A class of pyrazolyl benzenesulfonamide compounds is described for use in treating inflammation and inflammation-related disorders. Compounds of particular interest are defined by Formula II:
##STR00001##
or a pharmaceutically-acceptable salt thereof. A method of treating inflammation or an inflammation-associated disorder in a subject by administering a therapeutically-effective dose of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide, or a pharmaceutically-acceptable salt thereof, to the subject.
0. 20. A method of treating pain in a subject, said method comprising administering to the subject having or susceptible to pain, a therapeutically-effective amount of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide, or a pharmaceutically-acceptable salt thereof.
0. 19. A method of treating arthritis in a subject, said method comprising administering to the subject having or susceptible to arthritis, a therapeutically-effective amount of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide, or a pharmaceutically-acceptable salt thereof.
0. 21. A method of treating osteoarthritis in a subject, said method comprising administering to the subject having or susceptible to osteoarthritis, a therapeutically-effective amount of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide, or a pharmaceutically-acceptable salt thereof.
0. 25. A method of treating menstrual cramps in a subject, said method comprising administering to the subject having or susceptible to menstrual cramps, a therapeutically-effective amount of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide, or a pharmaceutically-acceptable salt thereof.
0. 23. A method of treating juvenile arthritis in a subject, said method comprising administering to the subject having or susceptible to juvenile arthritis, a therapeutically-effective amount of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide, or a pharmaceutically-acceptable salt thereof.
0. 22. A method of treating rheumatoid arthritis in a subject, said method comprising administering to the subject having or susceptible to rheumatoid arthritis, a therapeutically-effective amount of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide, or a pharmaceutically-acceptable salt thereof.
0. 24. A method of treating spondyloarthropathy in a subject, said method comprising administering to the subject having or susceptible to spondyloarthropathies, a therapeutically-effective amount of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide, or a pharmaceutically-acceptable salt thereof.
0. 1. A method of treating inflammation or an inflammation-associated disorder in a subject, said method comprising administering to the subject having or susceptible to such inflammation or inflammation-associated disorder, a therapeutically-effective amount of a compound of Formula I
##STR00101##
wherein R1 is phenyl substituted at a substitutable position with one or more radicals selected from halo, C1-C10-alkyl, and sulfamyl
wherein R2 is selected from hydrido, C1-C6-haloalkyl, cyano, carboxy, C1-C6-alkoxycarbonyl, C1-C6-carboxyalkyl, C1-C6-alkoxy, C1-C6-alkylthio, aminocarbonyl, aminocarbonyl-C1-C6-alkyl, C1-C6-N-alkylaminocarbonyl, N-arylaminocarbonyl, C1-C6-N,N-dialkylaminocarbonyl, C1-C6-N-alkyl-N-aryl-aminocarbonyl, and C1-C6-hydroxyalkyl;
wherein R3 is selected from hydrido, C1-C10-alkyl, halo, cyano, C1-C6-alkoxy, C1-C6-hydroxyalkyl, C1-C6-alkylthio, and C1-C6-alkylsulfonyl;
wherein R4 is selected from aryl-C2-C6-alkenyl, aryl, C3-C7-cycloalkyl, C3-C7-cycloalkenyl and five to ten membered heterocyclic; wherein R4 is optionally substituted at a substitutable position with one or more radicals selected from halo, C1-C6-alkylthio, C1-C6-alkylsulfinyl, C1-C10-alkyl, C1-C6-alkylsulfonyl, cyano, carboxyl, C1-C6-alkoxycarbonyl, aminocarbonyl, C1-C6-haloalkyl, hydroxyl, C1-C6-alkoxy, C1-C6-hydroxyalkyl, C1-C6-haloalkoxy, sulfamyl, C1-C6-N-alkylaminocrbonyl, amino, C1-C6-N-alkylamino, C1-C6-N,N-dialkylamino, five or six membered heterocyclic, nitro, and
##STR00102##
 and
wherein R7 is hydrido;
wherein aryl wherever occurring means phenyl, naphthyl, tetrahydronaphthyl, indene, biphenyl,
provided R2 and R3 are not identical radicals selected from hydrido, carboxyl and ethoxycarbonyl; further provided that R2 is not carboxyl or methyl when R3 is hydrido and when R4 is phenyl; further provided that R4 is not triazolyl when R2 is methyl; further provided that R4 is not aralkenyl when R2 is carboxyl, aminocarbonyl or ethoxycarbonyl; further provided that R4 is not phenyl when R2 is methyl and R3 is carboxyl; further provided that R4 is not 4-chlorophenyl when R2 is methyl and R3 is bromo; further provided that R4 is not unsubstituted thienyl when R2 is trifluoromethyl; and further provided that R4 is aryl substituted with sulfamyl when R1 is phenyl not substituted with sulfamyl; and further provided the compound is not 4-[5-(3-fluoro-4-methoxyphenyl)-3-(difluoromethyl)-1H-pyrazol-1yl]benzenesulfonamide; or a pharmaceutically-acceptable salt thereof.
0. 2. The method of
wherein R2 is selected from hydrido, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, pentafluoroethyl, heptafluoropropyl, difluorochloromethyl, dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl, dichloropropyl, cyano, carboxyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, tert-butoxycarbonyl, propoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, pentoxycarbonyl, acetyl, propionyl, butyryl, isobutyryl, valeryl, isovaleryl, pivaloyl, and hexanoyl, methoxy, ethoxy, methylthio, aminocarbonyl, aminocarbonylmethyl, N-methylaminocarbonyl, N-ethylaminocarbonyl, N-isopropylaminocarbonyl, N-propylaminocarbonyl, N-butylaminocarbonyl, N-isobutylaminocarbonyl, N-tert-butylaminocarbonyl, N-pentylaminocarbonyl, N-phenylaminocarbonyl, N,N-dimethylaminocarbonyl, N-methyl-N-ethylaminocarbonyl, N-(3-fluorophenyl)aminocarbonyl, N-(4-methylphenyl)aminocarbonyl, N-(3-chlorophenyl)aminocarbonyl, N-methyl-N-(3-chlorophenyl)aminocarbonyl, N-(4-methoxyphenyl)aminocarbonyl, N-methyl-N-phenylaminocarbonyl, hydroxymethyl, and hydroxypropyl;
wherein R3 is selected from hydrido, methyl, ethyl, isopropyl, tert-butyl, isobutyl, hexyl, fluoro, chloro, bromo, cyano, methoxy, methylthio, methylsulfonyl, hydroxypropyl, hydroxymethyl, and hydroxyethyl; and
wherein R4 is selected from phenyl, naphthyl, biphenyl, cyclohexyl, cyclopentyl, cycloheptyl, 1-cyclohexenyl, 2-cyclohexenyl, 3-cyclohexenyl, 4-cyclohexenyl, 1-cyclopentenyl, 4-cyclopentenyl, benzofuryl, 2,3-dihydrobenzofuryl, 1,2,3,4-tetrahydronaphthyl, benzothienyl, indenyl, indanyl, indolyl, dihydroindolyl, chromanyl, benzopyran, thiochromanyl, benzothiopyran, benzodioxolyl, benzodioxanyl, pyridyl, thienyl, thiazolyl, oxazolyl, furyl and pyrazinyl; wherein R4 is optionally substituted at a substitutable position with one or more radicals selected from fluoro, chloro, bromo, methylthio, methylsulfinyl, methyl, ethyl, propyl, isopropyl, tert-butyl, isobutyl, hexyl, methylsulfonyl, cyano, carboxyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, tert-butoxycarbonyl, propoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, pentoxycarbonyl, aminocarbonyl, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, pentafluoroethyl, heptafluoropropyl, bromodifluoromethyl, difluorochloromethyl, dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl, dichloropropyl, hydroxyl, methoxy, methylenedioxy, ethoxy, propoxy, n-butoxy, sulfamyl, methylaminosulfonyl, hydroxypropyl, hydroxyisopropyl, hydroxymethyl, hydroxyethyl, trifluoromethoxy, amino, N-methylamino, N-ethylamino, N-ethyl-N-methylamino, N,N-dimethylamino, N,N-diethylamino, formylamino, methylcarbonylamino, trifluoroacetamino, piperadinyl, piperazinyl, morpholino, nitro, and
##STR00103##
wherein R7 is hydrido;
or a pharmaceutically-acceptable salt thereof.
0. 3. The method of
ethyl 1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-pyrazole-3-carboxylate;
ethyl 1-[4-(aminosulfonyl)phenyl]-5-(4-methylphenyl)-1H-pyrazole-3-carboxylate;
isopropyl 1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-pyrazole-3-carboxylate;
N-[4-methylphenyl]-1-[4-(aminosulfonyl)phenyl]-5-(4-fluorophenyl)-1H-pyrazole-3-carboxamide;
N-[3-chlorophenyl]-1-[4-(aminosulfonyl)phenyl]-5-(4-fluorophenyl)-1H-pyrazole-3-carboxamide;
N-[3-fluorophenyl]-1-[4-(aminosulfonyl)phenyl]-5-(4-fluorophenyl)-1H-pyrazole-3-carboxamide;
N-[3-fluorophenyl]-1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-pyrazole-3-carboxamide;
phenylmethyl N-[[1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-pyrazol-3-yl]carbonyl]glycinate;
4-[5-(4-bromophenyl)-3-cyano-1H-pyrazol-1-yl]benzenesulfonamide;
4-[3-cyano-5-(4-fluorophenyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-chlorophenyl)-3-cyano-1H-pyrazol-1-yl]benzenesulfonamide;
4-[3-cyano-5-(4-methoxyphenyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[3-cyano-5-(4-methylphenyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[3-cyano-5-(4-methylthiophenyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(5-chloro-4-methoxyphenyl)-3-cyano-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(5-bromo-4-methoxyphenyl)-3-cyano-1H-pyrazol-1-yl]benzenesulfonamide;
4-[3-cyano-5-phenyl-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-chloro-5-(4-fluorophenyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-chloro-5-(4-chlorophenyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-bromo-5-(4-chlorophenyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-chloro-5-phenyl-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-chloro-5-(3,5-dichloro-4-methoxyphenyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-bromo-5-(4-methylphenyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-chloro-5-(4-methylphenyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-chloro-5-(3-chloro-4-methoxyphenyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-chloro-5-(4-methoxyphenyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-bromo-5-(4-methoxyphenyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-cyano-5-(4-methoxyphenyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-chloro-5-(4-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-ethyl-5-phenyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-methyl-5-phenyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-methoxyphenyl)-4-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-chlorophenyl)-4-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-chlorophenyl)-4-ethyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-ethyl-5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-ethyl-5-(4-methoxy-3-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-ethyl-5-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-ethyl-5-(3-fluoro-4-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-fluorophenyl)-4-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-methyl-5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-fluoro-5-phenyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-bromo-5-(4-chlorophenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-chloro-5-(3,5-dichloro-4-methoxyphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-chloro-3-(difluoromethyl)-5-phenyl-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-bromo-3-(difluoromethyl)-5-phenyl-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-chloro-3-difluoromethyl)-5-(4-methoxyphenyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-chloro-3-cyano-5-phenyl-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-chloro-5-(4-chlorophenyl)-3-cyano-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-chloro-3-cyano-5-(4-fluorophenyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-bromo-3-cyano-5-(4-fluorophenyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-bromo-3-cyano-5-phenyl-1H-pyrazol-1-yl]benzenesulfonamide;
ethyl [1-(4-aminosulfonylphenyl)-4-bromo-5-(4-chlorophenyl)-1H-pyrazol-3-yl]carboxylate;
methyl [1-(4-aminosulfonylphenyl)-4-chloro-5-phenyl-1H-pyrazol-3-yl]carboxylate;
methyl [1-(4-aminosulfonylphenyl)-4-chloro-5-(4-chlorophenyl)-1H-pyrazol-3yl]carboxylate;
ethyl [1-(4-aminosulfonylphenyl)-4-chloro-5-(4-chlorophenyl)-1H-pyrazol-3-yl]carboxylate;
methyl [1-(4-aminosulfonylphenyl)-4-chloro-5-(4-fluorophenyl)-1H-pyrazol-3-yl]carboxylate;
methyl [1-(4-aminosulfonylphenyl)-4-bromo-5-(4-fluorophenyl)-1H-pyrazol-3-yl]carboxylate;
methyl [1-(4-aminosulfonylphenyl)-4-chloro-5-(3-chloro-4-methoxyphenyl)-1H-pyrazol-3-yl]carboxylate;
methyl [1-(4-aminosulfonylphenyl)-4-chloro-5-(3,5dichloro-4-methoxyphenyl)-1H-pyrazol-3-yl]carboxylate;
methyl [1-(4-aminosulfonylphenyl)-5-(3-bromo-4-methoxyphenyl)-4-chloro-1H-pyrazol-3-yl]carboxylate;
4-[4-chloro-3-hydroxymethyl-5-phenyl-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-chloro-5-(4-chlorophenyl)-3-hydroxymethyl-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-phenyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-fluorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-cyanophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(2,4-difluorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(3,4-dichlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-bromophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(2,4-dichlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(3-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(2-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(2-fluorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-aminophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(2-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-fluoro-2-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(3-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-ethoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(3,5-dimethylphenyl-4-methoxy)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(3-fluorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(3-fluoro-4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-methylthiophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-chloro-3-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-ethylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(2,4-dimethylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(2-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-methoxy-3-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(3-bromo-4-methylthiophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(3-chloro-4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(3,4-dimethoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(3-chloro-4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(3-chloro-4-methoxy-5-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(3-ethyl-4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-fluoro-2-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-methoxy-3-(3-propenyl)phenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(3,5-dichloro-4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(3-chloro-4-fluorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(3-fluoro-4-methylthiophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(3-methyl-4-methylthiophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(3-chloro-4-methylthiophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-(N,N-dimethylamino)phenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-methyl-3-nitrophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-(N-methylamino)phenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(3-amino-4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-chlorophenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-methylthiophenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-methylphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-phenyl-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-methoxyphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-chlorophenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(2-fluoro-4-methoxyphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(3-chloro-4-methylphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(3-chloro-4-methoxyphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-chloro-3-methylphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(3,4-dimethoxyphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(3,5-dichloro-4-methoxyphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(3,5-difluoro-4-methoxyphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(2-methoxyphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(3-bromo-4-methoxyphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-methylsulfonylphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-chlorophenyl)-3-(heptafluoropropyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-chlorophenyl)-3-(chloro-difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-chlorophenyl)-3-(pentafluoroethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-fluorophenyl)-3-(3-hydroxypropyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(3,5-dichloro-4-methoxyphenyl)-3-(3-hydroxypropyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(3-chloro-4-methoxyphenyl)-3-(chloromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[3-(chloro-difluoromethyl)-5-(3-fluoro-4-methoxyphenyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(phenyl)-3-(fluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(5-bromo-2-thienyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(5-chloro-2-thienyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(1-cyclohexenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(1-cyclohexyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(6-benzodioxanyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[3-(difluoromethyl)-5-(4-methylcyclohexyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(2-benzofuranyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(1,3-benzodioxol-5-yl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(2-benzofuryl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(5-bromo-2-thienyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(5-chloro-2-thienyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(5-indanyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(5-methyl-2-thienyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(2,3-dihydrobenzofuran-2-yl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide,
4-[5-(1-cyclohexenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(1,2,3,4-tetrahydronaphth-5-yl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(2-benzothienyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(3,4-dihydro-2H-1-benzothiopyran-7-yl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-methyl-1,3-benzodioxol-6-yl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide; and
4-[5-(4-methyl-1,3-benzodioxol-5-yl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide.
0. 4. The method of
0. 5. The method of
0. 6. A method of treating inflammation or an inflammation-associated disorder in a subject, said method comprising administering to the subject having or susceptible to such inflammation or inflammation-associated disorder, a therapeutically-effective amount of a compound of Formula I
##STR00104##
wherein R1 is phenyl substituted at a substitutable position with sulfamyl;
wherein R2 is selected from C1-C5-haloalkyl, cyano, carboxyl, C1-C6-alkoxycarbonyl, C1-C5-carboxyalkyl, aminocarbonyl, C1-C6-N-alkylaminocarbonyl, N-arylaminocarbonyl, C1-C6-N,N-dialkylaminocarbonyl, C1-C6-N-alkyl-N-arylaminocarbonyl, and C1-C6-hydroxyalkyl;
wherein R3 and R4 together form
##STR00105##
wherein m is 2;
wherein A is phenyl; and
wherein R6 is one or more radicals selected from halo, C1-C10-alkyl, C1-C6-alkylsulfonyl, C1-C5-haloalkyl, C1-C6-alkoxy, amino and nitro;
wherein aryl wherever occurring means phenyl, naphthyl, tetrahydronaphthyl, indane, biphenyl;
or a pharmaceutically-acceptable salt thereof.
0. 7. The method of
or a pharmaceutically-acceptable salt thereof.
0. 8. The method of
4-[3-(difluoromethyl)-4,5-dihydro-7-methoxy-1H-benz[g]indazol-1-yl]benzenesulfonamide;
4-[3-(difluoromethyl)-4,5-dihydro-7-methyl-1H-benz[g]indazol-1-yl]benzenesulfonamide;
4-[4,5-dihydro-7-methoxy-3-(trifluoromethyl)-1H-benz[g]indazol-1-yl]benzenesulfonamide;
4-[4,5-dihydro-3-(trifluoromethyl)-1H-benz[g]indazol-1yl]benzenesulfonamide;
4-[4,5-dihydro-7-methyl-3-(trifluoromethyl)-1H-benz[g]indazol-1-yl]benzenesulfonamide;
methyl[1-(4-aminosulfonylphenyl)-4,5-dihydro-7-methoxy-1H-benz[g]indazol-3-yl]carboxylate; and
4-[4,5-dihydro-3-trifluoromethyl-1H-thieno[3,2,g]indazol-1-yl]benzenesulfonamide.
0. 9. A method of treating inflammation or an inflammation-associated disorder in a subject, said method comprising administering to the subject having or susceptible to such inflammation or inflammation-associated disorder, a therapeutically-effective amount of a compound of Formula I
##STR00106##
wherein R1 is phenyl, wherein R1 is substituted at a substitutable position with one or more radicals selected from halo, C1-C10-alkyl, C1-C6-alkoxy, hydroxyl and C1-C6-haloalkyl; wherein R2 is selected from C1-C6-haloalkyl; wherein R3 is hydrido; and wherein R4 is aryl substituted at a substitutable position with sulfamyl; or a pharmaceutically-acceptable salt thereof;
wherein aryl wherever occurring means phenyl, naphthyl, tetrahydronaphthyl, indane, biphenyl;
or a pharmaceutically-acceptable salt thereof.
0. 10. The method of
4-[1-(4-fluorophenyl)-3-(trifluoromethyl)-1H-pyrazol-5-yl]benzenesulfonamide; and
4-[1-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-5-yl]benzenesulfonamide.
0. 11. A method of treating inflammation or an inflammation-associated disorder in a subject, said method comprising administering to the subject having or susceptible to such inflammation or inflammation-associated disorder, a therapeutically-effective amount of a compound of Formula II
##STR00107##
wherein R2 is selected from hydrido, C1-C6-haloalkyl, C1-C6-alkoxycarbonyl, cyano, aminocarbonyl, arylaminocarbonyl, C1-C6-carboxyalkyl, and C1-C6-hydroxyalkyl;
wherein R3 is selected from hydrido, and halo; and
wherein R4 is selected from aryl, C3-C10-cycloalkyl, C3-C10-cycloalkenyl and heterocyclic; wherein R4 is optionally substituted at a substitutable position with one or more radicals selected from halo, C1-C6-alkylthio, C1-C6-alkylsulfonyl, cyano, nitro, C1-C6-haloalkyl, C1-C10-alkyl, C1-C6-alkoxy, C1-C6-haloalkoxy, sulfamyl, five or six membered heterocyclic and amino; wherein aryl wherever occurring means phenyl, naphthyl, tetrahydronaphthyl, indane, biphenyl;
provided R2 and R3 are not both hydrido; and further provided that R4 is not unsubstituted thienyl when R2 is trifluoromethyl; and further provided the compound is not 4-[5-(3-fluoro-4-methoxyphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
or a pharmaceutically-acceptable salt thereof.
0. 12. The method of
4-[5-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-phenyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-fluorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-chlorophenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-chloro-5-(4-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[3-(difluoromethyl)-5-(4-methylphenyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[3-(difluoromethyl)-5-phenyl-1H-pyrazol-1-yl]benzenesulfonamide;
4-[3-(difluoromethyl)-5-(4-methoxyphenyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[3-cyano-5-(4-fluorophenyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(3-fluoro-4-methoxyphenyl)-3-trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-chloro-5-phenyl-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-chlorophenyl)-3-(hydroxymethyl)-1H-pyrazol-1-yl]benzenesulfonamide; and
4-[5-(4-(N,N-dimethylamino)phenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide.
0. 13. The method of
0. 14. The method of
0. 15. The method of
0. 16. The method of
0. 17. The method of
0. 18. The method of
|
Compounds of Formulas I-II HRMS is an abbreviation for High resolution mass spectrometry. In the following tables, “ND” represents “not determined”.
##STR00034##
Ethyl trifluoroacetate (23.52 g, 166 mmol) was placed in a 500 mL three-necked round bottom flask, and dissolved in methyl tert-butyl ether (75 mL). To the stirred solution was added 25% sodium methoxide (40 mL, 177 mmol) via an addition funnel over a 2 minute period. Next 4′-chloroacetophenone (23.21 g, 150 mmol) was dissolved in methyl tert-butyl ether (20 mL), and added to the reaction dropwise over 5 minutes. After stirring overnight (15.75 hours), 3N HCl (70 mL) was added. The organic layer was collected, washed with brine (75 mL), dried over MgSO4, filtered, and concentrated in vacuo to give a 35.09 g of yellow-orange solid. The solid was recrystallized from iso-octane to give 31.96 g (85%) of the dione: mp66°-67° C.
4-Sulphonamidophenylhydrazine hydrochloride (982 mg, 4.4 mmol 1.1 equivalent) was added to a stirred solution of 4,4,4-trifluoro-1-[4-(chloro)phenyl]-butane-1,3-dione from Step 1 (1.00 g, 4.0 mmol) in ethanol (50 mL). The reaction was heated to reflux and stirred for 20 hours. (HPLC area percent showed a 96:3 ratio of 4-[5-(4-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide to its regioisomer (4-[3-(4-chlorophenyl)-5-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide). After cooling to room temperature, the reaction mixture was concentrated in vacuo. The residue was taken up in ethyl acetate, washed with water and with brine, dried over MgSO4, filtered, and concentrated in vacuo to give a light brown solid which was recrystallized from ethyl acetate and iso-octane to give the pyrazole (1.28 g, 80%, mp 143°-145° C.). HPLC showed that the purified material was a 99.5:0.5 mixture of 4-[5-(4-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide to its regioisomer. 1H NMR (CDCl3/CD3OD 10/1) d 5.2 (s, 2H), 6.8 (s, 1H), 7.16 (d, j=8.5 Hz, 2H), 7.35 (d, j=8.5 Hz, 2H), 7.44 (d, j=8.66, 2H), 7.91 (d, j=8.66, 2H); 13C NMR (CDCl3/CD3OD 10/1) d 106.42 (d, j=0.03 Hz), 121.0 (q, j=276 Hz), 125.5, 126.9, 127.3, 129.2, 130.1, 135.7, 141.5, 143.0, 143.9 (q, j=37 Hz), 144.0; 19F NMR (CDCl3OD 10/1) d -62.9; EI GC-MS M+=401.
Example 2 was prepared in a similar manner using the appropriate acetophenone.
##STR00035##
4′-Methylacetophenone (5.26 g, 39.2 mmol) was dissolved in 25 mL of methanol under argon and 12 mL (52.5 mmol) sodium methoxide in methanol (25%) was added. The mixture was stirred for 5 minutes and 5.5 mL (46.2 mmol) ethyl trifluoroacetate was added. After refluxing for 24 hours, the mixture was cooled to room temperature and concentrated. 100 mL 10% HCl was added and the mixture extracted with 4×75 mL ethyl acetate. The extracts were dried over MgSO4, filtered and concentrated to afford 8.47 g (94%) of a brown oil which was carried on without further purification.
To the dione from Step 1 (4.14 g, 18.0 mmol) in 75 mL absolute ethanol was added 4.26 g (19.0 mmol) 4-sulphonamidophenylhydrazine hydrochloride. The reaction was refluxed under argon for 24 hours. After cooling to room temperature and filtering, the reaction mixture was concentrated to afford 6.13 g of an orange solid. The solid was recrystallized from methylene chloride/hexane to give 3.11 g (8.2 mmol, 46%) of the product as a pale yellow Yellow solid: mp 157°-159° C.; Anal. calc'd for C17H14N3O2SF3: C, 53.54; H, 3.70; N, 11.02. Found: C, 53.17; H, 3.81; N, 10.90.
##STR00036##
To a cooled solution (0° C.) of 7.44 g (55.8 mmol) AlCl3 in 25 mL of CH2Cl2 under argon was added 2.5 mL of acetic anhydride dropwise. After stirring for 0.5 hours, 4.18 g (23.6 mmol) of 2,6-dichloroanisole was added dropwise. The reaction was stirred at 0° C. for 1 hour, warmed to room temperature and stirred for 12 hours. The reaction was poured into 6 mL conc. hydrochloric acid/80 mL ice water. The aqueous phase was extracted with ethyl acetate (3×75 mL). The combined organic washes were dried over MgSO4, filtered, and stripped to afford the crude product as a yellow oil. NMR analysis showed that acylation only occured para to the methoxy. The crude oil was used without any further purification.
The title compound was prepared in the same manner as Example 2, Steps 1 and 2 and was purified on a prep plate eluting with 10:1 hexane/ethyl acetate to afford a yellow solid: Anal. cal'd for C17H12N3O3SF3Cl2.H2O: C, 42.16; H, 2.91; N, 8.68. Found: C, 42.03; H, 2.54; N, 8.45.
##STR00037##
AlCl3 (4.9 g, 36.8 mmol) was added to a solution of 2-ethylanisole (2.5 g, 18.4 mmol) in methylene chloride (50 mL). Acetyl chloride (1.3 mL, 18.4 mmol) was added dropwise to the reaction mixture, which was then stirred at reflux for 0.5 hours. After cooling to room temperature, the reaction was poured over crushed ice and followed up with a methylene chloride/water extraction. The organic layer was dried over magnesium sulfate, filtered and concentrated. The crude product was chromatographed on a 4000 micron chromatotron plate with 10% ethyl acetate/90% hexane as eluant to afford 2.3 g of desired material.
The title compound was prepared using the procedure describe din Example 2, Steps 1 and 2: Anal. calcd for C19H18N3O3SF3: C, 53.64; H, 4.26; N, 9.88. Found: C, 53.69; H, 4.36; N, 9.88.
##STR00038##
Methyl iodide (0.5 mL, 8.1 mmol) and potassium carbonate (1.1 g, 8.1 mmol) were added to a solution of o-thiocresol (1.0 g, 8.1 mmol) in 10 mL of DMF. The reaction was stirred at 50° C., for 4 hours and poured into hexane and water. The organic layer was separated, dried over magnesium sulfate and concentrated to afford 1.1 g of desired material.
The title compound was prepared using the procedures found in Example 4, Steps 1, 2 and 3: Anal. calcd. for C18H16N3O2S2F3: C, 50.58; H, 3.77; N, 9.83. Found: C, 50.84; H, 3.62; N, 9.62.
##STR00039##
Potassium hydroxide (3.2 g, 56.8 mmol) was added to a solution of 3-allyl-4-hydroxyacetophenone (10 g, 56.8) in 125 mL THF. Dimethyl sulfate (excess) was added and the reaction was stirred at 50° C. for 16 hours. The reaction was cooled, concentrated and poured into EtOAc and water. The organic layer was separated and washed with dilute sodium hydroxide to get rid of unreacted starting material. The ethyl acetate layer was dried and concentrated to afford 9.2 g of 3-allyl-4-methoxy acetophenone.
The title compound was prepared using the procedures described in Example 2, Steps 1 and 2: Anal. calc'd for C20H18N3F3O3S: C, 54.92; H, 4.15; N, 9.61. Found: C, 54.70; H, 4.12; N, 9.43.
##STR00040##
To a solution of the product in Example 6, Step 1 (3 g, 17.0 mmol) in 50 mL of ethanol was added a catalytic amount of 4% Pd/C. The reaction mixture was stirred in a Parr shaker at room temperature at 5 psi hydrogen for 0.5 hours. The reaction was filtered and concentrated to afford 4 g of pure 3-propyl-4-methoxy acetophenone.
The title compound was prepared using the procedures described in Example 2, Steps 1 and 2: Anal. calcd. for C20H20N3F3O3S: C, 54.66; H, 4.59; N, 9.56. Found: C, 54.84; H, 4.65; N, 9.52.
##STR00041##
To a solution of the product in Example 6, Step 1 (3 g, 17.0 mmol) and catalytic Pd(OAc)2 in 20 mL Et2O was added ethereal diazomethane until starting material was consumed. The reaction was filtered, concentrated and chromatographed on a 4000 micron chromatotron plate (20% EA/80% hexane as eluant) to afford 2.5 g of desired ketone.
The title compound was prepared using the procedures described in Example 2, Steps 1 and 2: Anal. calc'd. for C21H20N3F3SO3: C, 55.87; H, 4.47; N, 9.31. Found: C, 55.85; H, 4.27; N, 9.30.
##STR00042##
To a solution of the product of Example 2 (500 mg, 1.31 mmol) in 5 mL of sulfuric acid was added nitric acid (0.6 mL, 1.31 mmol) and the reaction was stirred at room temperature for 0.5 hours. The mixture was poured over ice, the solid precipitate was filtered and chromatographed on a 4000 micron plate (20% EtOAc/80% hexane as eluant) to afford 410 mg of desired material: Anal. calc'd for C17H13N4O4SF3: C, 47.89; H, 3.07; N, 13.14. Found: C, 47.86; H, 2.81; N, 13.15.
##STR00043##
A catalytic amount of 10% Pd/C was added to a solution of hydrazine hydrate (0.022 mL, 0.7 mmol) in 10 mL of ethanol. The reaction mixture was refluxed for 15 minutes before the addition of the compound from Example 9 (100 mg, 0.23 mmol), and the resulting reaction mixture was refluxed for another 2 hours. The reaction was cooled, filtered through Celite and concentrated to afford 100 mg of title compound: Anal. calc'd for C17H15N4O2SF3.0.5 CO2: C, 50.24; H, 3.61; N, 13.39. Found: C, 50.49; H, 3.44; N, 13.37.
##STR00044##
The product from Example 2 (1.13 g, 3.0 mmol) and N-bromosuccinimide (NBS, 0.64 g, 3.6 mmol) were dissolved in 40 mL of benzene and irradiated with a UV lamp for 3 hours. The reaction was cooled to room temperature and poured into 50 mL of H2O. The organic phase was separated, washed with brine and dried over MgSO4. The crude pyrazole was obtained as an amber oil. The oil was purified via radical band chromatography eluting with 30% ethyl acetate/70% hexane to afford the 4-bromomethyl compound as a yellow oil which crystallized upon standing.
The bromo methyl compound from Step 1 was dissolved in 30 mL of acetone/4 mL of H2O and refluxed for 120 hours. The reaction was concentrated and the residue dissolve in 50 mL of ethyl acetate and dried over MgSO4. The crude product was obtained as an amber oil. The oil was purified via radial band chromatography eluting with 30% ethyl acetate/70% hexane to afford the title compound as a yellow solid: Anal. calc'd for C17H14N3O3SF3: C, 51.38; H, 3.55; N, 10.57. Found: C, 51.28; H, 3.59; N, 10.31.
##STR00045##
To the product from Example 11 in 2 mL of acetone was added 1.33M Jones reagent until an orange color persisted. The reaction was poured into 20 mL of ethyl acetate and 20 mL of H2O and the organic layer separated, washed with saturated sodium bisulfite and dried over MgSO4. The crude product was filtered through silica gel/Celite to afford the title compound as a yellow solid: HRMS m/z 411.0507 (calc'd for C17H12N3O4SF3, 411.0500).
The following compounds in Table I were prepared according to procedures similar to that exemplified in Examples 1-12, with the substitution of in a similar manner using the appropriate acetophenone.
TABLE I
##STR00046##
Ex.
A
M.P.(° C.)
Analytical
13
4-Br
137-139
Calc. C, 43.07; H, 2.48; N, 9.42;
Br, 17.91
Obs. C, 43.01; H, 2.32; N, 9.39;
Br, 17.62
14
3-Cl
154-155
Calc. C, 47.83; H, 2.76; N, 10.46;
Cl, 8.82
Obs. C, 47.61; H, 2.85; N, 10.31;
Cl, 8.43
15
2-Cl
159-160
Calc. C, 47.83; H, 2.76; H, 10.46
Obs. C, 47.47; H, 2.65; N, 10.31
16
4-CF3
144-145
Calc. C, 46.90; H, 2.55; N, 9.65
Found: C, 46.98; H, 2.57; N, 9.61
17
4-F
168-169
Calc. C, 49.87; H, 2.88; N, 10.90
Found: C, 49.83; H, 2.89; N, 10.86
18
H
164-165
Calc. C, 52.31; H, 3.29; N, 11.43
Found: C, 52.14; H, 3.07; N, 11.34
19
4-OCH3
153-154
Calc. C, 51.38; H, 3.55; N, 10.57
Found: C, 51.00; H, 3.48; N, 10.24
20
4-OCF3
101-103
Calc. C, 45.24; H, 2.46; N, 9.31
Found: C, 45.22; H, 2.37; N, 9.29
21
2-CH3
126-128
Calc. C, 53.54; H, 3.70; N, 11.02
Found: C, 53.52; H, 3.55; N, 11.06
22
2,4-di-F
127-130
M + H 404
23
2,6-di-F
178-180
M + H 404
24
4-CN
196-197.5
25
3,4-di-Cl
145-147
Calc. C, 44.05; H, 2.31; N, 9.63;
Cl, 16.25
Found: C, 44.00; H, 2.20; N, 9.63;
Cl, 16.46
26
2,4-di-Cl
153-155
Calc. C, 43.87; H, 2.35; N, 9.59
Found: C, 43.78; H, 2.13; N, 9.56
27
4-NO2
169-172
Calc. C, 46.61; H, 2.69; N, 13.59;
S, 7.78
(dec)
Obs.: C, 46.52; H, 2.67; N, 13.51;
S, 7.84
28
2-F
165-166
Calc. C, 49.87; H, 2.88; N, 10.90
Found: C, 49.49; H, 2.62; N, 10.79
29
4-NH2
124-127
HRMS: 382.0671
(dec)
30
4-F, 2-CH3
170-171
Calc. C, 51.13; H, 3.28; N, 10.52
Found: C, 50.83, H, 2.98; N, 10.55
31
3-CH3
135-137
Calc. C, 53.54; H, 3.70; N, 11.02
Found: C, 53.15; H, 3.58; N, 10.96
32
4-OCH2CH3
141-142
Calc. C, 51.43; H, 4.08; N, 9.99
Found: C, 51.49; H, 3.80; N, 10.08
33
4-OCH3,
143-144
Calc. C, 53.64; H, 4.26; N, 9.87
3,5-di-CH3
Found: C, 53.49; H, 4.39; N, 9.64
34
3-F
143-144
Calc. C, 49.87; H, 2.88; N, 10.90
Found: C, 49.80; H, 2.80; N, 10.84
35
4-OCH, 3-F
155-156
Calc. C, 49.16; H, 3.15; N, 10.11
Found: C, 48.77; H, 2.93; N, 9.96
36
4-SCH3
165-166
Calc. C, 49.39; H, 3.41; N, 10.16
Found: C, 49.48; H, 3.46; N, 10.26
37
4-Cl, 3-CH3
ND
Calc. C, 49.10; H, 3.15; N, 10.11
Found: C, 49.00; H, 3.00; N, 10.10
38
4-CH2CH3
ND
Calc. C, 54.68; H, 4.08; N, 10.63
Found: C, 54.54; H, 3.73; N, 10.67
39
2,4-di-CH3
ND
Calc. C, 54.68; H, 4.08; N, 10.63
Found: C, 54.31; H, 4.32; N, 10.39
40
2-OCH3
167-168
Calc. C, 51.38; H, 3.55; N, 10.57
Found: C, 51.29; H, 3.34; N, 10.52
41
4-OCH3,
146-147
3-CH3
42
4-SCH3, 3-Br
141-144
HRMS: 490.9595
43
4-CH3, 3-Cl
186-190
Calc. C, 49.10; H, 3.15; N, 10.11
Found: C, 49.21; H, 3.17; N, 10.10
44
3,4-di-OCH3
192-193
Calc. C, 50.58; H, 3.77; N, 9.83
Found: C, 50.58; H, 3.83; N, 9.72
45
4-OCH3, 3-Cl
166-168
Calc. C, 47.29; H, 3.03; N, 9.73
Found: C, 47.21; H, 2.91; N, 9.55
46
4-OCH3,
ND
Calc. C, 48.49; H, 3.39; N, 9.42
3-Cl, 5-CH3
Found: C, 48.27; H, 3.42; N, 9.22
47
2-OCH3, 4-F
163-164
Calc. C, 49.16; H, 3.15; N, 10.12
Found: C, 49.32; H, 3.27; N, 10.18
48
2,4-di-OCH3
ND
Calc. C, 50.58; H, 3.77; N, 9.83
Found: C, 50.40; H, 3.78; N, 9.83
49
4-F, 3-Cl
ND
Calc. C, 45.78; H, 2.40; N, 10.01
Found: C, 45.75; H, 2.34; N, 10.15
50
4-OCH3,
ND
Calc. C, 47.12; H, 2.79; N, 9.70
3,5-di-F
Found: C, 46.72; H, 2.75; N, 9.54
51
4-SCH3, 3-F
ND
Calc. C, 47.33; H, 3.04; N, 9.74
Found: C, 47.25; H, 3.39; N, 9.45
52
4-SCH3, 3-Cl
ND
Calc. C, 45.59; H, 2.93; N, 9.38
Found: C, 45.56; H, 2.76; N, 9.52
53
4-N(CH3)2
ND
HRMS: 410.1016
54
4-N(CH2CH3)2
ND
HRMS: 438.1353
##STR00047##
To a solution of the product of Example 41 (240 mg, 0.58 mmol) in DMF (3 mL) was added NaSMe (205 mg, 2.9 mmol) and the mixture heated to reflux for 2 hours. The mixture was cooled, poured into 0.1N HCl and extracted with EtOAc (3×). The combined extracts were dried over MgSO4 and concentrated. Flash chromatography using 1:1 hexane/ethyl acetate provided 31 mg of the title compound: Anal. calc'd for C17H14N3O3SF3.0.25 H2O: C, 50.80; H, 3.64; N, 10.45. Found: C, 50.71; H, 3.47; N, 10.39.
##STR00048##
To a solution of the product from Example 53 (431 mg, 1.0 mmol) in 10 ml methanol was added 36 mg (0.17 mmol) ruthenium, (III) chloride hydrate, followed by 1.5 mL 30% hydrogen peroxide (14.7 mmol) over 2 hours. The reaction was quenched with 25 mL of 1M KOH in methanol and concentrated to give 1.24 g of a brown solid. The solid was purified on a prep plate eluting with 2/97/1 methanol/methylene chloride/ammonium chloride to give 52 mg (0.14 mmol, 12%) of the product as a yellow solid.
##STR00049##
19 mg (0.051 mmol) of the product from Example 56 was treated with 0.03 mL acetic anhydride (0.32 mmol) and 0.03 mL triethylamine (0.22 mmol) in 3 mL methylene chloride at room temperature for 12 hours. The reaction matured was concentrated and the residue dissolved in 10 mL ethyl acetate. After washing with brine (2×10 mL), the solution was dried over MgSO4, filtered and concentrated to afford the title compound (18.4 mg, 74%) as a yellow solid: HRMS m/e 438.0976 (calc'd for C19H17N4O3SF3, 438.0974).
##STR00050##
Ethyl difluoroacetate (24.82 g, 200 mmol) was placed in a 500 mL three-necked round bottom flash, and dissolved in diethyl ether (200 mL). To the stirred solution was added 25% sodium methoxide in methanol (48 mL, 210 mmol) via an addition funnel over a 2 minute period. Next, 4′-chloroacetophenone (25.94 g, 200 mmol) was dissolved in diethyl ether (50 mL), and added to the reaction dropwise over 5 minutes. After stirring overnight (18 hours), 1N HCl (250 mL) and ether (250 mL) were added. The organic layer was collected, washed with brine (250 mL), dried over MgSO4, filtered, and concentrated in vacuo to give 46.3 g of a yellow solid. The solid was recrystallized from methylene chloride and iso-octane to give 31.96 g (69%) of the dione: mp 65°-66.5° C.
4-Sulphonamidophenylhydrazine hydrochloride (1.45 g, 6.5 mmol 1.3 equivalent) and 4,4-difluoro-1-[4-(chloro)phenyl]butane-1,3-dione from Step 1 (1.16 g, 5 mmol) were dissolved in ethanol (10 mL). The reaction was heated to reflux and stirred for 20 hours. After cooling to room temperature, the reaction mixture was concentrated in vacuo. The residue was taken up in ethyl acetate (100 mL) and washed with water (100 mL) and with brine (100 mL), dried over MgSO4, filtered, and concentrated in vacuo to give 1.97 g of a light brown solid which was recrystallized from ethanol and water to give 4-[5-(4-chlorophenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide (1.6 g, 93% yield,): mp 185°-186° C.
##STR00051##
Aluminum chloride, (80.0 g, 0.6 mol) and chloroform (750 mL) were placed in a 2 L three-necked round bottom flask fitted with a mechanical stirrer and cooled by means of an ice bath. To the stirred solution acetyl chloride (51.0 g, 0.65 mol) was added dropwise, maintaining the temperature between 5°-10° C. The mixture was stirred for 10 minutes at 5° C. before the dropwise addition at 5°-10° C. of 2-fluoroanisole (62.6 g, 0.5 mol). The mixture was stirred at 0°-10° C. for 1 hour and poured into ice (1 L). The resultant layers were separated and the aqueous layer was extracted with dichloromethane (2×250 mL). The combined organic layers were washed with water (2×150 mL), dried over anhydrous MgSO4, filtered and concentrated in vacuo to a volume of 300 mL. Hexanes were added and a white solid formed which was isolated by filtration and air dried. This material was recrystallized from a mixture of dichloromethane and hexanes to afford (77.2 g, 92%) of material suitable for use in the next step: mp 92°-94° C.; 1H NMR (DMSO-d6) 7.8 (m, 2H), 7.3 (t, 1H), 3.9 (s, 3H), 2.5 (s, 3H).
Ethyl difluoroacetate (4.06 g, 32.7 mmol) was placed in a 250 mL Erlenmeyer flask, and dissolved in methyl tert-butyl ether (50 mL). To the stirred solution was added 25% sodium methoxide (7.07 g, 32.7 mmol) followed by 3′-fluoro-4′-methoxyacetophenone from Step 1 (5.0 g, 29.7 mmol). After stirring for 16 hours, 1N HCl (50 mL) was added. The organic layer was collected, washed with water (2×50 mL), dried over anhydrous MgSO4, filtered, and added to hexanes to precipitate a tan solid (7.0 g, 96%): mp 70°-72° C.; 1H NMR (DMSO-d6) 8.0 (m, 3H), 7.3 (t, 1H), 6.9 (s, 1H), 6.5 (t, 1H), 3.9 (s, 3H).
4,4-Difluoro-1-(3-fluoro-4-methoxyphenyl)-butane-1,3-dione from Step 2 (7.0 g, 28.4 mmol) was dissolved in ethanol (150 mL). To the stirred mixture was added 4-sulphonamidophenylhydrazine hydrochloride (7.4 g, 33 mmol) and stirred at reflux overnight (16 hours). The mixture was cooled and water was added until crystals slowly appeared. The product was isolated by filtration and air dried to provide the desired product as a light tan solid (9.8 g, 87%): mp 159°-161° C.; 1H NMR (DMSO-d6) 7.85 (d, 2H), 7.5 (m, 6H), 7.3-6.9 (m, 5H), 3.8 (s 3H). Anal. Calc'd for C17H14N3SO3F3: C, 51.38; H, 3.55; N, 10.57. Found: C, 51.46; H, 3.52; N, 10.63.
##STR00052##
To a stirred solution of 4-methoxyacetophenone (11.43 g, 76.11 mmol) and ethyl difluoroacetate (8.4 mL, 10.4 g, 83.72 mmol) in diethyl ether (300 mL) in a 500 mL round bottomed flask was added sodium methoxide in methanol (18.2 mL of a 25% solution, 79.91 mmol). The solution became a dark lavender color within thirty minutes, and then a gray suspension within 1.5 hours. The reaction was stirred for 60 hours. Diethyl ether (300 mL) was added and the mixture was acidified (pH 2) with 1N HCl. The mixture was transferred to a separatory funnel, mixed and separated. The ethereal phase was washed with water, dried over magnesium sulfate, and filtered. Hexane was added causing precipitation of an orange solid 5.25 g of 4,4,4-trifluoromethyl-1-(4-methoxyphenyl)butane-1,3-dione. An additional 3.43 g of product was obtained by recrystallization of the concentrated mother liquor from hexane: 1H NMR (CDCl3) 400 mHz 15.58 (br s, 1H), 7.94 (d, J=8.87 Hz, 2H), 6.98 (d, J=8.87 Hz, 2H), 6.49 (s, 1H), 6.00 (t, J=54.55 Hz, 1H), 3.89 (s, 3H).
A mixture of 4,4,4-trifluoromethyl-1-(4-methoxyphenyl)butane-1,3-dione from Step 1 (2.006 g, 8.79 (mmol) and 4-sulfonamidophenylhydrazine hydrochloride salt (2.065 g, 9.23 mmol) dissolved in ethanol (25 mL) was heated to reflux for 16 hours. The reaction was cooled to room temperature, was concentrated and recrystallized from methanol yielding 4-[5-(4-methoxyphenyl)-3-difluoromethyl-1-H-pyrazol-1-yl]benzenesulfonamide as fluffy tan crystals (1.49 g, 45%): mp 133°-135° C.; 1H NMR (CDCl3) 300 mHz 7.90 (d, J=8.863 Hz, 2H), 7.45 (d, J=8.863 Hz, 2H), 7.14 (d, J=8.863 Hz, 2H), 6.88 (d, J=8.863 Hz, 2H), 6.77 (t, J=56.47 Hz, 1H), 6.68 (s, 1H), 4.96 (br s, 2H), 3.83 (s, 3 H); 19NMR (CDCl3) 300 mHz −112.70 (d, J=57.9 Hz). High resolution mass spectrum Calc'd for C17H15F2N3O3S: 379.0802. Found: 379.0839. Elemental analysis calc'd for C17H15F2N3O3S: C, 53.82; H, 3.99; N, 11.08. Found: C, 53.75; H, 3.99; N, 11.04.
The following compounds in Table II were obtained according to procedures similar to that exemplified in Examples 58-60, with the substitution of in a similar manner using the appropriate acetophenone.
TABLE II
##STR00053##
Ex.
A
M.P.(° C.)
Anal.
61
4-CF3
202-205
M + H 418
62
4-SCH3
157-158
63
4-(1-morpholino)
167-171
M + 434
64
4-CH3
158-159
Calc. C, 56.19; H, 4.16; N, 11.56
Obs. C, 56.25; H, 4.17; N, 11.61
65
3,4-di—CH3
168-171
Calc. C, 57.28; H, 4.54; N, 11.13
Obs. C, 57.34; H, 4.59; N, 11.16
66
4-CO2CH3
157-158
Calc. C, 53.56; H, 3.09; N, 15.61
Obs. C, 53.45; H, 3.11; N, 15.62
67
4-CONH2
235-236
HRMS: 393.0833
68
4-CO2H
258-260
HRMS: 394.0662
(dec)
69
2-F, 4-OCH3
138-140
Calc. C, 51.38; H, 3.55; N, 10.57
Obs. C, 51.14; H, 3.48; N, 10.40
70
4-CN
222-224
Calc. C, 54.54; H, 3.23; N, 14.97
Obs.: C, 54.58; H, 3.21; N, 15.06
71
3-Cl, 4-CH3
156-158
Calc. C, 51.32; H, 3.55; N, 10.56
Obs: C, 51.46; H, 3.53; N, 10.53
72
3-Cl, 4-OCH3
160
Calc. C, 49.34; H, 3.41; N, 10.15;
Cl, 8.57; S, 7.75
Obs.: C, 49.41; H, 3.37; N, 10.17;
Cl, 8.62; S, 7.67
73
4-Cl, 3-CH3
163-165
Calc. C, 51.32; H, 3.55; N, 10.56
Obs.: C, 51.42; H, 3.57; N, 10.53
74
3,4-di-OCH3
181-185
Calc. C, 52.81; H, 4.19; N, 10.26
Obs.: C, 52.86; H, 4.19; N, 10.20
75
3,5-di-Cl,
170-173
Calc. C, 45.55; H, 2.92; N, 9.37
4-OCH3
Obs.: C, 45.83; H, 3.05; N, 9.31
76
3,5-di-F,
149-150
Calc. C, 49.16; H, 3.15; N, 10.12
4-OCH3
Obs.: C, 49.24; H, 3.16; N, 10.13
77
2-OCH3
129-132
Calc. C, 53.82; H, 3.99; N, 11.08
Obs.: C, 53.82; H, 3.97; N, 11.15
78
3-Br, 4-OCH3
164
HRMS: 456.9883
79
4-SO2CH3
209-210
80
4-C6H5
167-170
M + 425
81
H
171-172
HRMS: 349.0737
##STR00054##
Ethyl difluoroacetate (1.72 g, 11 mmol) was dissolved in ether (25 mL). To the stirred solution was added 25% sodium methoxide (2.38 g, 11 mmol) followed by 3′,4′-(methylenedioxy)acetoxyphenone (1.64 g, 10 mmol). After stirring 16 hours, 1N HCl (25 mL) was added. The organic layer was collected and washed with water (2×25 mL), dried over magnesium sulfate, filtered, and concentrated. The resulting crude dione was used in the next step without further purification or characterization.
1-(1,3-Benzodioxol-5-yl)-4,4-difluorobutane-1,3-dione from Step 1 (2.4 g, 10 mmol) was dissolved in ethanol (100 mL). To the stirred mixture was added 4-sulfonamidophenylhydrazine hydrochloride (2.46 g, 11 mmol) and heated to reflux for 16 hours. The mixture was cooled and water was added until crystals slowly appeared. Filtration yielded a light tan solid (3.3 g, 84%): mp 214°-218° C. 1H NMR (D6-DMSO): 7.86 (d, J=8.7Hz, 2H), 7.51 (d, J=8.7Hz, 2H), 7.49 (brs, 2H), 7.3-6.7 (m, 5H), 6.06(s, 2H). Anal. Calc'd for C17H13N3SO4F2: C, 51.91; H, 3.33; N, 10.68. Found: C, 51.90; H, 3.25; N, 10.65.
##STR00055##
Dimethyl oxalate (23.6 g, 200 mmol) was placed in a 500 mL three-necked round bottom flask, and dissolved in diethyl ether (200 mL). To the stirred solution was added 25% sodium methoxide in methanol (48 mL, 210 mmol) via an addition funnel over a 2 minute period. Next, 4′-chloroacetophenone (25.94 g, 200 mmol) was dissolved in diethyl ether (50 mL), and added to the reaction dropwise over 3 minutes. After stirring overnight (18 hours), 1N HCl (400 mL) and ethyl acetate (750 mL) were added. The organic layer was collected, washed with brine (350 mL), dried over MgSO4, filtered, and concentrated in vacuo to give 45.7 g of a yellow solid. The solid was recrystallized from ethyl acetate and iso-octane to give 23 g (48%) of the dione: mp 108.5°-110.5° C.
4-Sulphonamidophenylhydrazine hydrochloride (1.45 g, 6.5 mmol, 1.3 equivalent) and methyl-4-[4-(chloro)phenyl]-2,4-dioxobutanoate (1.2 g, 5 mmol) were dissolved in ethanol (50 mL). The reaction was heated to reflux and stirred for 20 hours. After cooling to room temperature, the reaction mixture was concentrated in vacuo. The residue was taken up in ethyl acetate (200 mL) and washed with water (100 mL) and brine (100 mL), dried over MgSO4, filtered and concentrated in vacuo to give 1.7 g of a light brown solid which was recrystallized from methanol and water to yield 1.6 g (85%) of a white solid. This material was dissolved in methanol (150 mL) and 3N NaOH (75 mL) and stirred at reflux for 3 hours. The methanol was removed in vacuo and the aqueous solution acidified with concentrated HCl. The product was extracted into ethyl acetate (200 mL), which was washed with brine (100 mL), dried over MgSO4 filtered and concentrated to give 4-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-pyrazole-3-carboxylic acid, 1.4 g (74%): mp 135° C. (dec).
EXAMPLE 84
##STR00056##
To a stirred suspension of AlCl3 (24.05 g, 180.40 mmol) in chloroform (300 mL, dried by passage through alumina) at 4° C. (ice bath) under nitrogen was added acetyl chloride (11.0 mL, 152.65 mmol) over 20 minutes. This chilled suspension was stirred at 0° C. for 30 minutes and 2,6-difluoro anisole was added dropwise over 30 minutes. The resulting suspension was warmed to room temperature and stirred overnight. The reaction was quenched by slowly pouring it into a rapidly stirred ice/water mixture. The water layer was extracted with methylene chloride (2×50 mL) and the organic phases were combined and concentrated in vacuo yielding a clear mobile oil. In a 50 mL round bottomed flask was added the above clear oil, DMF (25 mL), K2CO3 (15 g). Methyl iodide (6 mL) was added and the suspension stirred at 45° C. under nitrogen overnight. Water (1 mL) was added and the mixture was heated for an additional 14 hours. The crude reaction mixture was cooled to room temperature, diluted with water (250 mL) and extracted with diethyl ether (3×100 mL). The ether phase was washed with sodium bicarbonate saturated solution, potassium bisulfate (0.1N solution), dried over MgSO4, filtered and concentrated in vacuo yielding a clear mobile liquid. This liquid was distilled (30° C., 1 mm) yielding 12.5 g of a clear liquid which was a mixture of 3,5-difluoro-4-methoxyacetophenone and 3,5-difluoro-4-acetoxyacetophenone in an 85:15 ratio. The yield based upon this ratio was 41%. This ketone was used as is.
To a stirred solution of 3,5-fluoro-4-methoxyacetophenone from Step 1 (6.46 g, 34.70 mmol) and dimethyl oxalate (6.15 g, 52.05 mmol) in methanol (80 mL), was added sodium methoxide solution (13.4 mL of 25% solution, 58.99 mmol) in one portion and the reaction stirred overnight. The crude reaction was diluted with methylene chloride, washed with potassium bisulfate (0.1N solution), brine, dried over MgSO4, filtered, and concentrated in vacuo yielding methyl 4-(3,5-difluoro-4-methoxyphenyl)-2,4-dioxo-butanoate as an off white crystalline solid which was used as is. A mixture of 4-(3,5-difluoro-4-methoxyphenyl)-2,4-dioxo-butanoate and 4-sulfonamidophenylhydrazine hydrochloride salt (7.76 g, 34.70 mmol) dissolved in methanol was warmed to reflux for 9 hours. Upon allowing the clear reaction to cool to room temperature, a crystalline precipitate formed which was collected by vacuum filtration yielding 5.45 g, (37% based upon the 3,5-difluoro-4-methoxyacetophenone) of methyl 1-(4-aminosulfonylphenyl)-5-(3,5-difluoro-4-methoxyphenyl)-1-H-pyrazole-3-carboxylate as an off-white solid: mp 185°-190° C.; 1H NMR (CDCl3/300 mHz) 7.95 (d, J=8.86, 2H), 7.49 (d, J=8.86, 2H), 7.02 (s, 1H), 6.77 (m, 2H), 4.99 (s, 2H, 4.04 (s, 3H), 3.98 (s, 3H); 19F NMR (CDCl3/300 mHz) −126.66. Anal. Calc'd for C17H13F2N3O3S: C, 51.06; H, 3.57; N, 9.92. Found: C, 51.06; H, 3.54, N, 9.99.
##STR00057##
Dimethyl oxalate (15.27 g, 0.129 mol) and 4′-chloroacetophenone (20.0 g, 0.129 mol) were charged to a 500 mL round-bottom flask, with provisions made for magnetic stirring, and diluted with methanol (300 mL). Sodium methoxide (25% in methanol, 70 mL) was added in one portion. The reaction was stirred at room temperature for 16 hours. The reaction became an insoluble mass during this time. The solid was mechanically broken up, then concentrated hydrochloric acid (70 mL) was added, and the white suspension was stirred vigorously at room temperature for sixty minutes. The suspension was cooled to 0° C. and held for 30 minutes. The solid was filtered, and the filter cake was washed with cold water (100 mL). Upon drying, methyl 4-[4-(chloro)phenyl]-2,4-dioxobutanoate was obtained (16.94 g, 54.4%) as the enol: 1H NMR (CDCl3/300 MHz) 7.94 (d, J=8.66 Hz, 2H), 7.48 (d, J=8.66 Hz, 2H), 7.04 (s, 1H), 3.95 (s, 3H), 3.48 (s, 1H).
A 100 mL round-bottomed flask equipped with magnetic stirrer and nitrogen inlet was charged with methyl 4-[4-(chloro)phenyl]-2,4-dioxobutanoate from Step 1 (5.0 g, 20.78 mmol), 4-sulfonamidylphenylhydrazine hydrochloride (5.11 g, 22.86 mmol) and methanol (50 mL). The reaction vessel was heated to reflux and held for 16 hours. A precipitate formed overnight. The suspension was cooled to 0° C., held for 0.5 hour, filtered and washed with cold water to provide, after air-drying, 7.91 g (91%) of crude product. Recrystallized 3.50 g from boiling ethanol to yield 3.14 g (97%) of pure methyl [1-(4-aminosulfonylphenyl)-5-(4-chlorophenyl)-1H-pyrazole-3-yl]carboxylate: mp 227° C.; 1H NMR (CDCl3/300 MHz) 7.91 (d, J=8.86 Hz, 2H), 7.44 (d, J=8.86 Hz, 2H), 7.33 (d, J=8.66 Hz, 2H), 7.14 (d, J=8.66 Hz, 2H), 7.03 (s, 1H), 3.96 (s, 3H). Mass Spectrum, MH+=392. Anal. Calc'd for C17H14N3O4ClS: C, 52.11; H, 3.60; N, 10.72; Cl, 9.05; S, 8.18. Found: C, 52.07; H, 3.57; N, 10.76; Cl, 9.11; S, 8.27.
##STR00058##
Methyl [1-(4-aminosulfonylphenyl)-5-(4-chlorophenyl)-1H-pyrazole-3-yl]carboxylate (Example 85) (0.10 g) was dissolved in absolute ethanol (10 mL) and a catalytic amount of 21% NaOEt/EtOH was added. The reaction was stirred without temperature control for 72 hours, then water (10 mL) was added. The product crystallized, the suspension was cooled to 0° C. and held for 30 minutes. The product was filtered, washed with water (5 mL) and dried to yield 0.071 g (70%) of a white solid: Mass Spectrum: MH+=406. Anal. Calc'd for C18H16N3O4ClS: C, 53.27; H, 3.97; N, 10.35; Cl, 8.74; S, 7.90. Found: C, 53.04; H, 4.00; N, 10.27; Cl, 8.69; S, 7.97.
The following compounds in Table III were prepared according to procedures similar to that exemplified in Examples 83-86, with the substitution of the appropriate reagents.
TABLE III
##STR00059##
Ex.
A
B
M.P. (° C.)
Analytical.
87
4-NO2
—CH3
216-220
MH+ = 403
88
4-F
—CH3
ND
Calc. C, 54.40; H, 3.76; N, 11.19; S, 8.54
Obs. C, 54.49; H, 3.70; N, 11.25; S, 8.50
89
4-NH2
—CH3
267-269(dec)
MH+ = 373
90
4-Br
—CH3
221-224
MH+ = 438
91
4-OCH3
—CH3
169-171
HRMS: 387.0930
92
4-CH3
—CH3
213-215
HRMS: 371.0965
93
4-CH3
—CH2CH3
219-220
Calc. C, 59.21; H, 4.97; N, 10.90
Obs. C, 58.73; H, 4.96; N, 10.78
94
4-Cl
—CH2CH2CH3
ND
Calc. C, 54.35; H, 4.32; N, 10.01; Cl, 8.44; S, 7.64
Obs. C, 54.11; H, 4.28; N, 10.14; Cl, 8.54; S, 7.64
95
3,5-di-Cl, 4-OCH3
—CH3
225-229
##STR00060##
4-[4-(Aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-pyrazole-3-carboxylic acid (Example 83) (1.08 g, 2.86 mmol), HOBt (0.66 g, 4.3 mmol) and EDC (0.66 g, 3.4 mmol) were dissolved in dimethylformamide (DMF) (20 mL) and stirred at ambient temperature for 5 minutes. To this solution was added NH4OH (30%, 2.9 mL) and the reaction stirred for an additional 18 hours. This solution was then poured into ethyl acetate (200 mL) and 1N HCl (200 mL), shaken and separated. The organic layer was washed with saturated NaHCO3 (150 mL) and brine (150 mL), dried over MgSO4, filtered and concentrated to yield 0.9 g of a white solid which was recrystallized from ethyl acetate and iso-octane to yield 4-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-pyrazole-3-carboxamide (0.85 g, 79%): mp 108°-110° C.
##STR00061##
A 250 mL three-neck round-bottom flask, equipped with a thermometer, gas sparging tube, reflux condenser and provisions for magnetic stirring, was charged with methyl [1-(4-aminosulfonylphenyl)-5-(4-fluorophenyl)-1H-pyrazol-3-yl]carboxylate (Example 88) (3.0 g, 7.99 mmol), methanol (100 mL), and a catalytic amount of sodium cyanide. Anhydrous ammonia gas was sparged through the reaction vessel for 16 hours without temperature control. The suspension turned a deep red during this time. The reaction was sparged with anhydrous nitrogen at room temperature for 20 minutes, cooled to 0° C. and held for 30 minutes. The solid was filtered and washed with cold water (50 mL) to yield, upon drying, 1.87 g (65%) of [1-(4-aminosulfonylphenyl)-5-(4-fluorophenyl)-1H-pyrazol-3-yl]carboxamide as a white solid: mp 214°-216° C.; 1H NMR (CDCl3/CD3OD/300 MHz) 7.64 (d, J=8.66 Hz, 2H), 7.14 (d, J=8.66 Hz, 2H), 6.95 (m, 2H), 6.82-6.67 (m,6H), 6.39(s, 1H); 19F NMR (CDCl3/CD3OD/282.2 MHz) −112.00(m). Mass spectrum, MH+=361. Anal. Calc'd for C16H13N4O3FS: C, 53.33; H, 3.64; N, 15.55; S, 8.90. Found: C, 53.41; H, 3.69; N, 15.52; S, 8.96.
##STR00062##
Dimethyl oxalate (18.80 g, 0.159 mol) and 4′-fluoroacetophenone (20.0 g, 0.145 mol) were charged to a 1000 mL round-bottom flask and diluted with methanol (400 mL). The reaction flask was placed in a sonication bath (Bransonic 1200), and sodium methoxide (25% in methanol, 70 mL) was added over 25 minutes. The reaction was sonicated at 45° C. for 16 hours. The reaction became an insoluble mass during this time. The solid was mechanically broken up, then poured into a hydrochloric acid solution (1N, 500 mL). A magnetic stirrer was added, and the white suspension was stirred vigorously at room temperature for 60 minutes. The suspension was cooled to 0° C. and held for 30 minutes. The solid was filtered, and the filter cake was then washed with cold water (100 mL). Upon drying, methyl 4-[4-fluorophenyl]-2,4-diketobutanoate was obtained (22.91 g, 70.6%) as the enol: 1H NMR (CDCl3/300 MHz) 8.03 (ddd, J=8.86 Hz, J=8.66 Hz, J=5.03 Hz, 2H), 7.19 (dd, J=8.86 Hz, J=8.66 Hz, 2H), 7.04 (s, 1H), 3.95 (s, 3H). 19F NMR (CDCl3/282.2 MHz) −103.9(m).
A 500 mL one-neck round-bottom flask equipped for magnetic stirring was charged with methyl 4-[4-fluorophenyl]-2,4-diketobutanoate from Step 1 (1.00 mg, 44.61 mmol), 4-sulfonamidylphenylhyrazine hydrochloride (10.98 g, 49.07 mmol) and methanol (200 mL). The suspension was heated and held at reflux for three hours, then cooled to room temperature. The suspension was cooled to 0° C., held for 30 minutes, filtered, washed with water (100 mL), and dried to yield 14.4 g (86%) of methyl 4-[1-(4-aminosulfonylphenyl)-5-(4-fluorophenyl)-1H-pyrazol-3-yl]carboxylate as a white solid: 1H NMR (CDCl3/300 MHz) 7.85 (d, J=8.66 Hz, 2H), 7.36 (d, J=8.66 Hz, 2H), 7.18 (ddd, J=8.66 Hz, J=8.46 Hz, J=4.85 Hz, 2H), 7.00 (dd, J=8.66 Hz, J=8.46 Hz, 2H), 6.28 (s, 1H), 3.90 (s, 3H). 19F NMR (CDCl3/282.2 MHz: −111.4(m). Mass spectrum. MH+=376. Anal. Calc'd for C17N14N3O4FS: C, 54.40; H, 3.76; N, 11.19; S, 8.54. Found: C, 54.49; H, 3.70; N, 11.25; S, 8.50.
A 500 mL one-neck round-bottom flask, equipped with provisions for magnetic stirring, was charged with methyl 4-[1-(4-aminosulfonylphenyl)-5-(4-fluorophenyl)-1H-pyrazol-3-yl]carboxylate from Step 2 (10.0 g, 26.64 mmol) and tetrahydrofuran (200 mL). Aqueous sodium hydroxide (2.5N, 27 mL) and water (25 mL) were added, and the suspension was heated to reflux and held for 16 hours. The solids all dissolved during this time. The reaction was cooled to room temperature, and hydrochloric acid solution (1N, 110 mL) was added. The aqueous suspension was extracted with methylene chloride (2×200 mL). The combined organic solution was dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuo to an oil. Trituration with 300 mL of methylene chloride yielded, upon filtration and drying, 9.0 g, (94%) of [1-(4-aminosulfonylphenyl)-5-(4-fluorophenyl)-1H-pyrazol-3-yl]carboxylic acid as a white solid: mp 138°-142° C. (dec); 1H NMR (CD3OD/300 MHz) 7.93 (d, J=8.66 Hz, 2H), 7.51 (d, J=8.66 Hz, 2H), 7.31 (ddd, J=8.86 Hz, J=8.66 Hz, J=4.83 Hz, 2H), 7.11 (dd, J=8.86 Hz, J=8.66 Hz, 2H), 7.06 (s, 1H). 19F NMR (CD3OD/282.2 MHz): −114.01(m).
A 100 mL one-neck round-bottom flask, equipped with provisions for magnetic stirring, was charged with [1-(4-aminosulfonylphenyl)-5-(4-fluorophenyl)-1H-pyrazol-3-yl]carboxylic acid from Step 3 (0.500 g, 1.38 mmol), 1-hydroxybenzotriazole hydrate (0.206 g, 1.522 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (0.318 g, 1.66 mmol) and N,N-dimethylformamide (30 mL). The solution was stirred at room temperature for forty minutes, then 3-chloroaniline (0.154 mL, 1.453 mmol) was added. The reaction was held at room temperature for sixteen hours, then poured into an aqueous solution of citric acid (5%, 100 mL). The aqueous solution was extracted with ethyl acetate (2×60 mL), and the combined organic solutions were washed with aqueous citric acid (60 mL), saturated sodium bicarbonate solution (2×60 mL) and 50% saturated sodium chloride solution (2×60 mL). The organic solution was dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuo to an oil. Trituration with 20 mL of dichloromethane yielded, upon filtration and drying, 0.439 g (67%) of N-(3-chlorophenyl)-[1-(4-aminosulfonylphenyl)-5-(4-fluorophenyl)-1H-pyrazol-3-yl]carboxamide as a white solid: mp 207°-212° C.; 1H NMR (CDCl3/CD3OD/300 MHz) 8.90 (s, 1H), 7.86 (d, J=8.66 Hz, 2H), 7.79 (t, J=2.01 Hz, 1H), 7.46 (dd, J=7.05 Hz, J=2.01 Hz, 1H), 7.33 (d, J=8.86 Hz, 2H), 7.21-7.11 (m, 3H), 7.02-6.94 (m, 4H). 19F NMR (CDCl3/CD3OD/282.2 MHz): −111.38(m). Mass spectrum, MH+=470. Anal. Calc'd for C22H16N4O3ClFS: C, 56.11; H, 3.42; N, 11.90; Cl, 6.81; S, 7.53. Found: C, 55.95; H, 3.50; N, 11.85; Cl, 6.82; S, 7.50.
The following compounds in Table IV were prepared according to procedures similar to that exemplified in Examples 96-98, with substitution of the appropriate starting material.
TABLE IV
##STR00063##
Ex.
A
B
MP. ° C.
Analytical
99
4-Br
H
143-145
MH+ = 421
100
4-F
phenyl-
233-236
MH+ = 436
101
4-NO2
H
278-281
MH+ = 387
102
4-F
4-CH3O-phenyl-
209-211
MH+ = 466
103
4-F
4-CH3-phenyl-
222-225
MH+ = 451
104
4-F
cyclohexyl-
224-227
MH+ = 442
105
4-F
3-F-phenyl-
227
MH+ = 454
106
4-Cl
3-F-phenyl-
174-176(dec)
MH+ = 471
107
H
H
ND
MH+ = 343
108
4-OCH3, 3-Cl
H
ND
MH+ = 408
109
4-SCH3
H
115(dec)
HRMS: 389.0743
110
4-OCH3
H
115-140
Calc. C, 54.83; H, 4.33; N, 15.04
Obs. C, 54.76; H, 4.34; N, 14.98
111
4-CH3
H
139-140
HRMS•H2O: 356.0939
112
4-OCH3
—CH3
209
MH+ = 387
113
4-Cl
glycine benzyl ester
136
MH+ = 525
114
4-Cl
glycine
124-130
MH+ = 435
115
4-OCH3, 3-Br
H
ND
M + Li = 457/459
116
4-OCH3, 3,5-di-Cl
H
185(dec)
HRMS: 440.0113
##STR00064##
A dry 100 ml three-neck flask, equipped with a reflux condenser, thermometer, pressure-equalizing addition funnel and provisions for magnetic stirring was charged with anhydrous DMF (20 mL) and cooled to 0° C. Oxalyl chloride (0.530 mL, 6.105 mmol) was added over twenty seconds, causing a 5° C. exotherm. The white precipitate formed dissolved as the reaction cooled to 0° C. The reaction was held at 0° C. for ten minutes, then a solution of [1-(4-aminosulfonylphenyl)-5-(4-fluorophenyl)-1H-pyrazol-3-yl]carboxamide (Example 97) in anhydrous DMF was added to the vigorously stirring solution over approximately two minutes. After fifteen minutes, pyridine (1.0 mL, 12.21 mmol) was added to quench the reaction. The mixture was poured into dilute hydrochloric acid (1N, 100 mL) and extracted with ethyl acetate (2×75 mL). The combined organic solution was washed with 1N HCl (2×100 mL) and with 50% saturated NaCl (3×100 mL). The organic solution was dried over magnesium sulfate, filtered and concentrated in vacuo to a crude oil. The oil was applied to a column of silica gel and eluted with ethyl acetate and hexane (40% ethyl acetate) to obtain, upon concentration of the appropriate fractions, 0.66 g (69%) of 4-[3-cyano-5-(4-fluorophenyl-1H-pyrazol-1-yl]benzenesulfonamide as a white solid: mp 184°-185° C.; 1H NMR (CDCl3/300 MHz) 7.94 (d, J=8.86 Hz, 2H), 7.44 (d, J=8.86 Hz, 2H), 7.23-7.07 (m, 4H), 6.87 (s, 1H), 4.88 (brs, 2H); 19F NMR (CDCl3/282.2 MHz) −109.90(m). Mass spectrum, MH+=343. Anal. Calc'd for C16H11N4O2FS: C, 56.14; H, 3.24; N, 16.37; S, 9.36. Found: C, 56.19; H, 3.16; N, 16.39; S, 9.41.
The following compounds in Table V were prepared according to procedures similar to that exemplified in Example 117, with the substitution of the appropriate starting material.
TABLE V
##STR00065##
Ex.
A
M.P. (° C.)
Anal.
118
4-Br
156-157
HRMS: 401.9833
119
4-Cl
142-143
120
4-OCH3
ND
HRMS: 354.0774
121
4-CH3
90-95
HRMS: 338.0849
122
4-SCH3
192-193
123
4-OCH3, 3-Cl
179
MH+ = 389
124
4-OCH3, 3,5-di-Cl
121-125
HRMS: 422.0051
125
4-OCH3, 3-Br
213
MH+ = 433
126
4-NO2
230-232
MH+ = 370
127
H
ND
MH+ = 325
##STR00066##
Ethyl heptafluorobutyrate (5.23 g, 21.6 mmol) was placed in a 100 mL round bottom flask, and dissolved in ether (20 mL). To the stirred solution was added 25% sodium methoxide (4.85 g, 22.4 mmol) followed by 4-chloroacetophenone (3.04 g, 19.7 mmol). The reaction was stirred at room temperature overnight (15.9 hours) and treated with 3N HCl (17 mL). The organic layer was collected, washed with brine, dried over MgSO4, concentrated in vacuo, and recrystallized from iso-octane to give the diketone as a white solid (4.27 g, 62%): mp 27°-30° C.; 1H NMR (CDCl3) 300 MHz 15.20 (br s, 1H), 7.89 (d, J=8.7 Hz, 2H), 7.51 (d, J=8.7 Hz, 2H), 6.58 (S, 1H); 19F NMR (CDCl3) 300 MHz: −80.94 (t), −121.01 (t), −127.17 (s); M+H 351.
The 4-sulfonamidophenylhydrazine hydrochloride (290 mg, 1.30 mmol) was added to a stirred solution of the diketone from Step 1 (400 mg, 1.14 mmol) in ethanol (5 mL). The reaction was heated to reflux and stirred overnight (23.8 hours). The ethanol was removed in vacuo, and the residue was dissolved in ethyl acetate, washed with water and brine, dried over MgSO4, and concentrated in vacuo to give a white solid which was passed through a column of silica gel with ethyl acetate/hexane (40%) and recrystallized from ethyl acetate/isooctane to give the pyrazole as a white solid (0.24 g, 42%): mp 168°-71° C.; 1H NMR (CDCl3) 300 MHz 7.90 (d, J=8.7 Hz, 2H), 7.45 (d, J=8.7 Hz, 2H), 7.34 (d, J=8.5 Hz, 2H), 7.19 (d, J=8.5 Hz, 2H), 6.79 (s, 1H), 5.20 (br s, 2H); 19F NMR (CDCl3) 300 MHz: −80.48 (t), −111.54 (t), −127.07 (s).
##STR00067##
Methyl 2-chloro-2,2-difluoroacetate (4.20 g, 29 mmol) was placed in a 100 mL round bottom flask, and dissolved in ether (10 mL). To the stirred solution was added 25% sodium methoxide (6.37 g, 29 mmol) followed by 4′-chloroacetophenone (4.10 g, 26.5 mmol). The reaction was stirred at room temperature overnight (20.4 hours), then poured into a separatory funnel and washed with 3N HCl (15 mL), brine (20 mL), dried over MgSO4, and concentrated in vacuo and recrystallized from iso-octane to give the diketone as a yellow solid (3.78 g, 53%): mp 53°-55° C.; 1H NMR (CDCl3) 300 MHz 14.80 (br s, 1H), 7.87 (d, J=8.7 Hz, 2H), 7.50 (d, J=8.7 Hz, 2H), 6.49 (S, 1H); 19F NMR (CDCl3) 300 MHz: −66.03 (s); M+ 267.
4-Sulfonamidophenylhydrazine hydrochloride (1.39 g, 6.2 mmol) was added to a stirred solution of the diketone from Step 1 (1.43 g, 5.7 mmol) in ethanol (10 mL). The reaction was heated to reflux and stirred overnight (15.75 hours). The ethanol was removed in vacuo, and the residue was dissolved in ethyl acetate, washed with water and brine, dried over MgSO4, and concentrated in vacuo to give a white solid which was recrystallized from ethyl acetate/isooctane to give the pyrazole as a white solid (0.32 g, 41%): mp 130°-33° C.; 1H NMR (CDCl3) 300 MHz 7.90 (d, J≦8.9 Hz, 2H), 7.47 (d, J=8.7 Hz, 2H), 7.35 (d, J=8.5 Hz, 2H), 7.19 (d, J=8.7 Hz, 2H), 6.76 (s, 1 H), 5.13 (br s, 2H); 19F NMR (CDCl3) 300 MHz: −48.44 (s); M+ 417/419.
##STR00068##
Aluminum chloride (80.0 g, 0.6 mol) and chloroform (750 mL) were placed in a 2 L three-necked round bottom flask fitted with a mechanical stirrer and cooled by means of an ice bath. To the stirred solution was added acetyl chloride (51.0 g, 0.65 mol) dropwise, maintaining the temperature between 5°-10° C. The mixture was allowed to stir for 10 minutes at 5° C. before the dropwise addition at 5°-10° C. of 2-fluoroanisole (63.06 g, 0.5 mol. The mixture was stirred at 0°-10° C. for 1 hour and poured into ice (1 L). The resultant layers were separated and the aqueous layer was extracted with methylene chloride (2×250 mL). The combined organic layers were washed with water (2×150 mL), dried over magnesium sulfate, and concentrated to 300 mL. Hexanes crystallized from the mixture: mp 92°-94° C.; 1H NMR (d6-DMSO) 7.8 (m, 2H), 7.3 (t, J=8.7Hz, 1H), 3.9 (s, 3H), 2.5 (s, 3H).
Methyl dichloroacetate (1.57 g, 11 mmol) was dissolved ether (25 mL). To the stirred solution was added 25% sodium methoxide (2.38 g, 11 mmol) followed by 3′-fluoro-4′-methoxyacetophenone from Step 1 (1.68 g, 10 mmol). After stirring 16 hours 1N HCl (25 mL) was added. The organic layer was collected and washed with water (2×25 mL), dried over magnesium sulfate, filtered, and concentrated. The resulting crude dione was used in the next step without further purification or characterization.
4,4-Dichloro-1-(3-fluoro-4-methoxyphenyl)-butane-1,3-dione from Step 2 (2.8 g, 10 mmol) was dissolved in ethanol (100 mL). To the stirred mixture was added 4-sulfonamidophenylhydrazine hydrochloride (2.46 g, 11 mmol) and heated to reflux for 16 hours. The mixture was cooled and water was added until crystals slowly appeared. Filtration yielded a light tan solid (2.7 g, 63%): mp 190°-193° C.: 1H NMR (DMSO-d6) 7.84 (d, J=8.4Hz, 2H), 7.53 (s, 1H), 7.48 (d, J=8.4Hz, 2H), 7.47 (brs, 2H), 7.3-7.0 (m, 3H), 6.95 (s, 1H), 3.85 (s, 3H). Anal. Calc'd for C17H14N3SO3FCl2: C, 47.45; H, 3.28; N, 9.76. Found: C, 47.68; H, 3.42; N, 10.04.
##STR00069##
To a solution of dimethyl oxalate (11.81 g, 100 mmol) in ether (200 mL) is added 24 mL of 25% sodium methoxide in methanol, followed by a solution of acetophenone (12.02 g, 100 mmol) in ether (20 mL) and the mixture stirred overnight at room temperature. The mixture was partitioned between 1N HCl and EtOAc and the organic layer was washed with brine, dried over MgSO4 and concentrated to give 18.4 g of crude butanoate.
The ester was prepared from the butanoate in Step 1 using the procedure described in Example 2, Step 2.
To a solution of ester in Step 2 (4.0 g, 10.4 mmol) in 50 mL THF was added LiAlH4 (0.592 g, 15.6 mmol) in portions and the mixture refluxed overnight. The reaction was cooled and quenched with 1N NaHSO4 and extracted with ether (3×). The combined extracts were dried over MgSO4 and concentrated to give 3.5 g crude alcohol. Flash chromatography using 1:1 hexane/EtOAc provided the title compound.
To a mixture of the alcohol from Step 3 (212 mg, 0.64 mmol) in dichloromethane (4 mL) was added diethylaminosulfur trifluoride (0.13 mL, 1.0 mmol). The reaction mixture was stirred at room temperature for 3 hours and partitioned between water and dichloromethane. The organic solution was washed with brine and concentrated. The residue was chromatographed on silica (72 mg, 34%): mp 162°-163° C.; Anal. calc'd for C16H14N3O2SF: C, 58.00; H, 4.26; N, 12.68. Found: C, 57.95; H, 4.03; N, 12.58.
The following compounds in Table VI were prepared according to procedures similar to that exemplified in Examples 128-131, with the substitution of the appropriate substituted acetyl and acetate starting materials.
TABLE VI
##STR00070##
Ex.
A
R2
M.P. (° C.)
Anal.
132
4-Cl
—CF2CF3
145.5-150
133
4-Cl
—CH2Cl
198-201
Calc. C, 50.27; H, 3.43;
N, 10.99
Found C, 50.34; H, 3.43; N, 10.96
134
3- F,
—CF2Cl
120-124
Calc. C, 47.29; H, 3.04;
4-OCH3
N, 9.74
Found C, 47.28; H, 3.37; N, 9.88
135
3- F,
—CBrF2
120-122
Calc. C, 42.87; H, 2.75;
4-OCH3
N, 8.82
Found C, 42.99; H, 3.81; N, 9.92
136
3- Cl,
—CH2Cl
ND
Calc. C, 49.53; H, 2.84;
4-OCH3
N, 8.66
Found C, 50.03; H, 3.81; N, 9.92
##STR00071##
Ethyl difluoroacetate (2.23 g, 18 mmol) was placed in a 100 mL round bottom flask and dissolved in ether (10 mL). To the stirred solution was added 25% sodium methoxide (4.68 g, 22 mmol) followed by acetylpyrazine (2.00 g, 16 mmol). After two hours stirring at room temperature, a precipitate formed and THF (10 mL) was added to the reaction. The reaction was stirred an additional 25.9 hours, then treated with 3N HCl (10 mL). The organic layer was collected, washed with brine (20 mL), dried over MgSO4, and concentrated in vacuo and recrystallized from methylene chloride/iso-octane to give the diketone as a brown solid (2.23 g, 68%); mp 103°-110° C.; 1H NMR (CDCl3) 300 MHz 14.00 (br s, 1H), 9.31 (d, J=1.4 Hz, 1H), 8.76 (d, J=2.4 Hz, 1H), 8.68 (dd, J=1.4 Hz 2.4 Hz, 1H), 7.20 (s, 1H), 6.03 (t, J=54.0 Hz, 1H); 19F NMR (CDCl3) 300 MHz: −127.16 (d); M+ 200.
4-Sulfonamidophenylhydrazine hydrochloride (0.37 g, 1.65 mmol) was added to a stirred suspension of the diketone from Step 1 (0.30 g, 1.50 mmol) in ethanol (10 mL). The reaction was heated to reflux and stirred for 5.3 hours. The ethanol was removed in vacuo, and the residue was dissolved in ethyl acetate, washed with water (20 mL), brine (20 mL), dried over MgSO4, and concentrated in vacuo to give a brown solid (0.36 g) which was recrystallized from ethyl acetate/ethanol/isooctane to give the pyrazole as a brown solid (0.20 g, 38%): mp 191°-94° C.; 1H NMR (acetone d6) 300 MHz 8.94(d, J=1.4 Hz, 1H), 8.62 (d, J=2.4 Hz, 1H), 8.52 (dd, J=1.4 Hz, 2.4 Hz, 1H), 7.95 (d, J=8.7 Hz, 2H), 7.61 (d, J=8.7 Hz, 2H), 7.30 (s, 1H), 7.02 (t, J=54.6 Hz, 1H), 6.73 (br s, 2 H); 19F NMR (acetone d6) 300 MHz: −113.67 (d): M+351.
##STR00072##
11.6 g Adogen 464 and 7 mL of dibromomethane were refluxed in 50 mL of H2O for 0.5 hours under argon. 3-Methylcatechol (8.89 g, 71.6 mmol) was added over 2 hours and the mixture refluxed for an additional 1 hour. Distillation of the product from the reaction mixture afforded the title compound as a yellow oil: HRMS m/e 136.0524 (calc'd for C8H8O2, 136.0524).
13.8 g of polyphosphoric acid and 5 mL of acetic anhydride were heated to 45° C. under a drying tube of CaSO4 until liquified. The product from Step 1 was added and the reaction was stirred at 45° C. for 4.5 hours. The reaction was cooled to room temperature and quenched with 150 mL of ice water. The aqueous phase was washed with ethyl acetate (4×50 mL). The combined organic extracts were dried over MgSO4 and filtered to give the crude product as a red oil. The oil was chromatographed on silica gel eluting with 10% ethyl acetate/90% hexane to afford two products: A: Anal. calcd for C10H10O3: C, 67.07; H, 5.66. Found: C, 67.41; H, 5.75, and B: MS, M+ 178.
The title compound was prepared from product A using the procedures described in Example 2, Steps 1 and 2: White solid: Anal. calcd for C18H14N3O4SF3: C, 50.82; H, 3.22; N, 9.88. Found: C, 50.71; H, 3.34; N, 9.55.
The following compounds in Table VII were prepared according to procedures similar to that exemplified in Examples 137-138, with the substitution of in a similar manner using the appropriate starting material.
TABLE VII
##STR00073##
Ex.
A
B
M.P.(° C.)
Anal.
139
5-bromo-2-thienyl
CF2H
168-169
M + Li 440/442
140
2-thienyl
CF2H
190-191
M + Li 367
141
5-chloro-2-thienyl
CF2H
168-170
M + 389/391
142
1-cyclohexenyl
CF2H
160-161
M + 353.
143
1,4-benzodioxan
CF2H
115-119
Calc. C, 53.06; H, 3.71; N, 10.32
Obs. C, 52.40; H, 3.98; N, 9.96
144
4-methylcyclohex-3-ene-1-yl
CF2H
164-168
HRMS: 367.1194
145
2-methylcyclopenten-1-yl
CF2H
165-166
HRMS: 353.1033
146
2,5-dimethyl-3-thienyl
CF2H
125-127
Calc. C, 50.12; H, 3.94; N, 10.96
Obs. C, 50.21; H, 3.92; N, 11.00
147
2,5-dimethyl-3-furyl
CF2H
139-142
Calc. C, 52.31; H, 4.12; N, 11.44
Obs. C, 52.07; H, 4.16; N, 11.37
148
5-methyl-2-furyl
CF2H
177-179
Calc C, 50.99; H, 3.71; N, 11.89
Obs. C, 51.08; H, 3.68; N, 11.95
149
4-bromo-4-methylcyclohex-1-yl
CF2H
175-
HRMS: 448.0520
178(dec)
150
4-methylcyclohex-1-yl
CF2H
190-192
HRMS: 369.1341
151
4-chloro-4-methylcyclohex-1-yl
CF2H
197-199
HRMS: 403.095
152
3,4-dibromo-4-
CF2H
172-173
methylcyclohex-1-yl
153
2-methoxycyclohex-1-yl
CF2H
177-179
HRMS: 386.1357
154
2-benzofuryl
CF2H
215-217
Calc C, 55.52; H, 3.37; N, 10.79
Obs. C, 55.52; H, 3.32; N, 10.85
155
2,5-dichloro-3-thien-yl
CF2H
154-156
Calc. C, 39.63; H, 2.14; N, 9.90
Obs. C, 39.63; H, 2.13; N, 9.89
156
2-benzofuryl
CF3
227-228
Calc. C, 53.07; H, 2.97; N, 10.31
Obs. C, 53.02; H, 2.96; N, 10.39
157
5-chloro-2-thienyl
CF3
161-165
HRMS: 406.9784]
158
5-bromo-2-thienyl
CF3
ND
Calc: C, 37.18; H, 2.01; N, 9.29;
Br, 17.67
Found: C, 37.25; H, 1.93; N, 9.45;
Br, 17.40
159
5-indanyl
CF3
118-120
Calc: C, 56.01; H, 3.96; N, 10.31
Found: C, 56.02; H, 4.06; N, 10.22
160
5-methylthien-2-yl
CF3
188-190
Calc. C, 46.51; H, 3.12; N, 10.85
Found: C, 46.17; H, 3.10; N, 10.75
161
2,3-dihydrobenzofuryl
CF3
152-153
Calc. C, 52.81; H, 3.45; N, 10.26
Found: C, 52.67; H, 3.78; N, 10.13
162
1-cyclohexenyl
CF3
135-138
HRMS: 371.0918
163
6-tetrahydronaphthyl
CF3
143-145
Calc. C, 57.00; H, 4.31; N, 9.97
Found: C, 56.72; H, 4.27; N, 9.90
164
3-benzothienyl
CF3
164-165
Calc. C, 51.06; H, 2.86; N, 9.92
Obs. C, 50.96; H, 2.73; N, 9.78
165
3,4-dihydrobenzopyranyl
CF3
ND
HRMS: 423.0855
166
styryl
CF3
166-167
Calc. C, 54.96; H, 3.59; N, 10.68
Obs. C, 54.77; H, 3.59; N, 10.47
167
4-methyl-1,3-benzodioxol-6-yl
CF3
ND
Calc. C, 50.82; H, 3.22; N, 9.88
Obs. C, 50.64; H, 3.35; N, 9.72
168
3-pyridyl
CF3
202-204
Calc. C, 48.91; H, 3.01; N, 15.21
Obs. C, 48.97; H, 3.16; N, 14.96
169
3,4-dihydrobenzothiopyranyl
CF3
ND
Calc. C, 51.95; H, 3.67; N, 9.56
Obs. C, 51.98; H, 3.78; N, 9.48
##STR00074##
4-[5-(1-Cyclohexenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide (Example 142) (0.31 g, 0.88 mmol) was dissolved in ethanol (15 mL), 10% palladium on charcoal was added, and the suspension was stirred at room temperature under hydrogen (36 psi) for 18.25 hours. The reaction was filtered through celite, and the ethanol removed in vacuo to give a white solid, which was recrystallized from methylene chloride/isooctane (0.31 g, 99%); mp 199°-203° C.; 1H NMR (acetone-d6) 300 MHz 8.05 (d, J=8.7 Hz, 2H), 7.60 (d, J=8.5 Hz, 2H), 6.69 (t, J=55.0 Hz 1H), 6.47 (s, 1H), 5.02 (br s, 2H), 2.67 (m, 1H), 1.71-1.88(m, 5H), 1.24-1.43 (m, 5H); 19F NMR (acetone-d6) 300 MHz: −112.86 (d).
##STR00075##
4-[4-(Aminosulfonyl)phenyl-5-(4-chlorophenyl)-1H-pyrazol-3-carboxylic acid (Example 83) (3.8 g, 10 mmol) and tetrahydrofuran (100 mL) were stirred at room temperature during the dropwise addition of 1.0M borane-tetrahydrofuran complex (30 mL, 30 mmol). The mixture was heated to reflux for 16 hours. The solution was cooled and methanol was added dropwise until gas evolution ceased. Ethyl acetate (100 mL) was added and the mixture was washed successively with 1N hydrochloric acid, brine, sat. aq. sodium bicarbonate solution, and water, dried over magnesium sulfate, filtered and concentrated. The resultant product was recrystallized from ethanol:water to yield 2.6 g (71%) of a white solid: mp 192°-194° C.; 1H NMR (d6-DMSO/300 MHz) 7.81 (d, J=8.7Hz, 2H, 7.46 (d, J=8.4Hz, 2H), 7.42 (brs, 2H), 7.40 (d, J=8.7Hz, 2H), 7.26 (d, J=8.4Hz, 2H), 6.63 (s, 1H), 5.35 (t, J=8.0Hz, 1H), 4.50 (d, J=8.0Hz, 2H). Anal. Calc'd for C16H14N6SO2Cl: C, 52.82; H, 3.88; N, 11.55. Found: C, 52.91; H, 3.88; N, 11.50.
##STR00076##
A 60% dispersion of sodium hydride in mineral oil (4.0 g, 100 mmol) was twice washed with hexane (100 mL each) and dried under a stream of nitrogen. Ether (300 mL) was added followed by dropwise addition of ethanol (0.25 mL) and γ-butyrolactone (4.0 mL, 52 mmol). The mixture was cooled to 10° C. and acetophenone (5.8 mL, 50 mmol) in ether (40 mL) was added dropwise over 1 hour. The mixture was warmed to 25° C. and stirred overnight. The mixture was cooled to 0° C. and quenched with ethanol (5 mL) followed by 10% aqueous ammonium sulfate (100 mL). The organic solution was separated, dried over Na2SO4 and concentrated. The residue was chromatographed on silica gel with 1:1 hexane/ethyl acetate to give the desired diketone (3.4 g) as an oil. Pyridine (0.34 mL, 4.2 mmol) and the diketone (700 mg, 3.4 mmol) in methanol (3 mL) were added to a slurry of 4-sulfonamidophenylhydrazine-HCl (750 mg, 3.4 mmol) in methanol (8 mL). The mixture was stirred at 25° C. overnight and concentrated in vacuo. The residue was dissolved in methylene chloride and the solution washed with 1N HCl. The organic solution was separated, dried and concentrated. The residue was chromatographed on silica gel using ethyl acetate to give the desired pyrazole (435 mg) as a solid: Anal. calc'd for C18H19N3O3S: C, 60.49; H, 5.36; N, 11.75. Found: C, 60.22; H, 5.63; N, 11.54.
##STR00077##
Following the procedure of Example 172, but substituting 4-fluoroacetophenone for acetophenone afforded 4-[5-(4-fluorophenyl)-3-(3-hydroxypropyl)-1H-pyrazol-1-yl]benzenesulfonamide. Anal. calc'd for C18H18N3O3SF.0.25 H2O: C, 56.90; H, 4.91; N, 11.05. Found: C, 56.80; H, 4.67; N, 11.02.
##STR00078##
Jones reagent (0.64 mL of a 2.67M solution) was added dropwise to a solution of 4-[5-(4-fluorophenyl)-3-(3-hydroxypropyl)-1H-pyrazol-1-yl]benzenesulfonamide from Example 173 (295 mg, 0.78 mmol) in acetone (8 mL). The mixture was stirred at 25° C. for 2 hours. The solution was filtered and the filtrate concentrated in vacuo. The residue was dissolved in ethyl acetate and washed with water (3×). The organic solution was dried over MgSO4 and concentrated. The residual oil was crystallized from ether/hexane to give the desired acid (149 mg): mp 180°-182° C.; Anal. calc'd for C18H16N3O4SF: C, 55.52; H, 4.14; N, 10.79. Found: C, 55.47; H, 4.22; N, 10.50.
##STR00079##
To a solution of 5-methyl-1-phenyl-1-hexan-3-one (2.0 g, 10.6 mmol) in 15 mL EtOH and 5 mL acetone was added a mixture of 30% hydrogen peroxide (2 mL) and 4N NaOH (1.5 mL) dropwise and the mixture stirred at 25° C. for 1-3 hours. Water (50 mL) was added and the precipitate filtered and dried at 40° C. in vacuo to provide 1.9 g of the epoxide as a white solid: Anal. calc'd for C13H16O2.0.1 H2O: C, 75.77; H, 7.92; Found: C, 75.47; H, 7.56.
The epoxide prepared above in Step 1 (1.26 g, 6.11 mmol) and 4-sulfonamidophenylhydrazine hydrochloride (1.38 g, 6.17 mmol) were stirred in 20 mL EtOH with AcOH (0.5 mL) and the mixture refluxed for 3 hours, cooled and quenched with 50 mL H2O. The aqueous layer was extracted with ethyl acetate (3×50 mL), the combined extracts were dried over MgSO4 and concentrated. Flash chromatography using 70:30 hexane/ethyl acetate provided the title compound (0.41 g, 19%) as a white solid: Calc'd for C19H21N3O2S: C, 64.20; H, 5.96; N, 11.82. Found: C, 64.31; H, 6.29; N, 11.73.
##STR00080##
To a solution of the alcohol prepared in Example 131, Step 3 (1.1 g, 3.3 mmol) in ethyl acetate (20 mL) was added MnO2 (5 g, 60 mmol) and the mixture stirred at room temperature overnight. The mixture was filtered through Celite and the solution was concentrated to provide the crude aldehyde.
Step 2: Preparation of Ethyl 3-[1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]-2-cyano-2-propenoate
To a solution of the aldehyde from Step 1 (1.2 g, 3.6 mmol) in benzene (18 mL) was added ethyl cyanoacetate (0.38 mL, 3.6 mmol), ammonium acetate (50 mg, 0.7 mmol) and glacial acetic acid (0.17 mL, 2.8 mmol). The solution was heated at reflux for 18 hours, cooled, and partitioned between water and ethyl acetate. The organic solution was washed with a saturated aqueous sodium bicarbonate solution, water and brine. The organic solution was dried and concentrated. The residue was chromatographed on silica (40% hexane in ethyl acetate) to give the desired product (1.0 g, 66%): Anal. calc'd for C21H18N4O4S: C, 59.82; H, 4.30; N, 13.22. Found: C, 59.70; H, 4.29; N, 13.26.
##STR00081##
To a suspension of 220 mg (0.58 mmol) 4-[5-(4-chlorophenyl)-3-formyl-1H-pyrazol-1-yl]benzenesulfonamide (prepared as described in Example 176, Step 1) in dichloromethane (3 mL) was added pyridine (0.12 mL, 1.3 mmol) and O-benzylhyroxylamine hydrochloride (110 mg, 0.68 mmol) and the reaction stirred at room temperature for 18 hours. The mixture was partitioned between pH 7 buffer and dichloromethane and the organic layer was washed with water, dried and concentrated. Flash chromatography on silica gel (2:1 hexane/EtOAc) provided the title compound (151 mg, 56%): mp 158°-159° C.; Anal. calc'd for C23H19N4O3SCl.0.25 H2O: C, 58.59; H, 4.17; N, 11.88. Found: C, 58.43; H, 4.03; N, 11.85.
The following compounds in Table VIII were prepared according to procedures similar to that exemplified in Examples 171-177, with the substitution of the appropriate starting material.
TABLE VIII
##STR00082##
Ex
A
R2
M.P. (° C.)
Anal.
178
H
—CH2OH
183-184
HRMS: 329.0845
179
4-OCH3
—CH2OH
140-142
Calc. C, 56.81; H, 4.77; N, 11.69
Found: C, 56.92; H, 4.76; N, 11.64
180
3,5-di-Cl, 4-OCH3
—CH2OH
191-193
HRMS 427.0199
181
3-Cl, 4-OCH3
—CH2OH
ND
Calc. C, 51.84; H, 4.09; N, 10.67
Cl, 9.00; S,8.14
Found: C, 51.77; H, 4.02; N, 10.73;
Cl, 9.11; S, 8.03
182
4-CH3
—C(CH3)2OH
178-179
183
4-Cl
—(CH3)2CO2H
156-159
184
4-Cl
—CH2CONH2
198-200
185
H
—CH3
ND
Calc. C, 60.46; H, 5.07; N, 13.21
Found: C, 60.48; H, 4.95; N, 13.19
186
4-Cl
—CH2CN
212-214
Calc. C, 54.77; H, 3.51 N, 15.03
Found: C, 54.94; H, 3.61; N, 14.88
##STR00083##
A 250 mL one necked round bottom flask equipped with a reflux condenser, nitrogen inlet and provisions for magnetic stirring was charged with ethyl trifluoroacetate (28.4 g, 0.2 mol) and 75 mL of ether. To this solution was added 48 mL of 25% sodium methoxide in methanol (0.21 mol). A solution of 1-tetralone (29.2 g, 0.2 mol) in 50 mL of ether was added over about 5 minutes. The reaction mixture was stirred at room temperature for 14 hours and was diluted with 100 mL of 3N HCl. The phases were separated and the organic layer was washed with 3N HCl, and with brine, dried over anhydrous MgSO4, filtered and concentrated in vacuo. The residue was taken up in 70 mL of boiling ethanol/water and cooled to room temperature, whereupon crystals of 2-trifluoroacetyl-1-tetralone formed which were isolated by filtration and air dried to give pure compound (32 g, 81%): mp 48°-49° C.; 1H NMR CDCl3 δ 2.8 (m, 2H), 2.9 (m, 2H), 7.2 (d, j=3.0 Hz, 1H), 7.36 (m, 1H), 7.50 (m, 1H), 7.98 (m, 1H), 19F NMR CDCl3 δ −72.0. EI GC-MS M+=242.
A 100 mL one necked round bottomed flask equipped with reflux condenser, nitrogen inlet and provisions for magnetic stirring was charged with 2-trifluoroacetyl-1-tetralone from Step 1 (1.21 g, 5.0 mmol), 4-sulfonamidophenylhydrazine hydrochloride (1.12 g, 5.0 mmol) and 25 mL of absolute ethanol. The solution was warmed to reflux for 15 hours and concentrated in vacuo. The residue was dissolved in ethyl acetate, and then washed with water, and with brine, dried over anhydrous MgSO4, filtered and concentrated in vacuo. The residue was recrystallized from a mixture of ethyl acetate and isooctane to give 1.40 g, 71% of pure product: mp 257°-258° C.; 1H NMR (CDCl3/CD3OD, 4:1) δ 2.7 (m, 2H), 2.9 (m, 2H), 6.6 (m, 1H), 6.9 (m, 1H), 7.1 (m, 1H), 7.16 (m, 1H), 7.53 (m, 2H), 7.92 (m, 2H); 19F NMR (CDCl3) δ −62.5. ( FAB-MS M+H=394.
##STR00084##
Ethyl trifluoroacetate (5.33 g, 37.5 mmol) was dissolved in ether (50 mL) and treated with a sodium methoxide solution (25% in methanol, 9.92 g, 45.9 mmol) followed by 6-methyltetralone (5.94 g, 37.1 mmol). The reaction was stirred at room temperature for 6.1 hours then treated with 1N HCl (20 mL). The organic layer was collected, washed with brine, dried over MgSO4, and concentrated in vacuo to give a brown oil (8.09 g) that was used in the next step without further purification.
4-Sulfonamidophenylhydrazine hydrochloride (1.80 g, 8.0 mmol) was added to a stirred solution of the diketone from Step 1 (1.86 g, 7.3 mmol) in ethanol (10 mL). The reaction was heated to reflux and stirred for 14.8 hours. The reaction mixture was cooled and filtered. The filtrate was concentrated in vacuo, dissolved in ethyl acetate, washed with water and with brine, dried over MgSO4 and reconcentrated in vacuo to give the pyrazole as a brown solid (1.90 g, 64%): mp 215°-218° C. 1H NMR (acetone-d6) 300 MHz 8.10 (d, 2H), 7.80 (d, 2H), 7.24 (s, 1H), 6.92 (d, 1H), 6.79 (br s, 2H), 6.88 (d,1H), 3.02 (m, 2H), 2.85 (m, 2H), 2.30 (s, 3H). 19F NMR (acetone-d6) 282 MHz −62.46 (s). High resolution mass spectrum Calc'd. for C19H17F3O2S: 408.0994. Found: 408.0989.
The following compounds in Table IX were prepared according to procedures similar to that exemplified in Examples 187-188, with the substitution of the appropriate ester.
TABLE IX
##STR00085##
Ex.
R2
R6
M.P. (° C.)
Anal.
189
—CHF2
6-OCH3
275-277
HRMS: 405.0961
190
—CHF2
7-CH3
240-241
HRMS: 390.1122
191
—CF3
6,8-CH3
284-288
HRMS: 422.1089
192
—CF3
7-OCH3
277-278
HRMS: 423.0838
193
—CF3
7,8-OCH3
269-275
HRMS: 453.1011
194
—CHF2
7-OCH3
256-257
195
—CO2CH3
7-OCH3
274-276
HRMS: 414.1117
##STR00086##
4-(2-Thienyl)butyric acid (28.42 g, 167 mmol) was placed in a round bottom flask with acetic anhydride (30 mL) and phosphoric acid (0.6 mL), and heated to reflux for 3.2 hours. The reaction mixture was poured into 100 mL of water, extracted with ethyl acetate, washed with brine, dried over MgSO4, and concentrated in vacuo to give a brown oil (22.60 g) which was vacuum distilled (1 mm Hg, 107°-115° C.) to give a white solid (13.08 g, 51%): mp 34°-40° C.); 1H NMR (CDCl3) 300 MHz 7.29 (d, J=5.2 Hz, 1H), 6.99 (d, J=5.2 Hz, 1H, 2.95 (t, J=6.0 Hz, 2H), 2.47(m, 2H), 2.13(m, 2H). M+H=153.
Ethyl trifluoroacetate (11.81 g, 83.1 mmol) was dissolved in ether (50 mL) and treated with a sodium methoxide solution (25% in methanol, 18.35 g, 84.9 mmol) followed by 4-keto-4,5,6,7-tetrahydrothianaphthene from Step 1 (12.57 g, 82.6 mmol) dissolved in ether (25 mL). The reaction was stirred for 69.4 hours at room temperature, then treated with 3N HCl (40 mL). The organic layer was collected, washed with brine, dried over MgSO4, and concentrated in vacuo to give a brown solid which was recrystallized from ether/hexane to give the diketone (10.77 g, 52%) as brown needles; mp 54°-64° C.; 1H NMR (CDCl3) 300 MHz 15.80 (s, 1H), 7.41 (d, J=5.2 Hz, 1H), 7.17 (d, J=5.2 Hz, 1H), 3.04 (m, 2H), 2.91 (m, 2H), 19F NMR (CDCl3) 282 MHz −70.37 (s). M+H=249.
4-Sulfonamidophenylhydrazine hydrochloride (2.36 g, 10.6 mmol) was added to a stirred solution of the diketone from Step 2 (2.24 g, 9.0 mmol) in ethanol (20 mL). The reaction was heated to reflux and stirred 14.7 hours. The reaction mixture was filtered and washed with ethanol and with water to give the desired pyrazole as a white solid (2.69 g, 75%): mp 288°-290° C.; 1H NMR (acetone-d6) 300 MHz 8.12 (d, J=8.7 Hz, 2H), 7.83 (d, J=8.7 Hz, 2H), 7.27 (d, J=5.2 Hz, 1H), 6.81 (br s, 2H), 6.59 (s, J=5.4 Hz, 1H), 3.18 (m, 2H), 3.01 (m, 2H); 19F NMR (acetone-d6) 282 MHz −62.46 (s). High resolution mass spectrum Calc'd. for C16H12F3N3O2S2: 399.0323. Found: 399.0280.
##STR00087##
Ethyl formate (8.15 g, 0.11 mol) and 4′-chloroacetophenone (15.4 g, 0.1 mol) were stirred in ether (150 mL) at room temperature. Sodium methoxide (25%) (23.77 g, 0.11 mol) was added dropwise. The mixture was stirred at room temperature for 16 hours and was then treated with 150 mL of 1N hydrochloric acid. The phases were separated and the ethereal solution washed with brine, dried over magnesium sulfate, filtered and concentrated in vacuo to afford 18.3 g of a yellow oil. The resulting crude mixture was used directly in the next step without purification.
3-[4-(Chloro)phenyl]-propane-1,3-dione from Step 1 (18.3 g, 0.1 mol) and 4-sulfonamidophenylhydrazine hydrochloride (22.4 g, 0.1 mol) were dissolved in 150 mL of absolute ethanol and heated to reflux for 16 hours. The solution was cooled to room temperature, diluted with 100 mL of water and let stand, whereupon crystals of pyrazole formed that were isolated by filtration to provide 8.4 g (25%) of a white solid: mp 185°-187° C.; 1H NMR (CDCl3/300 MHz) 7.89 (d, J=8.7Hz, 2H), 7.76 (d, J=1.8Hz, 1H), 7.43 (d,J=8.7Hz, 2H), 7.34 (d, J=8.7Hz, 2H), 7.17 (d, J=8.7Hz, 2H), 6.53 (d, J=1.8Hz, 1H), 4.93 (brs 2H). Anal. Calc'd for C15H12N3SO2Cl: C, 53.97; H, 3.62; N, 12.59. Found: C, 54.08; H, 3.57; N, 12.64.
4-[5-(4-Chlorophenyl)-1H-pyrazol-1-yl]benzenesulfonamide from Step 2 (3.0 g, 9 mmol) was dissolved in 50 mL of acetic acid, and 9 mL of 1M chlorine in acetic acid was added dropwise. The mixture was stirred for 16 hours when sat. aq. sodium bicarbonate solution was slowly added until the mixture was neutral to pH paper. The mixture was extracted with ethyl acetate (3×50 mL), combined and washed with sat. aq. sodium bicarbonate and with brine, dried over magnesium sulfate, filtered, and concentrated. The resultant product was recrystallized from isopropanol to yield 2.6 g (78%) of a white solid: mp 168°-171° C. (dec); 1H NMR (DMSO-D6/300 MHz) 8.08 (s, 1H), 7.83 (d, J=8.7Hz, 2H), 7.55 (d, J=8.7Hz, 2H), 7.46 (brs, 2H), 7.44 (d, J=8.7Hz, 2H), 7.35 (d, J=8.7Hz, 2H). Anal. Calc'd for C15H11N3SO2Cl2: C, 48.93; H, 3.01; N, 11.41. Found: C, 49.01; H, 2.97; N, 11.41.
##STR00088##
To a solution of 2-hydroxyacetophenone (2.5 g, 18.4 mmol) in 100 mL CH2Cl2 at −78° C., was added triflic anhydride (10 g, 35.4 mmol) followed by 2,6-lutidine (4.1 mL, 35.4 mmol) and the mixture stirred at −78° C. for 50 minutes. The mixture was poured into CH2Cl2 and water and the CH2Cl2 layer separated, washed with brine, dried over Na2SO4 and concentrated to a peach solid. To a solution of the crude triflate in 100 mL THF was added 35 mL of 1N tetrabutylammonium fluoride in THF. The mixture was refluxed for 15 minutes, cooled and poured into ether and water. The ether layer was separated, washed with brine, dried over Na2SO4 and concentrated. Flash chromatography on silica gel using 20:1 hexane/EtOAc furnished the α-fluoroketone (0.852 g, 33.5%).
A solution of 2-fluoroacetophenone (200 mg, 1.45 mmol) in 2 mL dimethylformamide-dimethylacetal was refluxed for 18 hours. The mixture was cooled and concentrated to give the crude enaminoketone. Without further purification, the enaminoketone was treated with 4-sulfonamidophenyl hydrazine hydrochloride (0.34 g, 1.52 mmol) in 10 mL EtOH at reflux for 17 hours. The mixture was cooled, filtered and the filtrate concentrated to a yellow gum. Flash chromatography using a gradient of 5:1 to 2:1 hexane/EtOAc provided 0.11 g of a yellow solid: Recrystallization from ether/hexane gave the product as a pale yellow solid. mp 194°-194.5° C.; Anal. calc'd for C15H12N3O2SF.0.2 H2O: C, 56.14; H, 3.89; N, 13.09. Found: C, 55.99; H, 3.65; N, 12.92.
##STR00089##
A 100 mL three-necked round-bottomed flask equipped with reflux condenser, gas dispersion tube and provisions for magnetic stirring was charged with 4-[5-(4-chlorophenyl)-3-trifluoromethyl-1H-pyrazol-1-yl]benzenesulfonamide (Example 1) (500 mg, 1.2 mmol) and 50 mL of glacial acetic acid. The solution was stirred at room temperature and treated with a stream of chlorine gas for a period of 15 minutes. The solution was then stirred at room temperature for 1.25 hours and then diluted with 100 mL of water. The solution was then extracted three times with ether and the combined ethereal phase washed with brine, dried over MgSO4, filtered, and concentrated in vacuo to give a white solid that was recrystallized from ether/petroleum ether to provide 390 mg (75%) of 4-[5-(4-chlorophenyl)-4-chloro-3-trifluoromethyl-1H-pyrazol-1-yl]benzenesulfonamide: mp 180°-182° C.; 1H NMR (CDCl3/300 MHz) 7.97 (d, J=6.6Hz, 2H, 7.49 (d, 2H), 7.45 (d, J=6.3Hz, 2H), 7.25 (d, J=6.6Hz, 2H), 5.78 (brs, 2H).
##STR00090##
To a solution of 2-fluoroacetophenone from Step 1 of Example 198 (0.48 g, 3.4 mmol) in 25 mL THF at −78° C., was added 1N lithium bis(trimethylsilyl)amide (4 mL) and the mixture stirred at −78° C. for 45 minutes. 1-(Trifluoroacetyl)imidazole (0.65 mL, 5.7 mmol) was added and the mixture stirred at −78° C. for 30 minutes and at 0° C. for 30 minutes. The mixture was quenched with 0.5N HCl, poured into ether and water, and the ether layer separated, washed with brine, dried over Na2SO4 and concentrated. Flash chromatography on silica gel using a gradient of 10:1 to 4:1 hexane/EtOAc furnished the 1,3-diketone (0.34 g, 43%).
The diketone from Step 1 (0.34 g, 1.45 mmol) was treated with 4-sulfonamidophenyl hydrazine hydrochloride (0.35 g, 1.56 mmol) in 15 mL EtOH at reflux for 15 hours. The mixture was cooled, filtered and the filtrate concentrated to a yellow gum. Flash chromatography using 3:1 hexane/EtOAc provided 0.28 g of a yellow solid. Recrystallization from CH2Cl2/hexane gave the product as a pale yellow solid: Anal. calc'd for C16H11N3O2SF4: C, 49.87; H, 2.88; N, 10.90. Found: C, 49.79; H, 2.88; N, 10.81.
##STR00091##
To a solution of propiophenone (965 mg, 7.2 mmol) in THF (20 mL) at −78° C. was added sodium bis(trimethylsilyl)amide (7.9 mL of a 1M solution in THF). The solution was kept at −78° C. for 0.5 hour and then warmed to −20° C. over 1 hour. The solution was cooled to −78° C. and 1-(trifluoroacetyl)imidazole (1.5 g, 9.1 mmol) in THF (4 mL) was added via cannula. The solution was warmed to room temperature and stirred overnight. The mixture was partitioned between 1N HCl and ether. The organic solution was dried (Na2SO4) and concentrated to give the crude diketone (1.9 g).
The diketone from Step 1 was dissolved in absolute ethanol (25 mL) and 4-sulfonamidophenylhydrazine hydrochloride (2.0 g, 9.0 mmol) was added. The mixture was heated at reflux for 19 hours. Volatiles were removed in vacuo and the residue dissolved in ethyl acetate. The organic solution was washed with water and brine, dried and concentrated. The residue was chromatographed on silica (2:1 hexane/ethyl acetate) to give the title pyrazol (1.52 g, 49%): mp 145°-146° C.; Calc'd for C17H14N3O2SF3: C, 53.54; H, 3.70; N, 11.01. Found: C, 53.41; H, 3.66; N, 10.92.
##STR00092##
To a suspension of aluminum chloride (10.3 g, 77.2 mmol) in dichloromethane (40 mL) at 0° C. was added dropwise a solution of 2-methylanisole (5.0 mL, 35.3 mmol) and butyric anhydride (5.8 mL, 35.3 mmol). The reaction solution was kept at 0° C. for 2 hours and then warmed to room temperature and stirred overnight. The reaction solution was poured into conc. HCl (9 mL) and ice water (80 mL). The reaction was extracted with dichloromethane and the organic layer was washed with 2N NaOH and brine, dried and concentrated. The residue was chromatographed on silica (9:1 hexane:ethyl acetate) to give the desired product (5.2 g, 77%).
The title compound was prepared from the butyrophenone in Step 1 using the procedure described in Example 201, Steps 1 and 2: mp 135°-136° C.; Calc'd for C20H20N3O3SF3: C, 54.66; H, 4.59; N, 9.56. Found: C, 54.11; H, 4.38; N, 9.43.
##STR00093##
To a suspension of sodium cyanide (1.8 g, 37.0 mmol) in dimethyl sulfoxide (20 mL) at 60° C. was added dropwise (bromomethyl)cyclopropane (5.0 g, 37.0 mmol). The addition was done at such a rate to keep the temperature of the reaction at 60° C. After the addition was completed, the reaction mixture was heated at 80° C. for 15 minutes. The mixture was cooled and partitioned between ether and water. The organic solution was washed with 1N HCl and water, dried and concentrated. The residue was dissolved in ether (5 mL) and added to a solution of phenyl magnesium bromide (25 mL of a 3M solution in ether) in ether (20 mL) and benzene (25 mL). The reaction mixture was stirred at room temperature for 20 hours, then poured into a 1N HCl solution and stirred for 1.5 hours. The organic solution was separated and the aqueous solution extracted with dichloromethane. The organic solution was dried and concentrated. The residue was chromatographed on silica (9:1 hexane:ethyl acetate) to give the desired product (2.0 g, 34%).
The title compound was prepared from the acetophenone in Step 1 using the procedure described in Example 201), Steps 1 and 2: mp 173°-174° C.; Calc'd for C19H16N3O2SF3: C, 56.01; H, 3.96; N, 10.31. Found: C, 55.85; H, 3.78; N, 10.19.
##STR00094##
To a solution of 4-[4-methyl-5-phenyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide prepared in Example 201 (500 mg, 1.3 mmol) in carbon tetrachloride (9 mL) and benzene (4 mL) was added N-bromosuccinimide (285 mg, 1.6 mmol). The mixture was irradiated with a sunlamp for 3.5 hours. The reaction mixture was partitioned between dichloromethane and water and the organic solution was dried and concentrated to give the desired product, 412 mg (69%).
To a solution of the compound prepared in Step 1 (362 mg, 0.79 mmol) in dimethyl sulfoxide (7 mL) was added collidine (0.14 mL, 1.0 mmol). The solution was heated at 120° C. for 3 hours and then kept at overnight at room temperature. The reaction solution was partitioned between ethyl acetate and water and the organic solution was washed with water, dried and concentrated. The residue was chromatographed (1:1 hexane:ethyl acetate) to give the desired product (205 mg, 66%).
To a solution of the aldehyde prepared in Step 2 (165 mg, 0.41 mmol) in methanol (3.5 mL) at 0° C. was added sodium borohydride (16 mg, 0.41 mmol). The reaction solution was kept at 0° C. for 2.5 hours. The reaction was quenched with the addition of an aqueous 1M KHSO4 solution (3 mL). The mixture was extracted with dichloromethane and the organic solution dried and concentrated. The residue was chromatographed on silica (1:1 hexane:ethyl acetate) to give the desired product (36 mg, 46%): m.p. 179°-180° C.; 1H NMR d 7.91 (m, 2H), 7.53-7.40 (m, 5H), 6.75 (s, 2H), 4.53 (d, 2h, J=5.0 Hz), 4.30 (t, 1H, J=5.0 Hz).
##STR00095##
To a solution of the pyrazole prepared in Example 175 (0.15 g, 0.42 mmol) in CH2Cl2 (10 mL) was added an excess of sulfuryl chloride slowly at room temperature. The mixture was stirred at room temperature for 2 hours, quenched with water and the aqueous layer extracted three time with methylene chloride. The combined organic layers were dried over MgSO4 and concentrated to give an oil which was purified by flash chromatography on silica gel using 70:30 hexane/ethyl acetate as eluent to give the desired compound: HRMS m/z 389.0970 (calc'd for C19H20ClN3SO2, 389.0965).
The following compounds in Table X were prepared according to procedures similar to that exemplified in Examples 197-205, with the substitution of the appropriate starting material.
TABLE X
##STR00096##
Ex.
R3
R2
A
MP (° C.)
Analytical
206
Cl
H
4-F
175-178
Calc C, 51.22; H, 3.15; N, 11.94
Obs. C, 51.43; H, 3.10; N, 11.82
207
Br
H
4-Cl
209-210
Calc. C, 43.66; H, 2.69; N, 10.18
Obs. C, 43.74; H, 2.70; N, 10.23
208
Cl
H
H
172-174
Calc. C, 53.98; H, 3.62; N, 12.59 Cl, 10.62; S, 9.60
Obs. C, 54.17; H, 3.64, N, 12.45 Cl, 10.46; S, 9.42
209
Cl
H
3-di-Cl, 4-OCH3
211-212
Calc. C, 44.41; H, 2.80; N, 9.71
Obs. C, 44.72; H, 3.04, N, 9.72
210
Br
H
4-CH3
ND
HRMS: 391.0003
211
Cl
H
4-CH3
160-163
Calc. C, 55.25; H, 4.06; N, 12.08
Obs. C, 55.06; H, 4.03. N, 12.02
212
Cl
H
3-Cl, 4-OCH3
ND
Calc. C, 48.25; H, 3.29; N, 10.55 Cl, 17.80; S, 8.05
Obs. C, 48.10; H, 3.31. N, 10.52 Cl, 17.70; S, 7.98
213
Cl
H
4-OCH3
155-156
Calc. C, 52.82; H, 3.88; N, 11.55
Obs. C, 52.18;H, 3.93, N, 11.41
214
Br
H
4-OCH3
130-132
215
CN
H
4-OCH3
216-219
HRMS: 355.0860
216
Cl
H
3,5-di-F, 4-OCH3
196-199
Calc. C, 48.07; H, 3.03; N, 10.51
Obs. C, 48.45; H, 355, N, 10.10
217
SO2CH3
H
Cl
182-185
Calc. C, 46.66; H, 3.43; N, 10.20
Obs. C, 46.57; H, 3.49, N, 10.39
218
C2H5
CF3
H
177-178
Calc. C, 54.68; H, 4.08; N, 10.62
Obs. C, 54.61; H, 4.10; N, 1054
219
CH3
CF3
4-OCH3
158-159
Calc. C, 52.55; H, 3.92; N, 10.21
Obs. C, 52.27; H, 4.00; N, 10.16
220
CH3
CF3
4-Cl
154-155
Calc. C, 49.10; H, 3.15; N, 10.10
Obs. C, 49.05; H, 3.02; N, 9.96
221
CH3
CF3
44
103-104
Calc. C, 51.13; H, 3.28; N, 10.52
Obs. C, 51.09; H, 3.26; N, 1034
222
C2H5
CF3
4-Cl
ND
Calc. C, 50.30; H, 3.52; N, 9.77
Obs. C, 50.40; H, 3.51; N, 9.72
223
CH3
CF3
4-CH3
144-145
Calc. C, 54.68; H, 4.08; N, 10.62
Obs. C, 5438; H, 3.87; N, 1031
224
C2H5
CF3
4-CH3
142-143
Calc. C, 55.74; H, 4.43; N, 10.26
Obs. C, 55.60; H, 4.37; N, 10.17
225
C2H5
CF3
4-OCH3
160-161
Calc. C, 53.64; H, 4.26; N, 9.87
Obs. C, 53.55; 4.23; N, 9.65
226
C2H5
CF3
3-F, 4-OCH3
156-157
Calc. C, 51.46; H, 3-86; N, 9.47
Obs. C, 51.27; H, 3.75; N, 9.33
227
Br
CHF2
4-Cl
224-226
Calc. C, 41.53; H, 2.40; N, 9.08
Obs. C, 41.50; H, 238; N, 9.00
228
Cl
CHF2
3,5-di-Cl, 4-OCH3
92-102(dec)
Calc C, 42.30; H, 2.51; N, 8.70
Obs. C, 42.50; H, 2.67, N, 8.56
229
Cl
CHF2
H
174-176
Calc. C, 50.07; H, 3.15; N, 10.95
Obs. C, 50.07; H, 3.18, N, 10.98
230
Br
CHF2
H
184-186
Calc. C, 44.87; H, 2.82; N, 9.81
Obs. C, 44.98; H, 2.81, N, 9.64
231
Cl
CHF2
4-OCH3
171-172
HRMS: 413.0351
232
Cl
CN
H
174-l77(sub)
Calc. C, 53.56; H, 3.09; N, 15.61;
Cl, 9.98; S, 8.94
Obs. C, 53.81; H, 3.18; N, 15.43;
Cl, 9.78; S, 8.91
233
Cl
CN
4-Cl
ND
Calc. C, 48.87; H, 2.56; N, 14.25;
Cl, 18.03; S, 8.15
Obs. C, 48.99; H, 2.55; N, 14.30;
Cl, 17.96; S, 8.08
234
Cl
CN
4-F
ND
Calc. C, 51.00; H, 2.68; N, 14.87;
Cl, 9.41; S, 8.51
Obs. C, 51.19; H, 2.73; N, 14.98;
Cl, 9.22; S, 8.56
235
Br
CN
4-F
ND
Calc. C, 45.62; H, 239; N, 13.30;
Br, 18.97; S, 7.61
Obs. C, 45.51; H, 2.36; N, 13.21;
Br, 19.09; S, 7.51
236
Br
CN
H
ND
Calc. C, 47.66; H, 2.75; N, 13.89;
Br, 19.81; S, 7.95
Obs. C, 47.62; H, 2.77; N, 13.77;
Br, 19.74; S, 8.04
237
Br
CO2C2H5
4-Cl
ND
HRMS: 482.9707
238
Cl
CO2CH3
H
ND
HRMS: 342.0495
239
Cl
CO2CH3
4-Cl
ND
HRMS: 426.0128
240
Cl
CO2C2H5
4-Cl
ND
HRMS: 440.0207
241
Cl
CO2CH3
4-F
ND
HRMS: 410.0391
242
Br
CO2CH3
4-F
ND
HRMS: 453.9880
243
Cl
CO2CH3
4-OCH3, 3-Cl
ND
Calc. C, 47.38; H, 331; N, 9.21;
Cl, 15.54; S, 7.03
Obs. C, 47.10; H, 3.26; N, 9.01;
Cl, 15.74; S, 6.92
244
Cl
CO2CH3
4-OCH3, 3,5-di-Cl
198-199
Calc. C, 44.06; H, 2.88; N, 8.56
Obs. C, 43.59; H, 2.77; N, 8.44
245
Cl
CO2CH3
4-OCH3, 3-Br
ND
Calc. C, 43.18, H, 3.02; N, 839; S, 6.40
Obs. C, 43.25; H, 257; N, 8.40; S, 6.59
246
Cl
CONH2
H
ND
HRMS: 377.0539
247
Cl
CONH2
4-Cl
ND
HRMS: 411.0115
248
Cl
CONH2
4-F
ND
HRMS: 395.0397
249
Br
CONH2
4-F
ND
Calc. C, 43.75, H, 2.75; N, 12.75;
Br, 18.19; S, 7.30
Obs. C, 43.65; H, 2.78; N, 12.66;
Br, 18.13; S, 7.21
250
Br
CONH2
H
ND
HRMS: 419.9920
251
Cl
CO2H
H
ND
HRMS: 377.0249
252
Cl
CO2H
4-Cl
ND
Calc. C, 46.62, H, 2,69; N, 10.19; Cl, 17.20; S, 7.78
Obs. C, 46.59, H, 2.68; N, 10.21; Cl, 17.25; S, 7.73
253
Cl
CO2H
4-OCH3, 3,5-di-Cl
220(dec)
Calc. C, 42.83: H, 2.54; N, 8.81
Obs. C, 43.65; H, 2.52; N, 8.78
254
Cl
CH3
H
ND
Calc. C, 55.25; H, 4.06; N, 12.08
Obs. C, 55.24; H, 4.26; N, 12.17
255
Cl
CH2OH
H
195-197
HRMS: 363.0431
256
Cl
CH2OH
4-Cl
203-204
Calc. C, 48.25; H, 3.29; N, 10.55
Obs. C, 48.36; H, 3.27; N, 10.50
257
Cl
(CH2)2CO2H
4-Cl
212-214
Calc. C, 49.10; H, 3.43; N, 9.54
Obs. C, 49.23; H, 3.45; N, 9.49
258
OCH3
CF3
H
137-138
Calc. C, 51.38; H, 3.55; N, 10.57
Obs. C, 51.40; H, 3.47; N, 10.47
EXAMPLE 259
##STR00097##
Increasing the polarity of the eluant used in the purification in Example 234 to 60% ethyl acetate, upon concentration of the appropriate fractions, yielded 4-[4-chloro-3-cyano-5-[4-(fluoro)phenyl])-1H-pyrazol-1-yl]-N-[(dimethylamino)methylene]benzenesulfonamide (0.485 g, 15%): High Resolution Mass Spectrum (MLi+) calc'd: 438.0779. Found: 438.0714. Elemental analysis calc'd for C19H15N5O2FClS: C, 52.84; H, 3.50: N, 16.22; Cl, 8.21; S, 7.42. Found: C, 52.76; H, 3.52; N, 16.12; Cl, 8.11; S, 7.35.
##STR00098##
Similarly, 4-[4-bromo-3-cyano-5-phenyl-1H-pyrazol-1-yl]-N-[(dimethylamino)methylene]benzenesulfonamide was isolated from the purification of Example 235 (0.153 g, 28%): High Resolution Mass Spectrum (M+) calc'd: 457.0208. Found: 457.0157. Elemental analysis calc'd for C19H16N5O2BrS: 49.79; H, 3.52: N, 15.28; Br, 17.43; S, 6.99. Found: C, 49.85; H, 3.56; N, 15.10; Br, 17.52; S, 6.87.
##STR00099##
To a solution of 4-(aminosulfonyl)acetophenone (2.0 g, 9.0 mmol) in dimethylsulfoxide (25 mL) was added sodium hydride (450 mg, 19.0 mmol). The reaction mixture was stirred for 45 minutes and then 4-methoxybenzyl bromide (3.5 g, 19.0 mmol) in dimethylsulfoxide (5 mL) was added via cannula. The mixture was stirred at room temperature for 24 hours and partitioned between ethyl acetate and pH 7 buffer. The aqueous solution was extracted with ethyl acetate. The organic solution was dried (MgSO4) and concentrated. The residue was chromatographed on silica (2:1 hexane:ethyl acetate) to give the desired product (815 mg, 21%).
To a 25% sodium methoxide solution in methanol (0.2 mL) was added ethyl trifluoroacetate (75 mg, 0.53 mmol) and the protected acetophenone from Step 1 (235 mg, 0.53 mmol). THF (0.5 mL) was added and the reaction mixture was heated at reflux for 2 hours and then stirred at room temperature overnight. The mixture was partitioned between ether and 1N HCl solution. The organic solution was dried and concentrated to give the crude diketone (279 mg), which was diluted with absolute ethanol (2.5 mL). To this slurry was added pyridine (49 mg, 0.62 mmol) and 4-fluorophenylhydrazine hydrochloride (80 mg, 0.50 mmol). The mixture was stirred at room temperature for 24 hours and concentrated in vacuo. The residue was dissolved in methylene chloride and washed with 1N HCl. The organic solution was dried and concentrated. The residue was chromatographed on silica (3:1 hexane:ethyl acetate) to give the protected pyrazole (159 mg, 51%).
To a solution of the protected pyrazole (50 mg, 0.08 mmol) in acetonitrile (1 mL) and water (0.3 mL) was added ceric ammonium nitrate (360 mg, 0.65 mmol). The reaction solution was kept at room temperature for 16 hours. The solution was poured into water (15 mL) and extracted with ethyl acetate (2×25 mL). The combined extracts were dried (MgSO4) and concentrated. The residue was chromatographed on silica (2:1 hexane:ethyl acetate) to give the desired product (13 mg, 42%): 1H NMR (CD3OD) 7.88 (d,2H), 7.46 (d, 2H), 7.39 (dd, 2H), 7.21 (t, 2H), 7.06 (s, 1H).
##STR00100##
The title compound was prepared using the procedure described in Example 261: HRMS m/z 397.0702 (calc'd for C17H14N3O3SF3. 397.0708).
The carrageenan foot edema test was performed with materials, reagents and procedures essentially as described by Winter, et al., (Proc. Soc. Exp. Biol. Med., 111, 544 (1962)). Male Sprague-Dawley rats were selected in each group so that the average body weight was as close as possible. Rats were fasted with free access to water for over sixteen hours prior to the test. The rats were dosed orally (1 mL) with compounds suspended in vehicle containing 0.5% methylcellulose and 0.025% surfactant, or with vehicle alone. One hour later a subplantar injection of 0.1 mL of 1% solution of carrageenan/sterile 0.9% saline was administered and the volume of the injected foot was measured with a displacement plethysmometer connected to a pressure transducer with a digital indicator. Three hours after the injection of the carrageenan, the volume of the foot was again measured. The average foot swelling in a group of drug-treated animals was compared with that of a group of placebo-treated animals and the percentage inhibition of edema was determined (Otterness and Bliven, Laboratory Models for Testing NSAIDS, in Non-steroidal Anti-Inflammatory Drugs, (J. Lombardino, ed. 1985)). The % inhibition shows the % decrease from control paw volume determined in this procedure and the data for selected compounds in this invention are summarized Results are shown in Table I.
Rat Carrageenan-induced Analgesia Test
The analgesia test using rat carrageenan was performed with materials, reagents and procedures essentially as described by Hargreaves, et al., (Pain, 32, 77 (1988)). Male Sprague-Dawley rats were treated as previously described for the Carrageenan Foot Pad Edema test. Three hours after the injection of the carrageenan, the rats were placed in a special plexiglass container with a transparent floor having a high intensity lamp as a radiant heat source, positionable under the floor. After an initial twenty minute period, thermal stimulation was begun on either the injected foot or on the contralateral uninjected foot. A photoelectric cell turned off the lamp and timer when light was interrupted by paw withdrawal. The time until the rat withdraws its foot was then measured. The withdrawal latency in seconds was determined for the control and drug-treated groups, and percent inhibition of the hyperalgesic foot withdrawal determined. Results are shown in Table XI.
TABLE XI
RAT PAW EDEMA
ANALGESIA
Examples
% Inhibition
% Inhibition
Example
@ 10 mg/kg body weight
@ 30 mg/kg body Weight
1
44
94
2
35
38
58
36
65
59
25
41
60
49
39
82
22*
86
42*
98
2*
117
32
129
47*
170
18*
171
14
37
188
32*
27
197
45*
199
35
*Assay Performed At 30 Mg/Kg Body Weight
Evaluation of COX I and COX II activity in vitro
The compounds of this invention exhibited inhibition in vitro of COX II. The COX II inhibition activity of the compounds of this invention illustrated in the Examples was determined by the following methods.
a. Preparation of recombinant COX baculoviruses
A 2.0 kb fragment containing the coding region of either human or murine COX-I or human or murine COX-II was cloned into a BamHI site of the baculovirus transfer vector pVL1393 (Invitrogen) to generate the baculovirus transfer vectors for COX-I and COX-II in a manner similar to the method of D. R. O'Reilly et al (Baculovirus Expression Vectors: A Laboratory Manual (1992)). Recombinant baculoviruses were isolated by transfecting 4 μg of baculovirus transfer vector DNA into SF9 insect cells (2×10 e8) along with 200 ng of linearized baculovirus plasmid DNA by the calcium phosphate method. See M. D. Summers and G. E. Smith, A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures, Texas Agric. Exp. Station Bull. 1555 (1987). Recombinant viruses were purified by three rounds of plaque purification and high titer (10E7-10E8 pfu/ml) stocks of virus were prepared. For large scale production, SF9 insect cells were infected in 10 liter fermentors (0.5×106/ml) with the recombinant baculovirus stock such that the multiplicity of infection was 0.1. After 72 hours the cells were centrifuged and the cell pellet homogenized in Tris/Sucrose (50 mM: 25%, pH 8.0) containing 1% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS). The homogenate was centrifuged at 10,000×G for 30 minutes, and the resultant supernatant was stored at −80° C. before being assayed for COX activity.
b. Assay for COX I and COX II activity
COX activity was assayed as PGE2 formed/μg protein/time using an ELISA to detect the prostaglandin released, CHAPS-solubilized insect cell membranes containing the appropriate COX enzyme were incubated in a potassium phosphate buffer (50 mM, pH 8.0) containing epinephrine, phenol, and heme with the addition of arachidonic acid (10 μM). Compounds were pre-incubated with the enzyme for 10-20 minutes prior to the addition of arachidonic acid. Any reaction between the arachidonic add and the enzyme was stopped after ten minutes at 37° C./room temperature by transferring 40 μl of reaction mix into 160 μl ELISA buffer and 25 μM indomethacin. The PGE2 formed was measured by standard ELISA technology (Cayman Chemical). Results are shown in Table XII.
TABLE XII
Human COX II
Human COX I
Example
ID50 μM
ID50 μM
1
<.1
18
2
<.1
15.0
3
<.1
>100
4
.6
37.5
5
<.1
6.3
6
.2
78.7
7
14
>100
8
37.7
>100
9
.1
55.2
10
2.7
>100
12
20
>100
55
22
77.9
56
<.1
11.7
57
47.9
>100
58
<.1
5.7
59
<.1
26.8
60
<.1
.8
82
<.1
1.1
84
<.1
65.5
85
73.6
>100
86
.5
>100
96
6.5
>100
97
96
>100
98
<.1
1.7
117
.3
>100
128
1.1
>100
129
<.1
13.5
130
3.6
12.5
131
.2
>100
138
.6
<.1
170
.1
>100
171
.8
>100
172
4.2
>100
173
4.7
>100
174
3.5
100
175
66.9
>100
176
.3
>100
187
1.1
13.6
188
.2
19.8
196
.6
4.1
197
<.1
3.4
198
4.2
56.5
199
<.1
<.1
200
<.1
.5
201
<.1
2.2
202
<.1
91
203
27
>100
204
6.7
>100
205
<.1
2.1
259
1.1
>100
260
1.1
>100
261
<.1
<.1
262
<.1
<.1
Also embraced within this invention is a class of pharmaceutical compositions comprising one or more compounds of Formula I the present invention in association with one or more non-toxic, pharmaceutically acceptable carriers and/or diluents and/or adjuvants (collectively referred to herein as “carrier” materials) and, if desired, other active ingredients. The compounds of the present invention may be administered by any suitable route, preferably in the form of a pharmaceutical composition adapted to such a route, and in a dose effective for the treatment intended. The compounds and composition may, for example, be administered intravascularly, intraperitoneally, subcutaneously, intramuscularly or topically.
For oral administration, the pharmaceutical composition may be in the form of, for example, a tablet, capsule, suspension or liquid. The pharmaceutical composition is preferably made in the form of a dosage unit containing a particular amount of the active ingredient. Examples of such dosage units are tablets or capsules. The active ingredient may also be administered by injection as a composition wherein, for example, saline, dextrose or water may be used as a suitable carrier.
The amount of therapeutically active compound that is administered and the dosage regiment for treating a disease condition with the compounds and/or compositions of this invention depends on a variety of factors, including the age, weight, sex and medical condition of the subject, the severity of the disease, the route and frequency of administration, and the particular compound employed, and thus may vary widely. The pharmaceutical compositions may contain active ingredient in the range of about 0.1 to 2000 mg, preferably in the range of about 0.5 to 500 mg and most preferably between about 1 and 100 mg. A daily dose of about 0.01 to 100 mg/kg body weight, preferably between about 0.1 and about 50 mg/kg body weight and most preferably from about 1 to 20 mg/kg body weight, may be appropriate. The daily dose can be administered in one to four doses per day.
For therapeutic purposes, the compounds of this invention are ordinarily combined with one or more adjuvants appropriate to the indicated route of administration. If administered per os, the compounds may be admixed with lactose, sucrose, starch powder, cellulose esters of alkanoic acids, cellulose alkyl esters, talc, stearic acid, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulfuric acids, gelatin, acacia gum, sodium alginate, polyvinylpyrrolidone, and/or polyvinyl alcohol, and then tableted or encapsulated for convenient administration. Such capsules or tablets may contain a controlled-release formulation as may be provided in a dispersion of active compound in hydroxypropylmethyl cellulose. Formulations for parenteral administration may be in the form of aqueous or non-aqueous isotonic sterile injection solutions or suspensions. These solutions and suspensions may be prepared from sterile powders or granules having one or more of the carriers of diluents mentioned for use in the formulations for oral administration. The compounds may be dissolved in water, polyethylene glycol, propylene glycol, ethanol, corn oil, cottonseed oil, peanut oil, sesame oil, benzyl alcohol, sodium chloride, and/or various buffers. Other adjuvants and modes of administration are well and widely known in the pharmaceutical art.
Although this invention has been described with respect to specific embodiments, the details of these embodiments are not to be construed as limitations.
Talley, John J., Bertenshaw, Stephen R., Miyashiro, Julie M.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3940418, | Apr 07 1972 | G. D. Searle & Co. | Esters and amides of 4,5-dihydrobenz[g]indazole-3-carboxylic acids and related compounds |
4146721, | Sep 14 1970 | BYK Gulden Lomberg Chemische Fabrik GmbH | Pyrazol-4-acetic acid compounds |
5134142, | Sep 22 1989 | Fujisawa Pharmaceutical Co., Ltd. | Pyrazole derivatives, and pharmaceutical composition comprising the same |
5134155, | Aug 08 1991 | Ortho Pharmaceutical Corporation | Tetrahydroindazole, tetrahydrocyclopentapyrazole, and hexahydrocycloheptapyrazole compounds and their use as HMG-coA reductase inhibitors |
5173470, | Aug 09 1991 | Brigham Young University; BRIGHAM YOUNG UNIVERSITY, A CORPORATION OF UT | Compositions and processes for removing, separating and concentrating desired ions from solutions using sulfur and aralkyl nitrogen containing ligands bonded to inorganic supports |
5315012, | Aug 08 1991 | Ortho Pharmaceutical Corporation | Tetrahydroindazole, tetrahydrocyclopentapyrazole, and hexahydrocycloheptapyrazole compounds |
5387693, | Aug 08 1991 | Ortho Pharmaceutical Corporation | Tetrahydroindazole, tetrahydrocyclopentapyrazole, and hexahydrocycloheptapyrazole intermediate compounds |
5420141, | Aug 20 1990 | sanofi-aventis | 3-amidopyrazole derivatives, process for preparing these and pharmaceutical composites containing them |
5434178, | Nov 30 1993 | G.D. Searle & Co.; G D SEARLE & CO | 1,3,5 trisubstituted pyrazole compounds for treatment of inflammation |
5466823, | Nov 30 1993 | G D SEARLE & CO | Substituted pyrazolyl benzenesulfonamides |
5476944, | Nov 18 1991 | G. D. Searle & Co.; G D SEARLE & CO | Derivatives of cyclic phenolic thioethers |
5504215, | Nov 30 1993 | G. D. Searle & Co. | Substituted pyrazolyl benzenesulfonamide compounds for the treatment of inflammation |
5508426, | Nov 30 1993 | G. D. Searle & Co. | Substituted pyrazolyl benzenesulfonamide compounds for the treatment of inflammation |
5510496, | |||
5516907, | Nov 30 1993 | G.D. Searle & Co. | Heterocyclic-substituted pyrazolyl benzenesulfonamides for the treatment of inflammation |
5521207, | Nov 30 1993 | G D SEARLE & CO | Substituted pyrazolyl benzenesulfonamide for the treatment of inflammation |
5521219, | Aug 25 1992 | G D SEARLE & CO | Sulfonylalkanoylamino hydroxyethylamino sulfonamides useful as retroviral protease inhibitors |
5563165, | Nov 30 1993 | G. D. Searl & Co. | Substituted pyrazolyl benzenesulfonamides for the treatment of inflammation |
5607958, | Aug 20 1990 | sanofi-aventis | 3-amidopyrazole derivatives, process for preparing these and pharmaceutical compositions containing them |
5616592, | Aug 20 1990 | sanofi-aventis | 3-amidopyrazole derivatives, process for preparing these and pharmaceutical compositions containing them |
5635526, | Aug 20 1990 | sanofi-aventis | 3-amidopyrazole derivatives, process for preparing these and pharmaceutical compositions containing them |
5744491, | Aug 20 1990 | sanofi-aventis | 3-amidopyrazole derivatives, process for preparing these and pharmaceutical compositions containing them |
5744493, | Aug 20 1990 | sanofi-aventis | 3-amidopyrazole derivatives and pharmaceutical compositions containing them |
5753688, | Nov 30 1993 | Substituted pyrazolyl benzenesulfonamides for the treatment of gastrointestinal conditions | |
5760068, | Nov 30 1993 | G D SEARLE LLC | Substituted pyrazolyl benzenesulfonamides for the treatment of inflammation |
5892053, | May 25 1995 | G. D. Searle & Co. | Process for preparing 3-haloalkyl-1H-pyrazoles |
6156781, | Nov 30 1993 | G. D. Searle & Co. | Substituted pyrazolyl benzenesulfonamides for the treatment of inflammation |
6413960, | Nov 30 1993 | G.D. Searle & Co. | Substituted pyrazolyl benzenesulfonamides for the treatment of asthma |
6492411, | Nov 30 1993 | G. D. Searle & Co. | Substituted pyrazolyl benzenesulfonamides for the treatment of inflammation |
6586603, | Nov 30 1993 | G.D. Searle & Co. | Substituted pyrazolyl benzenesulfonamides for the treatment of inflammation |
6716991, | Nov 30 1993 | G. D. Searle & Co. | Process for preparing a substituted pyrazolyl benzenesulfonamide for the treatment of inflammation |
6951949, | Nov 30 1993 | Pharmacia Corporation | Substituted pyrazolyl benzenesulfonamides for the treatment of inflammation |
AU9475753, | |||
CA2088835, | |||
CA959838, | |||
DE287719, | |||
EP347773, | |||
EP418845, | |||
EP554829, | |||
EP922697, | |||
EP923933, | |||
EP924201, | |||
EP347773, | |||
EP477049, | |||
EP554829, | |||
WO944777, | |||
WO9515316, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 14 1994 | G.D. Searle LLC | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Mar 05 2016 | 4 years fee payment window open |
Sep 05 2016 | 6 months grace period start (w surcharge) |
Mar 05 2017 | patent expiry (for year 4) |
Mar 05 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 05 2020 | 8 years fee payment window open |
Sep 05 2020 | 6 months grace period start (w surcharge) |
Mar 05 2021 | patent expiry (for year 8) |
Mar 05 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 05 2024 | 12 years fee payment window open |
Sep 05 2024 | 6 months grace period start (w surcharge) |
Mar 05 2025 | patent expiry (for year 12) |
Mar 05 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |