering Solutions of Sandia, LLC | Long working distance interference microscope |
6738144, | Dec 17 1999 | University of Central Florida | Non-invasive method and low-coherence apparatus system analysis and process control |
6757467, | Jul 25 2000 | Optical Air Data Systems, LLC | Optical fiber system |
6806963, | Nov 24 1999 | Haag-Streit AG | Method and device for measuring the optical properties of at least two regions located at a distance from one another in a transparent and/or diffuse object |
6816743, | Oct 08 1998 | University of Kentucky Research Foundation | Methods and apparatus for in vivo identification and characterization of vulnerable atherosclerotic plaques |
6831781, | Feb 26 1998 | General Hospital Corporation, The | Confocal microscopy with multi-spectral encoding and system and apparatus for spectroscopically encoded confocal microscopy |
6839496, | Jun 28 1999 | LONDON, UNIVERISTY COLLEGE | Optical fibre probe for photoacoustic material analysis |
6882432, | Aug 08 2000 | Zygo Corporation | Frequency transform phase shifting interferometry |
6900899, | Aug 20 2001 | Keysight Technologies, Inc | Interferometers with coated polarizing beam splitters that are rotated to optimize extinction ratios |
6909105, | Mar 02 1999 | MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN E V | Method and device for representing an object |
6949072, | Sep 22 2003 | INFRAREDX, INC | Devices for vulnerable plaque detection |
6961123, | Sep 28 2001 | TEXAS A&M UNIVERSITY SYSTEM, THE | Method and apparatus for obtaining information from polarization-sensitive optical coherence tomography |
6980299, | Oct 16 2001 | General Hospital Corporation | Systems and methods for imaging a sample |
6996549, | May 01 1998 | Health Discovery Corporation | Computer-aided image analysis |
7006231, | Oct 18 2001 | Boston Scientific Scimed, Inc | Diffraction grating based interferometric systems and methods |
7006232, | Apr 05 2002 | Case Western Reserve University; University of Hospitals of Cleveland | Phase-referenced doppler optical coherence tomography |
7019838, | May 30 2003 | Duke University | System and method for low coherence broadband quadrature interferometry |
7027633, | Nov 30 2000 | Rutgers, The State University of New Jersey | Collaborative diagnostic systems |
7061622, | Aug 03 2001 | University Hospitals of Cleveland; Case Western Reserve University | Aspects of basic OCT engine technologies for high speed optical coherence tomography and light source and other improvements in optical coherence tomography |
7072047, | Jul 12 2002 | University Hospitals of Cleveland; Case Western Reserve University | Method and system for quantitative image correction for optical coherence tomography |
7075658, | Jan 24 2003 | Duke University; Case Western Reserve University | Method for optical coherence tomography imaging with molecular contrast |
7099358, | Aug 05 2005 | Santec Corporation | Tunable laser light source |
7113288, | Jun 15 2001 | Carl Zeiss Jena GmbH | Numerical a posteriori dispersion compensation in PCI measurement signals and OCT A-scan signals with spatially variant correlation core |
7113625, | Oct 01 2004 | U S PATHOLOGY LABS, INC | System and method for image analysis of slides |
7130320, | Nov 13 2003 | Mitutoyo Corporation | External cavity laser with rotary tuning element |
7139598, | Apr 04 2002 | VERALIGHT, INC | Determination of a measure of a glycation end-product or disease state using tissue fluorescence |
7142835, | Sep 29 2003 | SILICON LABORATORIES, INC | Apparatus and method for digital image correction in a receiver |
7148970, | Oct 16 2001 | The General Hospital Corporation | Systems and methods for imaging a sample |
7177027, | May 17 2002 | Japan Science and Technology Agency | Autonomous ultra-short optical pulse compression, phase compensating and waveform shaping device |
7190464, | May 14 2004 | VZN CAPITAL, LLC | Low coherence interferometry for detecting and characterizing plaques |
7230708, | Dec 28 2000 | LAPOTKO, TATIANA, MS | Method and device for photothermal examination of microinhomogeneities |
7236637, | Nov 24 1999 | GE Medical Systems Information Technologies, Inc.; GE MEDICAL SYSTEMS INFORMATION TECHNOLOGIES, INC | Method and apparatus for transmission and display of a compressed digitized image |
7242480, | May 14 2004 | CARDIOLUMEN, INC | Low coherence interferometry for detecting and characterizing plaques |
7267494, | Feb 01 2005 | II-VI Incorporated; MARLOW INDUSTRIES, INC ; EPIWORKS, INC ; LIGHTSMYTH TECHNOLOGIES, INC ; KAILIGHT PHOTONICS, INC ; COADNA PHOTONICS, INC ; Optium Corporation; Finisar Corporation; II-VI OPTICAL SYSTEMS, INC ; M CUBED TECHNOLOGIES, INC ; II-VI PHOTONICS US , INC ; II-VI DELAWARE, INC; II-VI OPTOELECTRONIC DEVICES, INC ; PHOTOP TECHNOLOGIES, INC | Fiber stub for cladding mode coupling reduction |
7272252, | Jun 12 2002 | Carl Zeiss Microscopy GmbH | Automated system for combining bright field and fluorescent microscopy |
7304798, | Sep 03 2003 | Fujitsu Limited | Spectroscopic apparatus |
7330270, | Jan 21 2005 | CARL ZEISS MEDITEC, INC | Method to suppress artifacts in frequency-domain optical coherence tomography |
7336366, | Jan 20 2005 | Duke University | Methods and systems for reducing complex conjugate ambiguity in interferometric data |
7342659, | Jan 21 2005 | CARL ZEISS MEDITEC, INC | Cross-dispersed spectrometer in a spectral domain optical coherence tomography system |
7355716, | Jan 24 2002 | GENERAL HOSPITAL CORPORATION THE | Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands |
7355721, | May 08 2003 | D4D Technologies, LLC | Optical coherence tomography imaging |
7359062, | Dec 09 2003 | The Regents of the University of California | High speed spectral domain functional optical coherence tomography and optical doppler tomography for in vivo blood flow dynamics and tissue structure |
7366376, | Sep 29 2004 | The General Hospital Corporation | System and method for optical coherence imaging |
7382809, | Feb 25 2005 | Santec Corporation | Tunable fiber laser light source |
7391520, | Jul 01 2005 | CARL ZEISS MEDITEC, INC | Fourier domain optical coherence tomography employing a swept multi-wavelength laser and a multi-channel receiver |
7458683, | Jun 16 2003 | AMO Manufacturing USA, LLC | Methods and devices for registering optical measurement datasets of an optical system |
7530948, | Feb 28 2005 | University of Washington | Tethered capsule endoscope for Barrett's Esophagus screening |
7539530, | Aug 22 2003 | INFRAREDX, INC | Method and system for spectral examination of vascular walls through blood during cardiac motion |
7609391, | Nov 23 2004 | Optical lattice microscopy | |
7630083, | Jan 24 2002 | The General Hospital Corporation | Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands |
7643152, | Jan 24 2002 | The General Hospital Corporation | Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands |
7643153, | Jan 24 2003 | The General Hospital Corporation | Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands |
7646905, | Dec 23 2002 | Qinetiq Limited | Scoring estrogen and progesterone receptors expression based on image analysis |
7649160, | Feb 23 2005 | LYNCEE TEC S A | Wave front sensing method and apparatus |
7664300, | Feb 03 2005 | STI Medical Systems, LLC | Uterine cervical cancer computer-aided-diagnosis (CAD) |
7733497, | Oct 27 2003 | General Hospital Corporation, The | Method and apparatus for performing optical imaging using frequency-domain interferometry |
7782464, | May 12 2006 | The General Hospital Corporation | Processes, arrangements and systems for providing a fiber layer thickness map based on optical coherence tomography images |
7805034, | Jan 29 2008 | Namiki Seimitsu Houseki Kabushiki Kaisha | OCT probe for eliminating ghost images |
20010036002, | |||
20010047137, | |||
20020016533, | |||
20020024015, | |||
20020048025, | |||
20020048026, | |||
20020052547, | |||
20020057431, | |||
20020085209, | |||
20020086347, | |||
20020091322, | |||
20020109851, | |||
20020122182, | |||
20020122246, | |||
20020140942, | |||
20020158211, | |||
20020161357, | |||
20020163622, | |||
20020168158, | |||
20020183623, | |||
20020196446, | |||
20020198457, | |||
20030001071, | |||
20030013973, | |||
20030023153, | |||
20030026735, | |||
20030028114, | |||
20030030816, | |||
20030043381, | |||
20030053673, | |||
20030067607, | |||
20030082105, | |||
20030097048, | |||
20030108911, | |||
20030120137, | |||
20030135101, | |||
20030137669, | |||
20030165263, | |||
20030171691, | |||
20030174339, | |||
20030220749, | |||
20030236443, | |||
20040002650, | |||
20040039298, | |||
20040054268, | |||
20040072200, | |||
20040075841, | |||
20040076940, | |||
20040077949, | |||
20040085540, | |||
20040110206, | |||
20040126048, | |||
20040126120, | |||
20040150829, | |||
20040150830, | |||
20040152989, | |||
20040165184, | |||
20040166593, | |||
20040189999, | |||
20040239938, | |||
20040246490, | |||
20040246583, | |||
20040254474, | |||
20040263843, | |||
20050018133, | |||
20050018201, | |||
20050035295, | |||
20050036150, | |||
20050046837, | |||
20050057680, | |||
20050057756, | |||
20050059894, | |||
20050065421, | |||
20050119567, | |||
20050128488, | |||
20050165303, | |||
20050171438, | |||
20050190372, | |||
20050254061, | |||
20060033923, | |||
20060093276, | |||
20060103850, | |||
20060146339, | |||
20060164639, | |||
20060171503, | |||
20060184048, | |||
20060193352, | |||
20060244973, | |||
20070019208, | |||
20070038040, | |||
20070070496, | |||
20070076217, | |||
20070086013, | |||
20070086017, | |||
20070091317, | |||
20070133002, | |||
20070188855, | |||
20070223006, | |||
20070236700, | |||
20070258094, | |||
20070291277, | |||
20080002197, | |||
20080007734, | |||
20080049220, | |||
20080094613, | |||
20080094637, | |||
20080097225, | |||
20080097709, | |||
20080100837, | |||
20080152353, | |||
20080154090, | |||
20080204762, | |||
20080265130, | |||
20080308730, | |||
20090011948, | |||
20090196477, | |||
20090273777, | |||
20090290156, | |||
20100086251, | |||
20100094576, | |||
20100150467, | |||
CN1550203, | |||
DE10351319, | |||
DE19542955, | |||
DE4309056, | |||
EP110201, | |||
EP251062, | |||
EP617286, | |||
EP728440, | |||
EP1324051, | |||
EP1426799, | |||
FR2738343, | |||
GB2209221, | |||
GB2298054, | |||
JP20030035659, | |||
JP20040056907, | |||
JP2004037165, | |||
JP2007271761, | |||
JP2214127, | |||
JP4135550, | |||
JP4135551, | |||
JP5509417, | |||
JP6073405, | |||
WO101111, | |||
WO127679, | |||
WO2053050, | |||
WO2084263, | |||
WO237075, | |||
WO3046495, | |||
WO3046636, | |||
WO3062802, | |||
WO3105678, | |||
WO2004057266, | |||
WO2005047813, | |||
WO2005082225, | |||
WO2006004743, | |||
WO2006038876, | |||
WO2006039091, | |||
WO2006059109, | |||
WO2006124860, | |||
WO2007028531, | |||
WO2007083138, | |||
WO2007084995, | |||
WO2298054, | |||
WO7900841, | |||
WO9201966, | |||
WO9216865, | |||
WO9800057, | |||
WO9848846, | |||
WO9944089, | |||
WO58766, | |||
WO138820, | |||
WO142735, | |||
WO2054027, | |||
WO236015, | |||
WO238040, | |||
WO3020119, | |||
WO3062802, | |||
WO2004105598, | |||
WO9219930, | |||
WO9303672, | |||
WO9533971, | |||
WO9732182, | |||
WO9814132, | |||
WO9835203, | |||
WO9848838, | |||
WO9944089, | |||
WO9957507, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 16 2004 | YUN, SEOK-HYUN | The General Hospital Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 029201 | /0620 | |
Nov 16 2004 | BOUMA, BRETT EUGENE | The General Hospital Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 029201 | /0620 | |
Nov 16 2004 | TEARNEY, GUILLERMO J | The General Hospital Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 029201 | /0620 | |
Nov 16 2004 | DEBOER, JOHANNES | The General Hospital Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 029201 | /0620 | |
Nov 24 2008 | The General Hospital Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Oct 29 2015 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Oct 29 2019 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 05 2016 | 4 years fee payment window open |
Sep 05 2016 | 6 months grace period start (w surcharge) |
Mar 05 2017 | patent expiry (for year 4) |
Mar 05 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 05 2020 | 8 years fee payment window open |
Sep 05 2020 | 6 months grace period start (w surcharge) |
Mar 05 2021 | patent expiry (for year 8) |
Mar 05 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 05 2024 | 12 years fee payment window open |
Sep 05 2024 | 6 months grace period start (w surcharge) |
Mar 05 2025 | patent expiry (for year 12) |
Mar 05 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |