A solitary fuel injector for a diesel engine that is capable of injecting fuel for a homogeneous charge compression ignition injection event, a conventional injection event. The solitary fuel injector also has a mixed mode that includes a homogeneous charge compression ignition injection and a conventional injection in a single compression stroke for the engine.
|
0. 62. A method of operating an engine, comprising the steps of:
injecting fuel from a fuel injector via a first at least one nozzle outlet in a first spray pattern directly into an engine cylinder;
mixing the fuel with air in the cylinder;
combusting the fuel after the mixing step;
injecting additional fuel from the fuel injector via a second at least one nozzle outlet in a second spray pattern directly into the engine cylinder when a piston of the engine cylinder is nearer top dead center than bottom dead center; and
at least one of the fuel injecting step and the additional fuel injecting step includes energizing at least one electrical actuator of the fuel injector.
0. 69. An engine having at least two modes of operation comprising: an engine housing defining a plurality of cylinders;
a solitary fuel injector for each of said plurality of cylinders, each said fuel injector having a tip at least partially positioned in one of said plurality of cylinders;
each said fuel injector having a first configuration for a homogeneous charge compression ignition mode of operation in which fuel is injected in a first spray pattern; and
each said fuel injector having a second configuration for a conventional mode of operation in which fuel is injected in a second spray pattern; and
each said fuel injector including at least one control valve member positioned to move between a high pressure seat and a low pressure seat.
23. A method of operating an engine comprising the steps of:
providing an engine having an engine housing defining a plurality of engine cylinders, each of said engine cylinders including a piston;
positioning a solitary fuel injector for each of said plurality of engine cylinders, at least in part by positioning a tip of each said fuel injector at least partially within one of said engine cylinders;
if said fuel injector is operating in a homogeneous charge compression ignition mode, injecting fuel in a first spray pattern from said fuel injector when said piston is nearer a bottom dead center position than a top dead center position; and
if said fuel injector is operating in a conventional mode, injecting fuel in a second spray pattern from said fuel injector when said piston is nearer to said top dead center position than said bottom dead center position; and
at least one of the injecting steps includes energizing an electrical actuator of the fuel injector.
10. An engine having at least two modes of operation comprising:
an engine housing defining a plurality of cylinders;
a solitary fuel injector for each of said plurality of cylinders, each said fuel injector having at least one electrical actuator and including a tip at least partially positioned in one of said plurality of cylinders;
each said fuel injector having a first configuration for a homogeneous charge compression ignition mode of operation in which fuel is injected relatively early in a compression stroke when a piston is nearer a bottom dead center position than a top dead center position in a first spray pattern with a relatively small average angle to an injector centerline; and
each said fuel injector having a second configuration for a conventional mode of operation in which fuel is injected relatively late in a compression stroke when said piston is nearer said top dead center position than said bottom dead center position in a second spray pattern with a relatively large average angle to said injector centerline.
0. 66. A nozzle assembly comprising: a plurality of assembled components defining a plurality of nozzle outlets;
a homogenous charge compression ignition portion of said plurality of assembled outlets being oriented at a first average angle with respect to a centerline;
a conventional portion of said plurality of nozzle outlets being oriented a second average angle with respect to said centerline;
said assembled components including a needle valve being positioned to move between positions that open and close said plurality of nozzle outlets, and being moveable between a first configuration in which said first portion are open but said second portion are closed, and a second configuration in which said second portion are open but said first portion are closed;
said assembled components also including at least one control valve member positioned to move between a high pressure seat and a low pressure seat; and
said assembled components further including at least one electrical actuator operably coupled to said needle valve via said at least one control valve member.
50. A method of operating an engine comprising:
providing an engine having an engine housing defining a plurality of engine cylinders, each of said engine cylinders including a piston;
positioning a solitary fuel injector for each of said plurality of engine cylinders, at least in part by positioning a tip of each of said solitary fuel injectors at least partially within one of said engine cylinders;
if said fuel injector is operating in a homogeneous charge compression ignition mode, injecting fuel in a first spray pattern from said fuel injector when said piston is nearer a bottom dead center position than a top dead center position;
if said fuel injector is operating in a conventional mode, injecting fuel in a second spray pattern from said fuel injector when said piston is nearer to said top dead center position than said bottom dead center position; and
applying high pressure to a closing hydraulic surface of at least one needle valve member movably positioned in said fuel injector; and
at least one of the injecting steps includes energizing an electrical actuator of the fuel injector.
0. 70. A fuel injector comprising:
a plurality of assembly components having a centerline and defining a plurality of nozzle outlets;
a homogenous charge compression ignition portion of said plurality of nozzle outlets being oriented at a first average angle with respect to said centerline;
a conventional portion of said plurality of nozzle outlets being oriented at a second average angle with respect to said centerline;
said assembled components including at least one needle valve member being positioned adjacent said plurality of nozzle outlets;
said at least one needle valve member having a first position in which said homogenous charge portion is open but said conventional portion is closed, and a second position in which said conventional portion is open but said homogenous charge portion is closed;
said at least one needle valve member including a closing hydraulic surface exposed to fluid pressure in a needle control chamber;
said assembled components includes at least one control valve member positioned to move between a high pressure seat and a low pressure seat; and
said assembled components further includes at least one electrical actuator.
57. A fuel injector comprising:
a plurality of assembled components having a centerline and defining a plurality of nozzle outlets;
a homogeneous charge subset of said plurality of nozzle outlets being oriented at a relatively small average angle with respect to said centerline;
a conventional subset of said plurality of nozzle outlets being oriented at a relatively large average angle with respect to said centerline;
said assembled components including at least one needle valve member movable between a first configuration in which said plurality of nozzle outlets are closed, a second configuration in which said homogeneous charge subset is open but said conventional subset is closed, and a third configuration in which said homogeneous charge subset is closed but said conventional subset is open;
said plurality of assembled components including a plunger that defines a portion of a fuel pressurization chamber that is fluidly connected to one of said homogeneous charge subset and said conventional subset when a portion of said plurality of nozzle outlets is open; and
said plurality of assembled components including an electronically operated pressure control valve and at least one electronically operated needle control valve.
40. An engine having at least two modes of operation comprising:
an engine housing defining a plurality of cylinders;
at least one common rail attached to said engine housing;
a solitary fuel injector for each of said plurality of cylinders, each said fuel injector having a tip at least partially positioned in one of said plurality of cylinders, and including a plunger that partially defines a fuel pressurization chamber;
each said fuel injector being fluidly connected to said at least one common rail;
each said fuel injector having a first configuration corresponding to a homogeneous charge compression ignition mode of operation in which fuel is injected in a first spray pattern with a small average angle with respect to an injector centerline relatively early in a compression stroke when a piston is nearer a bottom dead center position than a top dead center position; and
each said fuel injector having a second configuration corresponding to a conventional mode of operation in which fuel is injected in a second spray pattern with a large average angle with respect to said injector centerline relatively late in a compression stroke when said piston is nearer said top dead center position than said bottom dead center position.
39. A fuel injector comprising:
a plurality of assembled components having a centerline and defining a plurality of nozzle outlets;
a homogenous charge compression ignition portion of said plurality of nozzle outlets being oriented at a first average angle with respect to said centerline;
a conventional portion of said plurality of nozzle outlets being oriented at a second average angle with respect to said centerline;
said assembled components including at least one needle valve member being positioned adjacent said plurality of nozzle outlets;
said at least one needle valve member having a first position in which said homogenous charge portion is open but said conventional portion is closed, and a second position in which said conventional portion is open but said homogenous charge portion is closed;
said at least one needle valve member including a first needle valve member with a first closing hydraulic surface exposed to fluid pressure in a first needle control chamber, and a second needle valve member with a second closing hydraulic surface exposed to fluid pressure in a second needle control chamber;
said first needle control chamber contains a first fluid and said second needle control chamber contains a second fluid that is different from said first fluid.
1. A nozzle assembly comprising:
a plurality of assembled components having a centerline and defining a plurality of nozzle outlets;
a homogenous charge compression ignition portion of said plurality of nozzle outlets including at least one nozzle outlet oriented at a first angle with respect to said centerline;
a conventional portion of said plurality of nozzle outlets including at least one nozzle outlet oriented at a second angle with respect to said centerline;
said assembled components including a needle valve being positioned to move between positions that open and close said plurality of nuzzle outlets, and being moveable between a first position in which said first portion are open but said second portion are closed, and a second position in which said second portion are open but said first portion are closed; and
at least one electrical actuator operably coupled to said needle valve
said needle valve including a first needle valve member with a first closing hydraulic surface and a second needle valve member with a second closing hydraulic surface; and
said first closing hydraulic surface is exposed to fluid pressure in a first needle control chamber and said second closing hydraulic surface is exposed to fluid pressure in a second needle control chamber
said first needle control chamber contains a first fluid and said second needle control chamber contains a second fluid that is different from said first fluid.
31. A fuel injector comprising:
a plurality of assembled components having a centerline and defining a plurality of nozzle outlets;
a homogenous charge compression ignition portion of said plurality of nozzle outlets being oriented at a first average angle with respect to said centerline;
a conventional portion of said plurality of nozzle outlets being oriented at a second average angle with respect to said centerline;
said assembled components including at least one needle valve member being positioned adjacent said plurality of nozzle outlets;
said at least one needle valve member having a first position in which said homogenous charge portion is open but said conventional portion is closed, and a second position in which said conventional portion is open but said homogenous charge portion is closed;
said at least one needle valve member including a closing hydraulic surface exposed to fluid pressure in a needle control chamber;
said assembled components including at least one electrical actuator attached to said injector body; and
said assembled components also including a three-way needle control valve operably coupled to said electrical actuator, and being movable between a first position in which said needle control chamber is fluidly connected to a source of high pressure fluid but fluidly disconnected from a low pressure passage, and a second position in which said needle control chamber is fluidly connected to said low pressure passage but fluidly disconnected from said source of high pressure fluid.
2. The nozzle assembly of
3. The nozzle assembly of
said second angle is greater than or equal to 60 degrees.
4. The nozzle assembly of
5. The nozzle assembly of
a nozzle supply passage being blocked when said valve surface is in contact with said valve seat; and
said nozzle supply passage being open when said valve surface is out of contact with said valve seat.
6. The nozzle assembly of
a number of said plurality of nozzle outlets are located between said first valve seat and said second valve seat.
7. The nozzle assembly of
said needle valve member defines a portion of at least one nozzle supply passage.
8. The nozzle assembly of
said needle valve is movable to a second position in which said first portion of said plurality of nozzle outlets is open; and
said needle valve being movable to a third position in which said second portion of said plurality of nozzle outlets is open.
9. The nozzle assembly of
11. The engine of
a first portion of said plurality of nozzle outlets being open when said fuel injector is in said first configuration; and
a second portion of said plurality of nozzle outlets being open when said fuel injector is in said second configuration.
12. The engine of
said needle valve having a second position that opens said first portion of said plurality of nozzle outlets while blocking said second portion when said fuel injector is in said first configuration; and
said needle valve having a third position that opens said second portion of said plurality of nozzle outlets while blocking said first portion when said fuel injector is in said second configuration.
13. The engine of
each of said second portion of said plurality of nozzle outlets are oriented at a second angles with respect to said centerline; and
said first angles being different from said second angles.
14. The engine of
15. The engine of
said second angle is greater than or equal to 60 degrees.
16. The engine of
the at least one electrical actuator includes a first electrical actuator being operably coupled to said first needle valve member and a second electrical actuator being operably coupled to said second needle valve member.
17. The engine of
said first needle valve member includes a first closing hydraulic surface exposed to fluid pressure in a first needle control chamber; and
said second needle valve member includes a second closing hydraulic surface exposed to fluid pressure in a second needle control chamber.
18. The engine of
19. The engine of
said second needle valve member is at least partially positioned within said first needle valve member.
20. The engine of
a nozzle supply passage being blocked when said valve surface is in contact with said valve seat; and
said nozzle supply passage being open when said valve surface is out of contact with said valve seam.
21. The engine of
said needle valve member defines a portion of at least one nozzle supply passage
22. The engine of
said needle valve member is out of contact with said stop component when said needle valve is in a first position;
said needle valve member being in contact with said stop component when said needle valve is in a second position; and
said needle valve member being in contact with said stop component when said needle valve is in a third position.
24. The method of
said step of injecting fuel when said piston is nearer to said top dead center position includes a step of opening a second portion of said fuel injector nozzle outlets.
25. The method of
said step of injecting fuel from said fuel injector when said piston is nearer to said top dead center position includes a step of moving said needle valve to a third position.
26. The method of
said step of injecting fuel when said piston is nearer to said top dead center position includes a step of injecting fuel in a second spray pattern with respect to said centerline.
27. The method of
said step of injecting fuel in a second spray pattern includes a step of injecting fuel at a relatively large average angle with respect to said centerline.
28. The method of
29. The method of
operating said fuel injector in said conventional mode when said engine is operating in a high load condition.
30. The method of
32. The fuel injector of
33. The fuel injector of
said second average angle is greater than or equal to 60 degrees.
34. The fuel injector of
35. The fuel injector of
36. The fuel injector of
a nozzle supply passage being blocked when said valve surface is in contact with said valve seat; and
said nozzle supply passage being open when said valve surface is out of contact with said valve seat.
37. The fuel injector of
said first closing hydraulic surface is exposed to fluid pressure in a first needle control chamber and said second closing hydraulic surface is exposed to fluid pressure in a second needle control chamber.
38. The fuel injector of
41. The engine of
a first portion of said plurality of nozzle outlets being open when said fuel injector is in said first configuration; and
a second portion of said plurality of nozzle outlets being open when said fuel injector is in said second configuration.
42. The engine of
said needle valve having a second position that opens said first portion of said plurality of nozzle outlets when said fuel injector is in said first configuration; and
said needle valve having a third position that opens said second portion of said plurality of nozzle outlets when said fuel injector is in said second configuration.
43. The engine of
said large average angle is greater than or equal to 60 degrees.
44. The engine of
a first electrical actuator being operably coupled to said first needle valve member and a second electrical actuator being operably coupled to said second needle valve member.
45. The engine of
said second needle valve member includes a second closing hydraulic surface exposed to fluid pressure in a second needle control chamber.
46. The engine of
47. The engine of
48. The engine of
a nozzle supply passage being blocked when said valve surface is in contact with said valve seat; and
said nozzle supply passage being open when said valve surface is out of contact with said valve seat.
49. The engine of
each said fuel injector includes a fuel inlet fluidly connected to a source of fuel that is different from said oil.
51. The method of
said step of injecting fuel when said piston is nearer to said top dead center position includes a step of opening a second portion of said fuel injector nozzle outlets.
52. The method of
said step of injecting fuel from said fuel injector when said piston is nearer to said top dead center position includes a step of moving said at least one needle valve member to a third position.
53. The method of
said step of injecting fuel when said piston is nearer to said top dead center position includes a step of injecting fuel in a second spray pattern with respect to said centerline.
54. The method of
said step of injecting fuel in a second spray pattern includes a step of injecting fuel at a relatively large angle with respect to said centerline.
55. The method of
operating said fuel injector in said conventional mode when said engine is operating in a high load condition.
56. The method of
58. The fuel injector of
59. The fuel injector of
60. The fuel injector of
61. The nozzle assembly of
said sealing member is continuously biased toward a position separating said homogeneous charge compression ignition portion of said plurality of nozzle outlets from said conventional portion of said plurality of nozzle outlets.
0. 63. The method of claim 62 wherein the first at least one nozzle outlet has a relatively small average angle with respect to a centerline; and
the at least one second nozzle outlet has a relatively large average angle with respect to the centerline.
0. 64. The method of claim 62 wherein the at least one electrical actuator includes a first electrical actuator and a second electrical actuator;
the step of injecting fuel includes energizing the first electrical actuator; and
the step of injecting additional fuel includes energizing the second electrical actuator.
0. 65. The method of claim 62 wherein the step of injecting fuel in the first spray pattern occurs during a compression stroke.
0. 67. The nozzle assembly of claim 66 wherein said first average angle is relatively small and said second average angle is relatively large.
0. 68. The nozzle assembly of claim 66 wherein at least one of a first needle valve member and a second needle valve member of the needle valve includes a closing hydraulic surface exposed to fluid pressure in a needle control chamber.
|
This application claims priority to provisional application No. 60/327,984, filed Oct. 9, 2001, with the same title.
This invention relates generally to nozzle assemblies, and more particularly to fuel injectors having dual mode capabilities.
In an effort to reduce emissions and to comply with more strict clean air standards, manufacturers of various diesel engine components have begun exploring alternative engine strategies. One such strategy that appears to have promise is the alteration of the manner in which fuel is injected. For instance, in a traditional diesel engine, fuel injection is timed to occur when the cylinder piston is near a top dead center position for its compression stroke. When the fuel and air reach an auto-ignition point, combustion occurs. This can be virtually instantaneous or after some ignition delay.
Engineers have learned that it is possible to reduce engine emissions if a small amount of fuel is injected while the cylinder piston is at the beginning of the compression stroke. In other words, when the piston is closer to a bottom dead center position than the top dead center position for the compression stroke. The injected fuel mixes with the air as it is being compressed to form a relatively homogeneous mixture that combusts when the piston is near its top dead center position. This mode of operation is typically referred to as homogeneous charge compression ignition. Because the fuel mixture is relatively homogeneous when combustion occurs, fewer emissions are produced during this type of injection event than a typical injection event. In other words, uniform air/fuel distribution and associated lower combustion temperatures contribute to significant NOx, and particulate reductions.
One example of an engine utilizing the homogeneous charge compression ignition is described in U.S. Pat. No. 5,875,743, which issued to Dickey on Mar. 2, 1999 and is entitled Apparatus and Method For Reducing Emissions in a Dual Combustion Mode Diesel Engine. The apparatus disclosed by Dickey includes a port diesel fuel injector that is capable of delivering fuel to an engine cylinder for a homogeneous charge compression ignition injection event in addition to a fuel injector positioned to perform a more traditional injection event. While the fuel injection system of Dickey is capable of reducing emissions, there is still room for improvement.
For instance, engineers have determined that a reduction in the number of engine components can result in a more robust operating system. As indicated, the fuel injection system taught by Dickey includes multiple fuel injectors for the performance of two distinct injection events. However, it should be appreciated that the fuel injection system could be more robust if there was only a single fuel injector which had a limited number of components. In other words, a reduction in the number of fuel injectors, and/or fuel injector components, could make the system more robust because there would be less components that could fail or malfunction. In addition, in contradiction to the teachings of Dickey, engineers have learned that for certain engine load conditions, homogeneous charge compression ignition events may not be desirable.
The present invention is directed to overcoming one or more of the problems set forth above.
In one aspect of the present invention, a nozzle assembly includes a nozzle body that has a centerline and defines a plurality of nozzle outlets. A first portion of the plurality of nozzle outlets are oriented at a first angle with respect to the centerline. A second portion of the plurality of nozzle outlets are oriented at a second angle with respect to the centerline. A needle valve is positioned adjacent the plurality of nozzle outlets.
In another aspect of the present invention, an engine that has at least two modes of operation includes an engine housing defining a plurality of cylinders. A solitary fuel injector is provided for each of the cylinders and each has a tip at least partially positioned in one of the plurality of cylinders. The fuel injector has a first configuration for a homogeneous charge compression ignition mode of operation. The fuel injector has a second configuration for a conventional mode of operation.
Referring now to
Each of the cylinders 25 defined by engine housing 11 has a movable piston 26. Each piston 26 is movable between a bottom dead center (BDC) position and a top dead center (TDC) position. For a typical four cycle diesel engine 10, the advancing and retracting strokes of piston 26 correspond to the four stages of engine 10 operation. When piston 26 retracts from its top dead center position to its bottom dead center position for the first time, it is undergoing its intake stroke, and air can be drawn into cylinder 25 via an intake valve (not shown). When piston 26 advances from its bottom dead center position to its top dead center position for the first time it is undergoing its compression stroke and the contents of cylinder 25 are compressed. At an appropriate time during the compression stroke, fuel can be injected into cylinder 25 by a fuel injector 30, and combustion within cylinder 25 can occur in a conventional manner. This combustion drives piston 26 downward toward its bottom dead center position, for the power stroke of piston 26. Finally, when piston 26 once again advances from its bottom dead center position to its top dead center position, post combustion products remaining in cylinder 25 can be vented via an exhaust valve (not shown), corresponding to the exhaust stroke of piston 26. While engine 10 has been illustrated as a four cycle, four-cylinder engine, it should be appreciated that any desired number of cylinders could be defined by engine housing 11. In addition, engine 10 could be a two stroke engine or have the ability to operate in both two stroke and four stroke modes.
Returning to engine 10, a solitary fuel injector 30 is provided for each cylinder 25 and is positioned such that a tip portion 95 is at least partially positioned in cylinder 25 as in a typical diesel engine. Fuel injector 30 is fluidly connected to a fuel tank 19 via a fuel supply line 20 and delivers fuel to cylinder 25 for combustion. Fuel injector 30 has a fuel injector centerline 29. Attached to fuel injector 30 are a first electrical actuator 32 and a second electrical actuator 42. Together, first electrical actuator 32 and second electrical actuator 42 control fuel pressurization within fuel injector 30 and the timing of injection events. Activators 32 and 42 are controlled in their respective energizations by an electronic control module 17 in a conventional manner, via communication line(s) 18.
Referring in addition to
As illustrated in
Referring to
I.
Referring in addition to
Referring specifically to
Referring to
Returning to fuel injector 30 and referring again to
When variable pressure passage 67 is fluidly connected to high pressure manifold 14, such as when valve member 37 is in its advanced position, pressure within spool cavity 65 is high and spool valve member 55 is preferably hydraulically balanced and maintained in its retracted position by biasing spring 60. When spool valve member 55 is in this position, actuation fluid passage 68 is blocked from fluid communication with high pressure passage 51 but fluidly connected to low pressure passage 52 via low pressure annulus 58. Conversely, when variable pressure passage 67 is fluidly connected to low pressure reservoir 12, such as when valve member 37 is in its retracted position (activator 32 energized), pressure within spool cavity 65 is sufficiently low that the high pressure acting on high pressure surface 56 can overcome the force of biasing spring 60, and spool valve member 55 can move to its downward position. When spool valve member 55 is in this downward position, actuation fluid passage 68 is blocked from low pressure passage 52 but open to high pressure passage 51 via high pressure annulus 57.
Returning again to fuel injector 30, an intensifier piston 80 is movably positioned in injector body 31 and has a hydraulic surface 81 that is exposed to fluid pressure in actuation fluid passage 68. Piston 80 is biased toward a retracted, upward position by a biasing spring 84. However, when pressure within actuation fluid passage 68 is sufficiently high, such as when it is open to high pressure passage 51, piston 80 can move to an advanced, downward position against the action of biasing spring 84. A plunger 83 is also movably positioned in injector body 31 and moves in a corresponding manner with piston 80. When piston 80 is moved toward its advanced position, plunger 83 also advances and acts to pressurize fuel within a fuel pressurization chamber 85. When plunger 83 is undergoing its retracting stroke, new fuel enters chamber 85 via a fuel inlet 86 past a supply check valve 87. Depending on the area ratio of piston 80 to plunger 83, fuel is raised to some multiple of the actuation fluid pressure. Fuel inlet 86 is in fluid communication with fuel source 19 via fuel supply line 20. During an injection event as plunger 83 moves toward its downward position, check valve 87 is closed and plunger 83 can act to compress fuel within fuel pressurization chamber 85. When plunger 83 is returning to its upward position, fuel is drawn into fuel pressurization chamber 85 past check valve 87.
A pressure relief valve 70 is movably positioned in injector body 31 to vent pressure spikes from actuation fluid passage 68. Pressure spikes can be created when piston 80 and plunger 83 abruptly stop their downward movement due to the abrupt closure of either HCCI nozzle outlet 126 or conventional nozzle outlets 128. Because pressure spikes can sometimes cause an uncontrolled and undesirable secondary injection due to an interaction of components and passageways over a brief instant after main injection has ended, a pressure relief passage 75 extends between actuation fluid passage 68 and a low pressure vent. When spool valve member 55 is in its downward position, such as during an injection event, a pin 71 holds pressure relief ball valve member 70 downward to close a seat 72. When pressure relief valve 70 is in this position, actuation fluid passage 68 is closed to pressure relief passage 75 and pressure can build within actuation fluid passage 68. However, immediately after injection events, when piston 80 and plunger 83 are hydraulically slowed and stopped, residual high pressure in actuation fluid passage 68 can act against pressure relief valve 70. Because pressure within spool cavity 65 is high, spool valve member 55 is hydraulically balanced and can move toward its upward position under the action of biasing spring 60. Pressure relief valve 70 can then lift off of seat 72 to open actuation fluid passage 68 to pressure relief passage 75, thus allowing pressure within actuation fluid passage 68 to be vented. At the same time, upward movement of pressure relief valve 70, and therefore pin 71 can aid in the movement of spool valve member 55 toward its upward position.
Referring to
Preferably, opening hydraulic surface 110 and closing hydraulic surface 106 are sized and positioned such that when needle control chamber 102 is open to high pressure passage 51 via pressure communication passage 88, needle valve member 107 will remain in, or move toward, its downward closed position, regardless of the fuel pressure acting on opening hydraulic surface 110. When needle valve member 107 is in its closed position, a conical or spherical valve surface 121 provided on needle portion 104 closes a conical valve seat 122 provided on needle valve member 117 to block nozzle supply passage 108 from fluid communication with HCCI nozzle outlet(s) 126. However, when needle control chamber 102 is open to low pressure passage 40 and fuel pressure within nozzle chamber 109 reaches an HCCI valve opening pressure, needle valve member 107 can be lifted against the bias of biasing spring 101 toward its open position, thus lifting valve surface 121 from valve seat 122. It should be appreciated that the HCCI valve opening pressure is a function of the force of biasing spring 101 as well as the size of opening hydraulic surface 110. Fuel can now spray into cylinder 25 via HCCI nozzle outlet 126 when seat 122 is open. Recall that when fuel injection is occurring via HCCI nozzle outlet 126, fuel injector 30 is in its first configuration, as indicated above. When fuel injector 30 is in this configuration, fuel spray into cylinder 25 is at a relatively small angle θ with respect to injector centerline 29 and cylinder centerline 27. As best illustrated in
Returning to nozzle assembly 90, needle valve 109 also includes a conventional needle valve member 117 that provides an outer check member 115. Needle valve member 117 has a closing hydraulic surface 116, provided on outer check member 115, that is exposed to fluid pressure in a conventional needle control chamber 112 which is defined at least in part by injector body 31. Needle valve member 117 also preferably includes an opening hydraulic surface 120 that is exposed to fluid pressure in a nozzle supply passage 118, defined by injector body 31. Conventional needle valve member 117 is biased toward a closed position by a biasing spring 111. As with HCCI needle valve member 107, preferably the respective surfaces and strengths of springs, closing hydraulic surface 116, opening hydraulic surface 120 and biasing spring 111 are such that needle valve member 117 will remain in its downward position when high pressure is acting on closing hydraulic surface 116, regardless of the fuel pressure acting on opening hydraulic surface 120.
When the fuel pressure force acting on closing hydraulic surface 116 and the biasing force of biasing spring 111 exceed the fuel pressure force acting on opening hydraulic surface 120, needle valve member 117 remains in its biased, closed position, blocking conventional nozzle outlets 128. In other words, valve surface 123 is in contact to close seat 124. When the fuel pressure force acting on opening hydraulic surface 120 exceeds the fluid pressure acting on closing hydraulic surface 116, the biasing force of biasing spring 111 (i.e. conventional valve opening pressure), the biasing force of spring 101 and the hydraulic force on closing hydraulic surface 106, needle valve member 117 is lifted to an open position fluidly connecting nozzle supply passage 118 with conventional nozzle outlets 128. When fuel injection is occurring via conventional nozzle outlets 128, recall that fuel injector 30 is in its second configuration, as indicated above. It should be appreciated that a guide clearance preferably exists between needle valve member 117 and injector body 31, such that fuel substantially cannot migrate around needle valve member 117 and spray out of HCCI nozzle outlet 126 during the conventional injection event. When fuel injector 30 is in this second configuration, fuel spray into cylinder 25 is in a second spray pattern corresponding to the relatively large angle α of conventional nozzle outlets 128 with respect to centerlines 27 and 29.
Note that while needle valve member 107 is also lifted by the upward movement of needle valve member 117, HCCI nozzle outlet 126 remains closed during the conventional injection event. This is due to a number of factors. First, the valve opening pressure of conventional needle valve member 117 is less than the valve opening pressure of HCCI needle valve member 107. In other words, when low pressure is acting on both HCCI closing hydraulic surface 106 and conventional closing hydraulic surface 116 in their respective needle control chambers 102, 112, conventional needle valve member 117 the conventional valve opening pressure will be reached prior to the HCCI valve opening pressure being reached. It should be appreciated that because conventional needle valve member 117 must overcome the spring force of both HCCI biasing spring 101 and conventional biasing spring 111, opening hydraulic surface 120 should be sized appropriately with respect to opening hydraulic surface 110 to allow for a lower conventional valve opening pressure than the HCCI valve opening pressure. Thus, conventional needle valve member 117 will begin to move toward its open position, moving HCCI needle valve member 107 upward, before HCCI needle valve member 107 can move upward on its own. In addition, stop pin 105 of HCCI needle valve member 107 also limits the upward movement of conventional needle valve member 117. Thus, once conventional needle valve member 117 reaches its upward position, stop pin 105 prevents HCCI needle valve member 107 from lifting away from conventional needle valve member 117. Those skilled in the art will recognize that the respective HCCI valve opening pressure and conventional valve opening pressure can be set somewhat independently by appropriate sizing of surfaces 110, 120, 106 and 116 as well as choosing appropriate preloads on springs 101 and 111.
II.
Referring now to
HCCI valve member 207 is movable between a downward, closed position and an upward, open position, and is biased toward its closed position by a biasing spring 201. A stop pin 205 limits the upward movement of needle valve member 207. HCCI needle valve member 207 provides a closing hydraulic surface 206 that is exposed to fluid pressure in an HCCI needle control chamber 202 which is fluidly connected to pressure communication passage 88 (
As illustrated, HCCI needle valve member 207 is movable within a bore defined by a conventional needle valve member 217. Conventional needle valve member 217 includes a closing hydraulic surface 216 that is exposed to fluid pressure in a conventional needle control chamber 212, which is in fluid communication with control pressure line 77 (
Note that while needle valve member 207 is also lifted by the upward movement of needle valve member 217, HCCI nozzle outlets 226 remains closed during the conventional injection event. This is due to a number of factors, similar to those discussed for the previous embodiment of the present invention. First, the valve opening pressure of conventional needle valve member 217 is less than the valve opening pressure of HCCI needle valve member 207. In other words, when low pressure is acting on both HCCI closing hydraulic surface 206 and conventional closing hydraulic surface 216 in their respective needle control chambers 202, 212, conventional needle valve member 217 the conventional valve opening pressure will be reached prior to the HCCI valve opening pressure being reached. It should be appreciated that because conventional needle valve member 217 must overcome the spring force of both HCCI biasing spring 201 and conventional biasing spring 211, opening hydraulic surface 220 should be sized appropriately for a desired conventional valve opening pressure that is preferably lower than the HCCI valve opening pressure. Thus, conventional needle valve member 217 will begin to move toward its open position, moving HCCI needle valve member 207 upward, before HCCI needle valve member 207 can move upward on its own. In addition, upward movement of HCCI needle valve member 207 and conventional needle valve member 217 are limited by stop pin 205. Thus, once conventional needle valve member 217 reaches its upward position, stop pin 205 prevents HCCI needle valve member 207 from lifting away from conventional needle valve member 217.
III.
Referring now to
Returning to
HCCI needle valve member 307 is movable between an upward, open position and a downward, closed position and is biased toward its closed position (as shown) by a biasing spring 301. HCCI needle valve member 307 includes a closing hydraulic surface 306 that is exposed to fluid pressure in an HCCI needle control chamber 302. When second electrical actuator 242 is energized, needle control chamber 302 is preferably fluidly connected to high pressure oil rail 14 via a high pressure passage and a pressure control line defined by fuel injector 230. Alternatively, when second electrical actuator 242 is de-energized, needle control chamber 302 is preferably fluidly connected to low pressure reservoir 12 by the pressure control line and a low pressure passage defined by fuel injector 230. Needle valve member 307 also preferably includes an opening hydraulic surface 310 that is exposed to fuel pressure in a first, HCCI nozzle chamber 309. Preferably, HCCI nozzle chamber 309 is fluidly connected to a fuel pressurization chamber (such as fuel pressurization chamber 85, illustrated in
Needle valve member 307 includes a knife edge valve surface 321 that closes a planar valve seat 322 that is included on outer needle valve member 317 when needle valve member 307 is in its downward, closed position. When valve seat 322 is closed, nozzle chamber 309 is blocked from an HCCI nozzle outlet 326 defined by injector body 231. When valve seat 322 is open, such as when needle valve member 307 is away from valve seat 322, nozzle chamber 309 is fluidly connected to HCCI nozzle outlet(s) 326 via a nozzle connection passage 308 defined by conventional needle valve member 317 and a spray passage 305 defined by inner sealing member 315. When valve seat 322 is open, fuel injector 230 is in its first configuration. When fuel injector 230 is in this configuration, fuel spray into cylinder 25 is at a relatively small angle θ with respect to injector centerline 229 and cylinder centerline 27. As best illustrated in
Returning now to needle valve 300, also included is conventional needle valve member 317 which is movable between an upward, open position and a downward, closed position. Needle valve member 317 is biased toward its downward position by a biasing spring 311. Needle valve member 317 includes an opening hydraulic surface 320 that is exposed to fuel pressure in a second or conventional nozzle chamber 319. Preferably, nozzle chamber 319 is fluidly connected to a fuel pressurization chamber via nozzle supply passage 318. When needle valve member 317 is in its downward position, conventional nozzle outlets 328 are blocked from nozzle chamber 319. When needle valve member 317 is away from its closed position, fuel injector 230 is in its second configuration and conventional nozzle outlets 328 are open to nozzle chamber 319 to allow fuel spray from conventional nozzle outlets 328 to commence. When fuel injection is occurring via conventional nozzle outlets 328, recall that fuel injector 230 is in its second configuration, as indicated above. When fuel injector 230 is in this second configuration, fuel spray into cylinder 25 is in a second spray pattern corresponding to the relatively large angle α of conventional nozzle outlets 328 with respect to centerlines 27 and 229.
Note that while needle valve member 307 is also lifted by the upward movement of needle valve member 317, HCCI nozzle outlet 326 remains closed during the conventional injection event. This is due to the fact that high pressure actuation fluid acting on closing hydraulic surface 306 prevents valve member 307 from lifting off its seat 322. The respective valve opening pressures can be set with some independence by setting appropriate preloads for springs 301 and 311, as well as by appropriately sizing closing hydraulic surface 306 and opening hydraulic surfaces 310 and 320. However, the HCCI valve opening pressure is preferably lower than the conventional valve opening pressure to avoid simultaneously opening both sets of outlets. When high pressure is acting on HCCI closing hydraulic surface 306, the conventional valve opening pressure will be reached before a pressure sufficient to lift HCCI needle valve member 307 against the force of both hydraulic fluid acting on closing hydraulic surface 306 and the downward force of biasing spring 301. It should be appreciated that because conventional needle valve member 317 must overcome the spring force of both HCCI biasing spring 301 and conventional biasing spring 311, as well as the hydraulic force being exerted on closing hydraulic surface 302, opening hydraulic surface 320 should be sized appropriately with respect to opening hydraulic surface 310 to allow for a higher conventional valve opening pressure than the HCCI valve opening pressure. Thus, conventional needle valve member 317 will begin to move toward its open position, moving HCCI needle valve member 307 upward, before HCCI needle valve member 307 can move upward on its own. It should be noted that, when operating in an HCCI mode, fuel pressure should be maintained below the conventional valve opening pressure to avoid opening both sets of outlets simultaneously. However, simultaneous opening may be desirable in some instances.
IV.
Referring now to
Returning now to nozzle assembly 390, a nested needle valve 400 is provided that includes an HCCI needle valve member 407 and a conventional needle valve member 417. Unlike the previous embodiments that have been illustrated, note that HCCI needle valve member 407 is the outer needle valve member, while the conventional needle valve member 417 is the inner needle valve member in this embodiment. Outer HCCI needle valve member 407 is movable between a downward closed position and an upward open position, opening HCCI nozzle outlets 426, and is limited in its upward movement by a sleeve 406. HCCI needle valve member 407 is biased toward its downward position by a biasing spring 401, closing HCCI nozzle outlets 426. Included on HCCI needle valve member 407 is an opening hydraulic surface 410 that is exposed to fluid pressure in a nozzle supply passage 418. As with previously disclosed embodiments of the present invention, preferably the relative size and strength of biasing spring 401 and opening hydraulic surface 410 are such that needle valve member 407 remains in its closed position when fuel pressure in nozzle supply passage 418 is below a predetermined HCCI valve opening pressure.
When HCCI needle valve member 407 is in its closed position, such as when first electrical actuator 332 is de-energized and piston 380 and plunger 383 have not moved to pressurize fuel within injector 330, a valve surface 421 included on needle valve member 407 is in contact with a flat valve seat 422, included on conventional needle valve member 417. When valve seat 422 is closed, valve surface 421 of valve member 407 blocks nozzle supply passage 418 from fluid communication with an HCCI nozzle outlet 426. When valve seat 422 is open, such as when needle valve member 407 is in its upward position, HCCI nozzle outlet 426 is open to nozzle supply passage 418 via an annulus 404 and a spray passage 405, both defined by needle valve member 407. When needle valve member 407 is in this position, corresponding to a first configuration of fuel injector 330, pressurized fuel can flow through annulus 404 and spray passage 405 and spray into cylinder 25 via HCCI nozzle outlet 426. When fuel injector 330 is in this configuration, fuel spray into cylinder 25 is at a relatively small angle θ with respect to injector centerline 329 and cylinder centerline 27. As best illustrated in
Returning again to needle valve 400, inner conventional needle valve member 417 is movable between an upward, open position and a downward, closed position. Needle valve member 417 preferably includes an upper guide portion 403 and a lower guide portion 423. In addition to guiding needle valve member 417 in its movement, these matched clearances preferably help stop the migration of various injector fluids past the guide surfaces. A biasing spring 411 preferably biases conventional needle valve member 417 toward its downward, closed position. Needle valve member 417 includes a closing hydraulic surface 416 that is exposed to fluid pressure in a needle control chamber 412. Fluid pressure in needle control chamber 412 is preferably controlled by second electrical actuator 342. Preferably, when second electrical actuator 342 is de-energized, closing hydraulic surface 416 is exposed to an amount of high pressure actuation fluid, such as engine lubricating oil. When second electrical actuator 342 is energized, closing hydraulic surface 416 is then exposed to low pressure. While engine lubricating oil is preferably utilized as the actuation fluid exposed to closing hydraulic surface 416, it should be appreciated that any suitable actuation fluid, such as fuel, could also be utilized.
Also provided on needle valve member 417 is an opening hydraulic surface 420 that is exposed to fluid pressure in nozzle chamber 409. When pressure within nozzle supply passage 418 is below a conventional valve opening pressure, needle valve member 417 remains in its downward, biased position, closing a set of conventional nozzle outlets 428. It should be appreciated that the valve opening pressure of needle valve member 417 should be lower than the valve opening pressure of needle valve member 407. This will help to ensure that needle valve member 407 does not move to its upward, open position as conventional needle valve member 417 lifts for a conventional injection event. Thus, as a result of the relatively high valve opening pressure of needle valve member 407, biasing spring 401 will hold valve member 407 in a downward position with respect to needle valve member 417 such that valve seat 422 is not opened during a conventional injection event. In other words, fuel pressure preferably remains below the HCCI valve opening pressure at least until HCCI needle valve member contacts sleeve 406, which acts to hold Flat seat 422 closed during a conventional injection event. In addition, lower guide portion 423 is positioned such that nozzle outlet 426 remains blocked from nozzle chamber 409 when needle valve member 417 is in its open position.
When needle valve member 417 is in its closed position, conventional nozzle outlets 428 are closed, blocking fuel spray into cylinder 25 via these orifices. However, when fuel pressure acting on opening hydraulic surface 420 exceeds a valve opening pressure, needle valve member 417 is lifted to its open position, corresponding to the second configuration of fuel injector 330. Pressurized fuel in nozzle supply passage 408 can then spray into cylinder 25 via conventional nozzle outlets 428. When fuel injection is occurring via conventional nozzle outlets 428, recall that fuel injector 330 is in its second configuration, as indicated above. When fuel injector 330 is in this second configuration, fuel spray into cylinder 25 is in a second spray pattern corresponding to the relatively large angle α of conventional nozzle outlets 428 with respect to centerlines 27 and 329.
Note that while needle valve member 407 is also lifted by the upward movement of needle valve member 417, HCCI nozzle outlet 426 remains closed during the conventional injection event. This is due to a number of reasons. First, the difference in the valve opening pressures of HCCI needle valve member 407 and conventional needle valve member 417. The conventional valve opening pressure required to lift conventional needle valve member 417 from its closed position is less than the HCCI valve opening pressure required to lift HCCI needle valve member 307 from its closed position. It should be appreciated that because conventional needle valve member 417 must overcome the spring force of both HCCI biasing spring 401 and conventional biasing spring 411, opening hydraulic surface 420 should be sized appropriately with respect to opening hydraulic surface 410 to allow for a lower conventional valve opening pressure than the HCCI valve opening pressure. Thus, conventional needle valve member 417 will begin to move toward its open position, moving HCCI needle valve member 407 upward, before HCCI needle valve member 407 can move upward on its own. In addition, sleeve 406 also limits the upward movement of conventional needle valve member 417. Thus, once conventional needle valve member 417 reaches its upward position, sleeve 406 prevents HCCI needle valve member 407 from lifting away from conventional needle valve member 417.
V.
Referring now to
Returning now to fuel injector 430, a nested needle valve 500 includes an inner, HCCI needle valve member 507 and an outer, conventional needle valve member 517. Needle valve member 507, which is preferably a pin, provides a closing hydraulic surface 506 that is exposed to fluid pressure in an HCCI needle control chamber 502 that is connected to a pressure control passage 501. When second electrical actuator 442 is de-energized, closing hydraulic surface 506 is exposed to high pressure actuation fluid in a pressure control passage 501. It should be appreciated that if second electrical actuator 442 is similar to second electrical actuator 42 (
Needle valve member 507 also provides an opening hydraulic surface 510 that is exposed to fluid pressure in a nozzle chamber 509. Nozzle chamber 509 is fluidly connected to a nozzle supply passage 518 defined by injector body 431 by a connection passage 508 that is defined by conventional needle valve member 517. Closing hydraulic surface 506 and opening hydraulic surface 510 are preferably sized such that when high pressure is acting on closing hydraulic surface 506 in needle control chamber 502, needle valve member 507 will remain in, or move toward, a downward closed position, as shown. Similarly, these surfaces are preferably sized such that needle valve member 507 will be lifted to its open position by the fuel pressure in nozzle chamber 509 is above an HCCI valve opening pressure, and low pressure is acting on closing hydraulic surface 506.
When needle valve member 507 is in its downward position, an angular knife edge valve surface 521 of needle valve member 507 closes a flat valve seat 522 provided on needle valve member 517 to block HCCI nozzle outlets 526 from nozzle supply passage 518. When pressure control passage 501 is open to low pressure, an HCCI valve opening fuel pressure acting on opening hydraulic surface 510 in nozzle chamber 509 will lift needle valve member 507 to an open position. However, it should be appreciated that for this embodiment of the present invention, fuel is preferably supplied at a supply pressure higher than the HCCI valve opening pressure. Thus, injection pressure for an HCCI injection event can be equal to a medium fuel supply pressure.
When needle valve member 507 is in its open position, corresponding to the first configuration of fuel injector 430, valve surface 521 is away from valve seat 522 to open connection passage 508 to HCCI nozzle outlets 526 via spray passage 504. When needle valve member 507 is in this position, fuel spray via HCCI nozzle outlets 526 into cylinder 25 can commence. When fuel injector 430 is in this configuration, fuel spray into cylinder 25 is at a relatively small angle θ with respect to injector centerline 429 and cylinder centerline 27. As best illustrated in
Returning now to needle valve 500, conventional needle valve member 517 includes an opening hydraulic surface 520 that is exposed to fluid pressure in nozzle chamber 519. Needle valve member 517 is biased toward its downward, closed position by a biasing spring 511. Preferably, the relative sizes and strength of opening hydraulic surface 520, biasing spring 511 and closing hydraulic surface 506 of needle valve member 507 are such that needle valve member 517 will be lifted to its upward, open position when opening hydraulic surface 520 is exposed to intensified high pressure fuel in nozzle chamber 519, that corresponds to a conventional valve opening pressure, which is preferably substantially higher than both the fuel supply pressure and the HCCI valve opening pressure. In other words, the valve opening pressure of needle valve member 517 should be greater than that of needle valve member 507 such that needle valve member 507 will lift for the lower HCCI injection pressures. In addition, the conventional valve opening pressure will be relatively high to overcome the downward force of both biasing spring 511 and the high pressure fluid force acting on closing hydraulic surface 506 of needle valve member 507. Thus, the conventional injection event can occur without second electrical actuator 442 being activated. When needle valve member 517 is in its downward, biased position, nozzle outlets 528 are blocked. However, when needle valve member 517 is in its upward, open position, conventional nozzle outlets 528 are open and fuel spray into cylinder 25 can commence. When fuel injection is occurring via conventional nozzle outlets 528, recall that fuel injector 430 is in its second configuration. When fuel injector 430 is in this second configuration, fuel spray into cylinder 25 is in a second spray pattern corresponding to the relatively large angle α of conventional nozzle outlets 528 with respect to centerlines 27 and 429.
Note that while needle valve member 507 is also lifted by the upward movement of needle valve member 517, HCCI nozzle outlets 526 remains closed during the conventional injection event. This is due to a number of factors. When high pressure is acting on HCCI closing hydraulic surface 506, the HCCI needle valve member 507 will remain seated. It should be appreciated that because conventional needle valve member 517 must overcome the spring force of conventional biasing spring 111, as well as the fluid force acting on closing hydraulic surface 506 of needle valve member 507, opening hydraulic surface 520 should be sized appropriately so that conventional injection events only occur when fuel pressure is intensified by movement of intensifier piston 480. Thus, conventional needle valve member 517 will begin to move toward its open position, moving HCCI needle valve member 507 upward, while HCCI needle valve member 507 remains seated. In addition, the upward movement of HCCI needle valve member 507, and thus the upward movement of conventional needle valve member 117, is limited by injector body 431. Thus, once conventional needle valve member 517 reaches its upward position, HCCI needle valve member 507 is prevented from lifting away from conventional needle valve member 517. This embodiment permits HCCI injection events at a medium supply pressure, and conventional injection events at a high intensified pressure.
VI.
Referring now to
When needle valve 600 is in its first position, HCCI needle valve member 607 and conventional needle valve member 617 are both in downward, closed positions, as shown. When needle valve member 607 is in its closed position, a valve surface 621 provided on needle valve member 607 closes a conical valve seat 622 defined by injector body 531. Similarly, when needle valve member 617 is in its closed position, a valve surface 623 provided on needle valve member 617 closes a conical valve seat 624 defined by injector body 531. Needle valve member 607 and needle valve member 617 are biased toward their closed positions by a biasing spring 601 and a biasing spring 611, respectively. Needle valve member 607 includes an opening hydraulic surface 610 that is exposed to fuel pressure in nozzle chamber 609. Nozzle chamber 609 is fluidly connected to a source of pressurized fuel via a nozzle supply passage 608. When fuel pressure acting on opening hydraulic surfaces 610A and 610B within nozzle supply chamber 609 exceeds the first valve opening pressure defined by the downward bias of biasing spring 601, needle valve member 607 is lifted to its open position, corresponding to the second position of needle valve 600. Recall that this second position of needle valve 600 corresponds to a first configuration of fuel injector 530. When fuel injector 30 is in this configuration, fuel spray into cylinder 25 is at a relatively small angle θ with respect to injector centerline 529 and cylinder centerline 29. However, depending upon the control strategy utilized for needle valve 600, the valve opening pressures for needle valve member 607 and needle valve member 617 could be the same or different, as illustrated below.
In addition to HCCI needle valve member 607, needle valve 600 also provides a conventional needle valve member 617. Needle valve member 617 is movable between a downward, closed position and an upward, open position, and is biased toward its closed position by a biasing spring 611. Needle valve member 617 provides an opening hydraulic surface 620 that is exposed to fuel pressure in a nozzle chamber 619. Nozzle chamber 619 is fluidly connected to fuel pressurization chamber 585 via a nozzle supply passage 618. When the fuel pressure acting on opening hydraulic surface 620 exceeds the downward force of biasing spring 611, needle valve member 617 is lifted to its open position, corresponding to the third position of needle valve 600. This third position of needle valve 600 corresponds to a second configuration of fuel injector 530. When fuel injector 530 is in this second configuration, fuel spray into cylinder 25 is in a second spray pattern corresponding to the relatively large angle α of conventional nozzle outlets 628 with respect to centerlines 27 and 529.
It should be appreciated that control of needle valve 600 can be carried out in a number of different manners. For instance, referring in addition to
First electrical actuator 532 controls actuation fluid pressure on a control surface of a spool valve member 555. It should be appreciated that spool valve member 555 could be similar to spool valve member 55, as illustrated in
Regardless of the orientation of spool valve member 555, it should be appreciated that piston 580 and plunger 583 move toward their advanced positions when hydraulic surface 581 is exposed to high pressure actuation fluid. When piston 580 and plunger 583 advance, fuel within fuel injector 530 is pressurized. Pressurized fuel can be blocked by second electrical actuator 542 or directed to one of HCCI nozzle control chamber 609 or conventional nozzle control chamber 619. In other words, when second electrical actuator 542 is in a first position, pressurized fuel is blocked from exiting fuel injector 530 via either HCCI nozzle outlets 626 or conventional nozzle outlets 628. When second electrical actuator 542 is in a second position, pressurized fuel can flow into HCCI nozzle chamber 609 via HCCI nozzle supply passage 608. When the pressure of fuel in HCCI nozzle chamber 609 exceeds the downward force of biasing spring 601, HCCI needle valve member 607 is lifted to its upward position. Pressurized fuel can now spray out of fuel injector 530 via HCCI nozzle outlets 626. When second electrical actuator 542 is in a third position, pressurized fuel can flow into conventional nozzle chamber 619 via nozzle supply passage 618. When the pressure of fuel in conventional nozzle chamber 619 exceeds the downward force of biasing spring 611, conventional needle valve member 617 is lifted to its upward position allowing fuel spray into cylinder 25 via conventional nozzle outlets 628.
Referring now to
Returning to first electrical actuator 532, and the conventional injection event, when first electrical actuator 532 is de-energized, such as between conventional injection events, spool valve member 555 is in a first position fluidly connecting a hydraulic surface of piston 580 to low pressure. In this condition, piston 580 and plunger 583 are in their retracted positions and fuel acting on opening hydraulic surface 620 is not sufficient to move conventional needle valve member 617 to its upward, open position. When first electrical actuator 532 is energized, however, spool valve member 555 is in a second position exposing the hydraulic surface of piston 580 to high pressure, to allow piston 580 and plunger 583 to move to their advanced positions to pressurize fuel within fuel injector 530′. When fuel pressure exceeds a valve opening pressure, conventional needle valve member 617 is lifted to its open position and fuel injection via conventional nozzle outlets 628 can commence. The conventional valve opening pressure is thus preferably substantially higher than fuel transfer pressure.
Referring now to
VII.
Referring now to
Returning to fuel injector 630, a second electrical actuator 642 is included which controls fluid pressure acting on a hydraulic surface 669 of a stop component 670, which is exposed to fluid pressure in a stop control chamber 671 via fluid transfer passage 672. Second electrical actuator 642 is also preferably a two-position actuator, however, once again another suitable actuator, such as a piezo-electric actuator, could be substituted. Preferably, second electrical actuator 642 controls the flow of fuel from a fuel pressurization chamber 85 (
Returning to nozzle assembly 690, a needle valve 700 is provided that is preferably a three-position needle valve and includes a single needle valve member 707. Needle valve member 707 includes an opening hydraulic surface 710 that is exposed to fuel pressure in a nozzle chamber 709 that is fluidly connected to fuel pressurization chamber 85 via a nozzle supply passage 708. In addition, needle valve member 707 defines a T-shaped nozzle supply passage 713, that can fluidly connect nozzle supply passage 708 to either a set of HCCI nozzle outlets 726 or a set of conventional nozzle outlets 728, that are defined by tip 795. Needle valve member 707 is movable between a first, downward position (
When needle valve member 707 is in its downward, closed position, such as when first electrical actuator 632 is de-energized, nozzle supply passage 713 is blocked from fluid communication with nozzle supply passage 708 due to the closure of seat 722 by valve surface 721. Thus, fuel injection via either HCCI nozzle outlets 726 or conventional nozzle outlets 728 is prevented. When needle valve member 707 is in its maximum lift position, such as when first electrical actuator 632 is energized and second electrical actuator 642 is de-energized to maintain stop component 670 in its retracted position, HCCI nozzle outlets 726 are open to nozzle supply passage 708 via nozzle supply passage 713. When needle valve member 707 is in its maximum lift position, this corresponds to a first configuration of fuel injector 630. When fuel injector 630 is in this configuration, fuel spray into cylinder 25 is at a relatively small angle θ with respect to injector centerline 629 and cylinder centerline 27. As best illustrated in
When needle valve member 707 is in its intermediate lift position, such as when first electrical actuator 632 is energized and second electrical actuator 642 is energized such that stop component 670 is moved to its advanced position, annulus 711 is open to nozzle supply passage 708, such that fuel can spray out of conventional nozzle outlets 728 into cylinder 25. However, while needle supply passage 713 is open to nozzle supply passage 708 when needle valve member 707 is in this position, HCCI nozzle outlets 726 remain blocked by needle valve member 707, such that fuel spray into cylinder 25 via HCCI nozzle outlets 726 does not occur. When needle valve member 707 is in this intermediate lift position, this corresponds to a second configuration of fuel injector 630. When fuel injector 630 is in this second configuration, fuel spray into cylinder 25 is in a second spray pattern corresponding to the relatively large angle α of conventional nozzle outlets 128 with respect to centerline 629, as best illustrated in
Industrial Applicability
I.
Referring to
Prior to the compression stroke of piston 26, electronic control module 17 evaluates engine 10 operating conditions to determine if engine 10 is operating in a conventional mode, an HCCI mode or a transitional mode. Engine 10 can operate in a HCCI mode, such asunder a low load condition. In other words, injector 30 will only perform an HCCI injection event, preferably at or near the beginning of the compression stroke of piston 26. If engine 10 is operating under a high load condition, injector 30 will preferably operate in a conventional mode. In other words, injector 30 will perform only a conventional injection, preferably at or near the end of the compression stroke of piston 26. Finally, if engine 10 is determined to be operating under a transitional load condition, injector 30 will operate in a mixed mode. When injector 30 is operating in the mixed mode, both an HCCI injection and the conventional injection will be performed during the compression stroke of piston 26. In other words, injector 30 will perform an HCCI injection when piston 26 is relatively close to the bottom dead center position of its compression stroke and will then perform a conventional injection when piston 26 is relatively close to the top dead center position of the same compression stroke. The remainder of operation of this embodiment of injector 30 will be described for a transitional load operating condition of engine 10, corresponding to operation of fuel injector 30 in a mixed mode.
Referring to
Recall that pressure communication passage 88 is also open to low pressure passage 40, thus exposing closing hydraulic surface 106 of HCCI needle valve member 107 to low pressure in needle control chamber 102. Therefore, once the pressure of fuel within nozzle chamber 109 exceeds an HCCI valve opening pressure, HCCI needle valve member 107 is lifted to its open position, corresponding to the first configuration of fuel injector 30. HCCI nozzle outlet 126 is now fluidly connected to nozzle supply passage 108 and nozzle chamber 109. However, because high pressure fuel is acting on closing hydraulic surface 116, conventional needle valve member 117 remains in its downward, closed position. Pressurized fuel can now spray into cylinder 25 via HCCI nozzle outlet 126. Referring again to
When the desired amount of fuel has been injected for the HCCI injection event, first electrical actuator 32 is de-energized and valve member 37 is returned to its advanced position under the force of biasing spring 33. Variable pressure passage 67 and pressure communication passage 88 are now opened to high pressure passage 51. With high pressure acting on closing hydraulic surface 106, needle valve member 107 is returned to its closed position to block nozzle outlet 126 from nozzle supply passage 108 and end fuel spray into cylinder 25.
Once nozzle outlet 126 is closed, residual high pressure in actuation fluid passage 68 is sufficient to move pressure relief valve 70 upward away from seat 72 to fluidly connect actuation fluid passage 68 to pressure relief passage 75. Pressure relief valve 70 can therefore help vent high pressure actuation fluid from actuation fluid passage 68 to prevent pressure spikes from causing undesired secondary injections. At the same time, the upward movement of pressure relief valve 70 causes pin 71 to aid spool valve member 55 in returning to its upward position. Recall that control surface 63 is again exposed to high pressure in spool cavity 65, causing spool valve member 55 to once again be hydraulically balanced such that it can return to its upward position under the force of biasing spring 60, in addition to the upward force of pin 71. When spool valve member 55 begins to retract, piston 80 and plunger 83 end their downward movement. However, as a result of hydraulic locking, they do not immediately begin to retract. Once spool valve member 55 is returned to its upward position, actuation fluid passage 68 is blocked from fluid communication with high pressure passage 51 and fluidly connected to low pressure passage 52, which further reduces the pressure within actuation fluid passage 68. Piston 80 and plunger 83 can now move toward their retracted positions. As plunger 83 retracts, fuel from fuel source 19 can be drawn into fuel pressurization chamber 85 via fuel inlet 86 past check valve 87. Used actuation fluid is displaced into the drain 52.
With the HCCI injection event now complete, piston 26 continues to advance toward its top dead center position. Fuel and air within cylinder 25 begin to combine into a homogeneous mixture. In addition, fuel injector 30 prepares for the conventional injection event. Recall that fuel injector 30 will preferably only perform both the HCCI injection event and the conventional injection event during the same piston stroke when engine 10 is operating in a mixed mode, such as during a medium load condition. To initiate the conventional injection event, as cylinder piston 26 approaches its top dead center position, second electrical actuator 42 is energized and valve member 47 is moved to its retracted position by armature 45 to close high pressure seat 49 and open conventional needle control chamber 112 to relatively low pressure in fuel line 20 via pressure control line 77. However, conventional needle valve member 117 remains in its downward, closed position under the force of biasing spring 111. First electrical actuator 32 is re-energized, and valve member 37 is once again moved to its retracted position by armature 35 closing high pressure seat 39. Spool cavity 65 is again open to low pressure passage 40 via variable pressure passage 67. In addition, pressure communication passage 88 is also opened to low pressure passage 40, thus exposing HCCI closing hydraulic surface 106 to low pressure in HCCI needle control chamber 102. However, as with conventional needle valve member 117, HCCI needle valve member 107 remains in its downward, closed position under the force of biasing spring 101.
When spool cavity 65 is opened to low pressure passage 40, spool valve member 55 is no longer hydraulically balanced and is moved to its advanced position under the force of high pressure fluid acting on high pressure surface 56. Actuation fluid passage 68 is now open to high pressure passage 51 via high pressure annulus 57. With high pressure acting on hydraulic surface 81 in actuation fluid passage 68, piston 80 and plunger 83 begin to move toward their advanced positions. This movement, however raises the pressure of fuel within fuel pressurization chamber 85 and nozzle supply passage 118 to injection pressure levels for the conventional injection event.
Once the pressure of fuel within nozzle supply passage 118 and nozzle chamber 119 reaches the conventional valve opening pressure, which is less than the HCCI valve opening pressure, conventional needle valve member 117 is lifted to its upward position to open conventional nozzle outlets 128, corresponding to the second configuration of fuel injector 30. When conventional needle valve member 117 is lifted, HCCI needle valve member 107 is also moved to its upward position. However, because needle valve member 107 is lifted with needle valve member 117, rather than being lifted away from HCCI valve seat 122, HCCI nozzle outlet 126 remains blocked. HCCI needle valve member 107 is not lifted independently of conventional needle valve member 117 because the conventional valve opening pressure heeded to lift conventional needle valve member 117 to its upward position is lower than the valve opening pressure required to lift HCCI needle valve member 107 against the force of biasing spring 101. Recall that the differing valve opening pressures is preferably a result of the difference in the preloads and strengths of biasing springs 101, 111, as well as from a difference in the relative sizes of opening hydraulic surfaces 110, 120. In addition, once conventional needle valve member 117 reaches its upward position, HCCI needle valve member 107 is prevented from lifting away from HCCI valve scat 122 by stop pin 105. In order to ensure that HCCI nozzle outlet 126 remains closed during a conventional injection event, conventional needle valve member 117 reaches its fully open position before fuel pressure reaches the HCCI valve opening pressure. Thus, fuel can spray into cylinder 25 via conventional nozzle outlets 128, but not from HCCI nozzle outlet 126. Recall that this fuel injection occurs when cylinder piston 26 is relatively close to its top dead center position. Referring again to
When the desired amount of fuel has been injected via conventional nozzle outlets 128, first electrical actuator 32 is de-energized and valve member 37 is returned to its advanced position by biasing spring 33 closing low pressure seat 38. This exposes closing hydraulic surface 116 of conventional needle valve member to high pressure activation fluid. HCCI needle control chamber 102 remains open to high pressure fuel via pressure communication passage 88. The downward force exerted on needle valve members 107 and 117, by pressurized fuel in needle control chamber 102 pressured activation fluid in chamber 112, and the biasing forces from springs 101 and 111, is sufficient to move HCCI needle valve member 107 and conventional needle valve member 117 downward to their closed positions to end the injection event. Second electrical actuator 42 remains de-energized to allow valve member 47 to return to its advanced position under the force of biasing spring 43, opening conventional needle control chamber 112 to high pressure in control supply line 76 via control pressure line 77, thus exposing conventional closing hydraulic surface 116 to high pressure.
Once nozzle outlet 126 is closed, residual high pressure in actuation fluid passage 68 is sufficient to move pressure relief valve 70 upward away from seat 72 to fluidly connect actuation fluid passage 68 to pressure relief passage 75. Pressure relief valve 70 can therefore help vent high pressure actuation fluid from actuation fluid passage 68 to prevent pressure spikes from causing undesired secondary injections. At the same time, the upward movement of pressure relief valve 70 causes pin 71 to aid spool valve member 55 in returning to its upward position. Recall that control surface 63 is again exposed to high pressure in spool cavity 65, causing spool valve member 55 to once again be hydraulically balanced such that it can return to its upward position under the force of biasing spring 60, in addition to the upward force of pin 71. When spool valve member 55 begins to retract, piston 80 and plunger 83 end their downward movement, however, as a result of hydraulic locking they do not immediately begin to retract. Once spool valve member 55 is returned to its upward position, actuation fluid passage 68 is blocked from fluid communication with high pressure passage 51 and fluidly connected to low pressure passage 52, which further reduces the pressure within actuation fluid passage 68. Piston 80 and plunger 83 can now move toward their retracted positions. As plunger 83 retracts, fuel from fuel source 19 can be drawn into fuel pressurization chamber 85 via fuel inlet 86 past check valve 87. Used actuation fluid is displaced into the drain 52.
Upon conclusion of the conventional injection event, engine 10 prepares for the subsequent fuel injection event. Combustion in cylinder 25 drives piston 26 downward for its power stroke. Piston 26 then performs its exhaust and intake strokes in preparation for the next injection event in a conventional manner. Electronic control module 17 evaluates the operation condition of engine 10 to determine a desired mode of operation for fuel injector 30 during the subsequent injection event. If the operating condition of engine 10 has changed, fuel injector 30 could instead operate in either an HCCI mode or a conventional mode for the subsequent injection event.
II.
Referring now to the
To initiate the HCCI injection event, first electrical actuator 32 is energized and valve member 37 is moved to close high pressure seat 39 by armature 35. Variable pressure passage 67 and pressure communication passage 88 are now fluidly connected to low pressure passage 40. With pressure in spool cavity 65 now low, the high pressure acting on high pressure surface 56 is sufficient to overcome the force of biasing spring 60, and spool valve member 55 moves to its advanced position blocking actuation fluid passage 68 from low pressure passage 52 and opening it to high pressure passage 51 via high pressure annulus 57. High pressure acting on hydraulic surface 81 in actuation fluid passage 68 causes piston 80 to begin to move toward its advanced position. As piston 80 advances, plunger 83 moves in a corresponding manner. It should be appreciated that because HCCI nozzle outlets 226 are still closed, piston 80 and plunger 83 only advance a small distance at this time. However, this advancing movement of piston 80 and plunger 83 is sufficient to pressurize the fuel in fuel pressurization chamber 85 and nozzle supply passage 218.
Recall that pressure communication passage 88 is also open to low pressure passage 40, thus exposing closing hydraulic surface 206 of HCCI needle valve member 207 to low pressure in needle control chamber 202. Opening hydraulic surface 210 is exposed to fuel pressure in nozzle chamber 209 which is fluidly connected to nozzle supply passage 218 via nozzle supply passage 208. Once the pressure of fuel within nozzle chamber 209 exceeds a valve opening pressure, HCCI needle valve member 207 is lifted to its open position, fluidly connecting HCCI nozzle outlets 226 with nozzle supply passage 208. Pressurized fuel can now spray into cylinder 25 via HCCI nozzle outlets 226 in a first spray pattern with respect to cylinder centerline 27 (
When the desired amount of fuel has been injected for the HCCI injection event, first electrical actuator 32 is de-energized and valve member 37 is returned to its advanced position under the force of biasing spring 33. Variable pressure passage 67 and pressure communication passage 88 are now opened to high pressure passage 51. With high pressure acting on closing hydraulic surface 206, needle valve member 207 is returned to its closed position to block nozzle outlets 226 from nozzle supply passage 208 and end the injection event. At the conclusion of the HCCI injection event, various components of fuel injector 30 reset themselves in preparation for the next injection event, as described for the previous embodiment of the present invention. However, if a subsequent injection event is close in time, the injector may not reset itself. Piston 80 and plunger 83 return to their retracted positions and fuel is drawn into fuel pressurization chamber 85 with the retracting movement of plunger 83 for the next injection event. In addition, piston 26 continues to advance toward its top dead center position while fuel and air within cylinder 25 begin to combine into a homogeneous mixture.
Recall that the HCCI injection event preferably occurs while piston 26 is at or near bottom dead center position of its compression stroke. When engine 10 is operating in a mixed mode condition, injector 30 also performs a conventional injection event when piston 26 is at or near its top dead center position. Just prior to the desired start of the conventional injection event, when piston 26 is approaching its top dead center position, second electrical actuator 42 is energized and valve member 47 is moved to close high pressure seat 49 and open conventional needle control chamber 212 to low pressure. First electrical actuator 32 is then re-energized and valve member 37 is moved to close high pressure seat 39. Spool cavity 65 is now re-opened to low pressure passage 40 via variable pressure passage 67. With low pressure acting on control surface 63, the high pressure acting on high pressure surface 56 is sufficient to move spool valve member 55 to its downward position. Actuation fluid passage 68 is now blocked from low pressure passage 52 and open to high pressure passage 51 via low pressure annulus 58.
With high pressure again acting on hydraulic surface 81, piston 80 and plunger 83 begin to move toward their advanced positions. However, because HCCI nozzle outlets 226 and conventional nozzle outlets 228 are closed, piston 80 and plunger 83 only move a slight distance. As with the HCCI injection event, this distance is sufficient to pressurize the fuel within fuel pressurization chamber 85, nozzle chamber 209 and nozzle chamber 219 to injection pressures. With low pressure now acting on closing hydraulic surface 216, conventional needle valve member 217 is raised to its open position once fuel pressure within nozzle chamber 209 exceeds its valve opening pressure. Recall that the various sizes and strengths of conventional opening hydraulic surface 220, HCCI opening hydraulic surface 210, conventional closing hydraulic surface 216, HCCI closing hydraulic surface 206, conventional biasing spring 211 and HCCI biasing spring 201 are preferably such that the conventional valve opening pressure will be reached before the HCCI valve opening pressure when low pressure is acting on both closing hydraulic surface 206 and closing hydraulic surface 216. In addition, recall that stop pin 205 prevents HCCI needle valve member 207 from lifting away from conventional needle valve member 217 once conventional needle valve member reaches its upward position. This will prevent HCCI nozzle outlets 226 from opening during the conventional injection event. Thus, while HCCI needle valve 207 will be lifted to its upward position when conventional needle valve member 217 opens, HCCI nozzle outlets 226 will remain closed because HCCI needle valve member 207 does not lift upward independently of conventional needle valve member 217 to open valve seat 222.
Recall that fuel injection via conventional nozzle outlets 228 occurs in a second spray pattern with respect to cylinder centerline 27 (
Once the conventional injection event is ended, the various remaining components of fuel injector 30 reset themselves in preparation for the next injection event. Second electrical actuator 42 is de-energized such that conventional needle control chamber 212 is once again connected to high pressure. In addition, high pressure acting in spool cavity 56, as a result of the de-activation of first electrical actuator 32, allows spool valve member 55 to once again be hydraulically balanced and returned to its upward, biased position under the force of biasing spring 60. Actuation fluid passage 68 is open to low pressure passage 52, and piston 80 and plunger 83 return to their retracted positions in a manner similar to that described for the previous embodiment.
III.
Referring now to
Prior to an injection event, low pressure prevails in fuel injector 230 and piston 280 and plunger 283 are in their retracted positions. First electrical actuator 232 and second electrical actuator 242 are de-energized, such that spool cavity 256 is open to high pressure and spool valve member 255 is hydraulically balanced and held in its upward, retracted position by biasing spring 260. Additionally, high pressure is acting on closing hydraulic surface 306 of HCCI needle valve member 307, and holding the same in its downward, closed position.
Just prior to the desired start of the HCCI injection event, when piston 26 is returning from its bottom dead center position, first electrical actuator 232 is energized. Low pressure now acts on spool valve member 255, such that spool valve member 255 is no longer hydraulically balanced. Spool valve member 255 then moves to its second position exposing hydraulic surface 281 of piston 280 to high pressure. Second electrical actuator 242 is also energized to open needle control chamber 302 to low pressure. However, HCCI needle valve member 307 remains in its closed position at this point under the force of biasing spring 301.
With high pressure now acting on hydraulic surface 281, piston 280 and plunger 283 begin to move toward their advanced positions. Because HCCI nozzle outlet 326 is still closed, piston 280 and plunger 283 advance only a slight distance. However, piston 280 and plunger 283 do travel a sufficient distance to raise the pressure of fuel within fuel pressurization chamber 285, nozzle supply passages 318, 308 and nozzle chamber 309 to injection pressure. When fuel pressure within nozzle chamber 309 is sufficient to overcome the downward force of biasing spring 301, needle valve member 307 is lifted to its upward position opening HCCI nozzle outlet 326 to commence fuel spray into cylinder 25 via HCCI nozzle outlet 326. Recall that the HCCI valve opening pressure of needle valve member 307 is lower than the conventional valve opening pressure of needle valve member 317, thus only HCCI needle valve member 307 will open at this time.
Fuel injection via HCCI nozzle outlets 326 occurs when piston 26 is still relatively far from its top dead center position. Fuel spray into cylinder 25 is in a first spray pattern with respect to cylinder centerline 27. This first spray pattern corresponds to fuel spray at a relatively small angle, here zero degrees, with respect to cylinder centerline 27. When the desired amount of fuel has been injected via HCCI nozzle outlet 326, first electrical actuator 232 is de-energized. Closing hydraulic surface 306 is again exposed to high pressure in needle control chamber 302. With high pressure now acting on closing hydraulic surface 306, HCCI needle valve member 307 is returned to its downward, closed position blocking HCCI nozzle outlet 326 and ending the injection event. Piston 280 and plunger 283 stop their downward movement, but do not retract as a result of continued high pressure acting on hydraulic surface 281. Because the HCCI injection event resulted in injection of only a small amount of fuel, corresponding to plunger 283 traveling less than a full stroke, a sufficient amount of fuel remains in fuel injector 230 to perform another injection event. It should be appreciated that these components could be allowed to reset if ample time is available before the next injection event. Further, recall that HCCI needle valve member 307 will return to its closed position, even with relatively high pressure fuel acting on opening hydraulic surface 310 due to the relative size and strength of closing hydraulic surface 306 and biasing spring 301.
After the HCCI injection event, piston 26 continues moving toward its top dead center position. The fuel that was injected during the HCCI injection event is mixing with air that was drawn into cylinder 25 during the intake stroke of piston 26 via the intake valve (not shown). As piston 26 approaches its top dead center position, fuel injector 230 prepares for the conventional injection event. Electrical actuator 232 is again energized to initiate downward movement of piston 280 and plunger 283. Actuator 242 remains de-energized to maintain high fluid pressure on closing hydraulic surface 306 of needle 307. Once the pressure of fuel within nozzle chamber 319 reaches a conventional valve opening pressure, conventional needle valve member 317 is raised to its upward, open position, and fuel spray into cylinder 25 via conventional nozzle outlets 328 can commence. Note that because high pressure is still acting on closing hydraulic surface 306 of HCCI needle valve member 307, HCCI needle valve member 307 remains in its downward position with respect to conventional needle valve member 317. In other words, while HCCI needle valve member 307 is moved upward by the upward movement of conventional needle valve member 317, valve surface 321 remains in contact with valve seat 322, and therefore, HCCI nozzle outlet 326 remains blocked from nozzle supply passage 308.
Recall that fuel spray via conventional nozzle outlets 328 occurs in a second spray pattern with respect to cylinder centerline 27 (
Once the conventional injection event has ended the various components of fuel injector 230 and engine 10 again reset themselves in preparation for the next fuel injection event. Piston 280 and plunger 283 return to their retracted positions and fuel is drawn into fuel injector 230 as a result of the retracting movement of plunger 283. If the operating condition of engine 10 changes, fuel injector 230 could instead operate in either an HCCI mode or a conventional mode for the subsequent injection event.
IV.
Referring now to the
Just prior to an injection event, HCCI needle valve member 407 and conventional needle valve member 417 are in their downward positions closing HCCI nozzle outlet 426 and conventional nozzle outlets 428, respectively. To initiate an injection event, first electrical actuator 332 is energized such that pressure acting on a control surface of spool valve member 355 is now low. Spool valve member 355 moves to its second position exposing hydraulic surface 381 to high pressure actuation fluid. High pressure acting on hydraulic surface 381 causes piston 380 to begin to move toward its advanced position. As piston 380 advances, plunger 383 moves in a corresponding manner. It should be appreciated that because HCCI nozzle outlet 426 is still closed, piston 380 and plunger 383 only advance a small distance at this time. However, this advancing movement of piston 380 and plunger 383 is sufficient to pressurize the fuel within fuel injector 330 to injection levels.
When fuel pressure in nozzle supply passage 408 exceeds the downward pressure exerted on needle valve member 407 by biasing spring 401, needle valve member 307 is lifted to its upward position to open HCCI nozzle outlet 426 to nozzle supply passage 408 via nozzle supply passage 405. It should be appreciated that the HCCI valve opening pressure required to lift HCCI needle valve member 407 to its open position is preferably less than the force that would be required to lift conventional needle valve member 417 against the downward force of both biasing spring 411 and the hydraulic force acting on closing hydraulic surface 416. Thus, conventional needle valve member 417 remains in its closed position at this time. Recall that this HCCI injection event occurs as piston 26 is still relatively far from its top dead center position. Fuel spray for this HCCI injection event occurs in a first spray pattern with respect to cylinder centerline 27 (
When the desired amount of fuel has been injected, first electrical actuator 332 is de-energized and spool valve member 355 is returned to its first position. Hydraulic surface 381 is once again exposed to low pressure and piston 380 and plunger 383 stop their advancing movement. However, residual high pressure acting on hydraulic surface 381 prevents them from immediately returning to their retracted positions. While piston 380 and plunger 383 are ending downward movement toward their advanced positions, pressure within nuzzle supply passage 408 begins to decrease. When fuel pressure in nozzle supply passage 408 no longer exceeds the downward pressure exerted by biasing spring 401, needle valve member 407 is returned to its downward, closed position blocking HCCI nozzle outlet 426 from nozzle supply passage 408 and ending the HCCI injection event.
After the HCCI injection event, piston 26 continues moving toward its top dead center position. Fuel within cylinder 25 mixes with air to create a homogeneous mixture. At this time, various components of fuel injector 330 reset themselves in preparation for the conventional injection event, assuming that sufficient time is available. Fuel for the next injection event is either already in the injector, or drawn into fuel injector 330 by the retracting movement of plunger 383.
As piston 26 approaches its top dead center position, and just prior to the start of the conventional injection event, second electrical actuator 342 is energized. Low pressure actuation fluid is now acting on closing hydraulic surface 416 of conventional needle valve member 417. However, conventional needle valve member 417 remains in its closed position under the force of biasing spring 411. First electrical actuator 332 is re-energized and spool valve member 355 begins to move toward its second position. Hydraulic surface 381 is once again open to high pressure actuation fluid and piston 380 and plunger 383 again begin to move toward their advanced positions to pressurize fuel within fuel injector 330. Once fuel pressure acting on opening hydraulic surface 420 in nozzle supply passage 408 exceeds a conventional valve opening pressure, needle valve member 417 is moved to its upward position to open conventional nozzle outlets 428. HCCI needle valve member 407 is lifted with conventional needle valve member 417, however HCCI nozzle outlet 426 remains closed because valve surface 421 does not open valve seat 422. Recall that this is due to conventional valve opening pressure being less than the HCCI valve opening pressure when low pressure is acting on closing hydraulic surface 416. In addition, recall that once needle valve member 417 reaches is upward position, sleeve 406 prevents needle valve member 407 from further upward movement. Thus, fuel spray via conventional nozzle outlets 428 commences while fuel spray via HCCI nozzle outlet 426 is prevented. Recall that this conventional fuel injection event occurs when piston 26 is relatively close to its top dead center position and results in fuel spray into cylinder 25 in a second spray pattern (
When the desired amount of fuel has been injected by fuel injector 330 via conventional nozzle outlets 428, first electrical actuator 332 and second electrical actuator 342 are de-energized. With high pressure now acting on closing hydraulic surface 416 in needle control chamber 412, needle valve member 417 returns to its downward position, blocking conventional nozzle outlets 428 and ending the injection event. Once the injection event is over, the various components of fuel injector 330 begin to reset themselves in preparation for the next injection event. Piston 380 and plunger 383 return to their retracted positions and fuel for the subsequent injection event is drawn into fuel injector 330 with the retracting movement of plunger 383. In addition, engine 10 prepares for the subsequent fuel injection event as well. Piston 26 performs its power stroke, as a result of combustion within cylinder 25 following the conventional injection event, and then undergoes its exhaust and intake strokes, in a conventional manner. Electronic control module 17 evaluates the operation condition of engine 10 to determine a desired mode of operation for fuel injector 330 during the subsequent injection event.
V.
Referring now to the
Just prior to the desired start of the HCCI injection event, when piston 26 is relatively far from its top dead center position, actuator 442 is energized. Closing hydraulic surface 506 of needle valve member 507 is now exposed to low pressure actuation fluid in needle control chamber 502. With high pressure no longer holding needle valve member 507 in its downward position, the pressure of fuel within nozzle supply passage 508 and nozzle chamber 509, while being at medium fuel transfer pressure, is sufficient to lift needle valve member 507 to its upward position. Fuel can now spray out of fuel injector 430 via HCCI nozzle outlets 526. As fuel spray is occurring, fresh fuel is being drawn into fuel injector 430 via a fuel inlet.
Recall that fuel spray via HCCI nozzle outlets 526 will occur in a first spray pattern with respect to cylinder centerline 27 (
As cylinder piston 26 advances toward its top dead center position, the fuel within cylinder 25 mixes with the air contained therein to create a homogeneous mixture. Concurrently, fuel injector 430 prepares for the conventional injection event. Just prior to the desired start of fuel injection, first electrical actuator 432 is energized and spool valve member 455 is moved to its second position exposing hydraulic surface 481 of piston 480 to high pressure actuation fluid. Piston 480 and plunger 483 thus begin to advance to pressurize fuel within fuel injector 430. When the pressure of fuel within nozzle chamber 519 is sufficient to overcome the force of biasing spring 511 and the high pressure force acting on closing hydraulic surface 506 of needle valve member 507, needle valve member 517 is lifted to its upward position. Fuel spray via conventional nozzle outlets 528 can now commence. However, with high pressure is still acting on closing hydraulic surface 506, needle valve member 507 will remain in its downward position with respect to needle valve member 517, such that valve surface 521 continues to close valve seat 522 as a result of the differing valve opening pressures of the two needle valve members, which is preferably due to appropriate sizing of the various hydraulic surfaces and biasing strengths of the respective biasing springs. Thus, HCCI nozzle outlets 526 will remain closed during the conventional injection event.
Fuel spray via conventional nozzle outlets 528 occurs in a second spray pattern with respect to cylinder centerline 27 (
Between injection events, the various components of fuel injector 430 reset themselves for the next injection event. Piston 480 and plunger 483 return to their retracted positions and fuel for the subsequent injection event is drawn into fuel injector 430 with the retracting movement of these components. In addition, engine 10 prepares for the subsequent fuel injection event as well. Piston 26 performs its power stroke, as a result of combustion within cylinder 25 following the conventional injection event, and then undergoes its exhaust and intake strokes, in a conventional manner. Electronic control module 17 evaluates the operation condition of engine 10 to determine a desired mode of operation for fuel injector 430 during the subsequent injection event.
VI.
Referring now to the
Prior to an injection event, first electrical actuator 532 and second electrical actuator 542 are de-energized and HCCI needle valve member 607 and conventional needle valve member 617 are in their downward positions blocking fuel injection from HCCI nozzle outlets 626 and conventional nozzle outlets 628, respectively. Just prior to a desired injection event, first electrical actuator 532 is energized and a control surface of spool valve member 555 is exposed to low pressure. Spool valve member 555 now moves to a position exposing hydraulic surface 581 of piston 580 to high pressure. Piston 580 and plunger 583 begin to move toward their advanced positions. Because second electrical actuator 542 is still de-energized, fuel flow to HCCI nozzle supply passage 608 and conventional nozzle supply passage 618 is blocked and therefore piston 580 and plunger 583 can only advance a slight distance. However, this slight movement is sufficient to raise the pressure of fuel within fuel injector 530 to injection pressure.
To initiate the HCCI injection event, when piston 26 is relatively far from its top dead center position, second electrical actuator 542 is moved to its first position, opening nozzle supply passage 608 to pressurized fuel. As this pressurized fuel flows into nozzle chamber 609 via nozzle supply passage 608, it acts on opening hydraulic surface 610 of HCCI needle valve member 607 and lifts the same to its open position. Fuel spray into cylinder 25 via HCCI nozzle outlets 626 in a first spray pattern can now commence. Recall that this first spray pattern corresponds to a relatively small spray angle with respect to cylinder centerline 27 (
Just prior to the start of the conventional injection event, when cylinder piston 26 is relatively close to its top dead center position, second electrical actuator 542 is moved to its third position, opening nozzle supply passage 618. Pressurized fuel can now act on opening hydraulic surface 620 in nozzle chamber 619. Needle valve member 617 is now lifted to its open position, and fuel spray via conventional nozzle outlets 628 can commence in a second spray pattern. Recall that this second spray pattern corresponds to a relatively large spray angle with respect to cylinder centerline 27 (
To end the conventional injection event, second electrical actuator 542 is again de-energized and fuel flow to nozzle chamber 619 is ended. Conventional needle valve member 617 is then returned to its downward, closed position under the force of biasing spring 611. Fuel spray to cylinder 25 via conventional nozzle outlets 628 is thus ended. First electrical actuator 532 is then de-energized, and spool valve member 555 is returned to is first position exposing hydraulic surface 581 to low pressure. Those skilled in the art will also recognize that injection events can also be ended by de-energizing actuator 532 while actuator 542 remains energized. Piston 580 and plunger 583 end their advancing movement. Between injection events, the various components of fuel injector 530 once again begin to reset themselves in preparation for the subsequent injection event. Piston 580 and plunger 583 return to their retracted positions while drawing fresh fuel injector fuel injector 530 for the next injection event. In addition, engine 10 prepares for the subsequent fuel injection event as well. Piston 26 performs its combustion stroke, as a result of combustion within cylinder 25 following the conventional injection event, and then undergoes its exhaust and intake strokes. Electronic control module 17 evaluates the operation condition of engine 10 to determine the desired mode of operation for fuel injector 530 during the subsequent injection event.
Referring now to the
Just prior to the desired start of the conventional injection event, when piston 26 is relatively close to its top dead center position, first electrical actuator 532 is energized and spool valve member 555 is moved to its second position exposing hydraulic surface 581 of piston 580 to high pressure. Piston 580 and plunger 583 now begin moving toward their advanced positions. While these components can only move a slight distance because conventional nozzle outlets 628 remain blocked, this movement is sufficient to raise the pressure of fuel within fuel injector 530 to injection pressure. When the pressure of fuel in nozzle chamber 619 exceeds the downward force of biasing spring 611, conventional needle valve member 617 is lifted to its upward position. Fuel spray into cylinder 25 via conventional nozzle outlets 628 can commence in a second spray pattern. Recall that this second spray pattern corresponds to a relatively large spray angle with respect to cylinder centerline 27 (
When the desired amount of fuel has been injected via conventional nozzle outlets 628, first electrical actuator 532 is de-energized. Spool valve member 555 is now returned to its first position exposing hydraulic surface 581 to low pressure. Piston 580 and plunger 583 end their downward movement, but do not immediately start their retracting movement as a result of residual high pressure exposed to hydraulic surface 581. Once the pressure of fuel acting on opening hydraulic surface 620 falls below the force of biasing spring 611, conventional needle valve member 617 is returned to its downward position to end fuel spray via conventional nozzle outlets 628. Engine 10 prepares for the subsequent fuel injection event as well. Piston 26 performs its combustion stroke, as a result of combustion within cylinder 25 following the conventional injection event, and then undergoes its exhaust and intake strokes. Electronic control module 17 evaluates the operation condition of engine 10 to determine the desired mode of operation for fuel injector 530 during the subsequent injection event.
Referring now to the
When the desired amount of fuel has been injected via conventional nozzle outlets 628, first electrical actuator 532 is de-energized. Closing hydraulic surface 616 is once again exposed to high pressure in needle control chamber 612. The downward force acting on conventional needle valve member 617 is now sufficient to return conventional needle valve member 617 to its downward, closed position. With conventional nozzle outlets 628 now blocked, piston 580 and plunger 583 end their downward movement. At about the same time, spool valve member 555 is returned to its first position exposing hydraulic surface 581 to low pressure. Between injection events, piston 580 and plunger 583 return to their retracted positions. The retracting movement of plunger 583 draws fuel into fuel injector 530″ for the next injection event. In addition, engine 10 prepares for the subsequent fuel injection event as well. Piston 26 performs its power stroke, as a result of combustion within cylinder 25 following the conventional injection event, and then undergoes its exhaust and intake strokes in a conventional manner. Electronic control module 17 evaluates the operation condition of engine 10 to determine the desired mode of operation for fuel injector 530 during the subsequent injection event.
VII.
Referring now to
Once first electrical actuator 632 is energized, closing hydraulic surface 706 is exposed to low pressure in needle control chamber 702 via pressure communication passage 688. In addition, spool valve member 655 is moved to its second position exposing hydraulic surface 681 of piston 680 to high pressure actuation fluid. Piston 680 and plunger 683 now begin to advance to pressurize fuel within fuel injector 630. However, because HCCI nozzle outlet 726 and conventional nozzle outlets 728 remain closed at this time, piston 680 and plunger 683 advance only a slight distance. However, this slight advance is sufficient to raise the pressure of fuel within fuel pressurization chamber 685 and nozzle supply passage 708 to injection pressures. Once the fuel pressure acting on opening hydraulic surface 710 exceeds the downward bias of biasing spring 701, needle valve member 707 is moved to its maximum lift position, in contact with stop component 670, thus allowing fuel spray into cylinder 25 via HCCI nozzle outlets 726 in a first spray pattern (see
When the desired amount of fuel has been injected via HCCI nozzle outlets 726, first electrical actuator 632 is energized and hydraulic surface 706 is exposed to high pressure in needle control chamber 702. The pressure in needle control chamber 702 along with the force of biasing spring 701 move needle valve member 707 to its advanced closed position.
If a conventional injection event is desired, both actuators 632 and 642 are energized. Energization of actuator 632 acts to pressurize fuel in injector 630 as previously described. Energization of actuator 642 connect fluid transfer passage 672 to high pressure actuation fluid to produce a high pressure force on surface 669 of stop component 670. This causes stop component to move downward against the action of spring 673. When fuel pressure exceeds the value opening pressure, needle valve member 707 will lift into contact with stop component 670 to assume its intermediate position as shown in
Needle valve member 707 is now moved to its intermediate position, still in contact with stop component 670, blocking HCCI nozzle outlets 726 and opening conventional nozzle outlets 728 via annulus 711. Fuel spray into cylinder 25 via conventional nozzle outlets 728 can now commence in a second spray pattern. Recall that this second spray pattern corresponds to a relatively large spray angle with respect to cylinder centerline 27 (
It should be appreciated that a number of modifications could be made to fuel injector 630 without departing from the spirit of this invention. For instance, second electrical actuator 642 could be eliminated, and fuel pressure in stop control chamber 671 could be controlled by a fuel supply passage that is a portion of nozzle supply passage 708. In that instance, stop component 670 would remain in its upward position until fuel pressure within stop control chamber 671 is increased to a sufficient level to overcome the force of biasing spring 673. At that point, stop component 670 would be moved to its advanced position, thus moving needle valve 700 to its intermediate position. In addition, stop component 670 could be modified such that biasing spring 673 biases stop component 650 to its downward position. In that instance, fluid transfer passage 672 could be a portion of nozzle supply passage 708 and could fluidly connect a stop control chamber 671 located below a shoulder portion of stop component 670. Here the high fluid pressure would act against the force of biasing spring to keep stop component 670 in its upward position while injector 630 was undergoing its HCCI injection event. As the pressure within stop control chamber 671 decreases over the injection event, the force of biasing spring 673 becomes sufficient to overcome the force of fuel in stop control chamber 671. Once that fluid pressure force could be overcome, stop component 670 would be moved to its downward position under the force of biasing spring 673, thus moving needle valve member 700 downward to its intermediate position. It should be appreciated that both of these alternative embodiments require the adjustment of fuel pressure over time during the injection event. In the first instance, fuel pressure must be able to increase over the injection event to allow the conventional injection event to occur. In the second instance, fuel pressure must be able to decrease over the injection event for the conventional injection event to occur. In addition to these modifications, it should be appreciated that stop component 670 need not be included in a fuel injector that has mixed mode capabilities. Rather, stop component 670 could be included in any nozzle assembly having a valve member that is movable to three positions.
It should be appreciated that a number of additional modifications could be made to the present invention, in addition to those illustrated and described herein. For instance, while only a hydraulically actuated fuel injector has been illustrated, it should be appreciated that a cam driven fuel injector could also benefit from use of the present invention. For instance, a fuel injector operating in conjunction with a two lobed cam could be modified to include any of the embodiment of the nozzle assembly described above. In addition, the nozzle assembly of the present invention could also be incorporated into a pump and line fuel injector. With minor modifications to the injector plumbing, the pump and line fuel injector could also operate as a dual mode fuel injector according to the present invention. For instance, while the present invention has been illustrated in the context of a hydraulically actuated fuel injector using oil as the actuation fluid, one skilled in the art will recognize that this invention is equally applicable to other fuel systems such as the single fluid amplifier piston common rail system (APCRS) illustrated in the paper “Heavy Duty Diesel Engines—The Potential of Injection Rate Shaping for Optimizing Emissions and Fuel Consumption”, presented by Messrs. Bernd Mahr, Manfred Dumholz, Wilhelm Polach and Hermann Grieshaber; Robert Bosch GmbH, Stuttgart, Germany, at the 21st International Engine Symposium, May 4-5, 2000, Vienna, Austria. With some minor modifications, the Bosch APCRS system could be made in accordance with the present invention.
Those skilled in the art will recognize that all of the disclosed embodiments include a plurality of assembled components that define homogenous charge nozzle outlets and conventional nozzle outlets. These outlets may be defined by one or more body components, be defined by a needle valve member, or possibly be defined by a space between a body component and a valve member. With regard to the latter, a nozzle outlet according to the present invention could be an annular opening between an outwardly opening pin valve member and a body component. In addition, in all embodiments the homogenous charge and conventional nozzle outlets have different spray patterns.
It should be understood that the above description is intended for illustrative purposes only, and is not intended to limit the scope of the present invention in any way. For instance, while each of the fuel injectors have been illustrated having two separate actuators that are attached to the injector body, this is not necessary. One alternative to this would be the use of actuators positioned in the fluid lines that are not attached to the injector body. Further, these actuators could be either linear or rotary actuators. Thus, those skilled in the art will appreciate that other aspects, objects and advantages of this invention can be obtained from a study of the drawings, the disclosure and the appended claims.
Holtman, Richard H., Shafer, Scott F., Tian, Ye, Angelino, Joseph, Cotton, III, Clifford E., Dieffenbach, Robert E.
Patent | Priority | Assignee | Title |
9765717, | Jan 06 2014 | BLUE GAS MARINE, INC | Gaseous fuel conversion system for marine vessels, and related accessories |
Patent | Priority | Assignee | Title |
2898051, | |||
3425635, | |||
3633823, | |||
3640466, | |||
4006859, | Aug 31 1974 | Daimler-Benz Aktiengesellschaft | Fuel injection nozzle for internal combustion engines |
4156560, | Nov 09 1977 | The United States of America as represented by the Secretary of the Army | Electrically-controlled fuel injector |
4200231, | Jun 19 1978 | General Motors Corporation | Fuel injector nozzle |
4202500, | Mar 07 1978 | Maschinenfabrik Augsburg-Nuernberg Aktiengesellschaft | Multi-hole injection nozzle |
4215821, | Mar 16 1977 | Robert Bosch GmbH | Fuel injection nozzle |
4266727, | Dec 24 1977 | Daimler-Benz Aktiengesellschaft | Double-needle injection-valve |
4269360, | Mar 18 1977 | Robert Bosch GmbH | Fuel injection nozzle |
4284043, | Dec 03 1977 | Daimler-Benz Aktiengesellschaft | Method for operating an air-compressing auto-igniting internal combustion engine and injection valve suitable therefor |
4448168, | Jul 30 1981 | ZEZEL CORPORATION | Fuel injection system |
4546739, | Aug 10 1983 | Diesel Kiki Co., Ltd. | Fuel injection valve with variable discharge area of nozzle holes |
4595144, | Nov 11 1982 | Deutsche-Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt e.V. | Injection device, more particularly for direct-injection diesel engines |
4628881, | Sep 16 1982 | CLEAN AIR POWER, INC | Pressure-controlled fuel injection for internal combustion engines |
4758169, | Feb 12 1986 | SULZER BROTHERS LIMITED, A CORP OF SWITZERLAND | Injection valve for reciprocating internal combustion engine |
4790270, | Jul 19 1985 | DELPHI AUTOMOTIVE SYSTEMS LLC | Direct fuel injected engines |
4796577, | Jun 16 1986 | Injection system with pilot injection | |
4856713, | Aug 04 1988 | Energy Conservation Innovations, Inc.; ENERGY CONSERVATION INNOVATIONS, INC | Dual-fuel injector |
4958605, | Apr 10 1989 | EURON S P A | Fuel injection nozzle |
4984738, | Sep 18 1985 | Association of American Railroads | Unit injector for staged injection |
4987887, | Mar 28 1990 | Stanadyne Automotive Corp. | Fuel injector method and apparatus |
5058549, | Feb 26 1988 | Toyota Jidosha Kabushiki Kaisha | Fuel swirl generation type fuel injection valve and direct fuel injection type spark ignition internal combustion engine |
5078107, | Mar 30 1990 | Fuji Jukogyo Kabushiki Kaisha | Fuel injection control system for an internal combustion engine |
5086737, | Jun 29 1989 | Fuji Jukogyo Kabushiki Kaisha | Fuel injection timing control system for an internal combustion engine with a direct fuel injection system |
5163621, | Dec 12 1989 | NIPPONDENSO CO , LTD , A CORP OF JAPAN | Fuel injection valve having different fuel injection angles at different opening amounts |
5211340, | Aug 27 1991 | Zexel Corporation | Fuel injector |
5241935, | Feb 03 1988 | CLEAN AIR POWER, INC | Accumulator fuel injection system |
5315973, | Nov 27 1989 | WESTPORT POWER INC | Intensifier-injector for gaseous fuel for positive displacement engines |
5458292, | May 16 1994 | General Electric Company | Two-stage fuel injection nozzle |
5497743, | Dec 27 1994 | Caterpillar Inc. | Injector for separate control of flow and momentum |
5647316, | Dec 23 1994 | Wartsila Diesel International Ltd OY | Injection arrangement for an internal combustion engine |
5669355, | Jul 29 1994 | Caterpillar Inc.; Caterpillar Inc | Hydraulically-actuated fuel injector with direct control needle valve |
5709194, | Dec 09 1996 | Caterpillar Inc. | Method and apparatus for injecting fuel using control fluid to control the injection's pressure and time |
5740775, | Oct 02 1995 | Hino Motors, Ltd. | Diesel engine |
5769060, | May 16 1995 | Yamaha Hatsudoki Kabushiki Kaisha | Air-assisted fuel injection system |
5775289, | May 12 1995 | Yamaha Hatsudoki Kabushiki Kaisha | Direct cylinder fuel injected engine |
5875743, | Jul 28 1997 | Southwest Research Institute | Apparatus and method for reducing emissions in a dual combustion mode diesel engine |
5899389, | Jun 02 1997 | CUMMINS ENGINE IP, INC | Two stage fuel injector nozzle assembly |
5996558, | May 09 1997 | WESTPORT POWER INC | Hydraulically actuated gaseous or dual fuel injector |
6019091, | Aug 13 1998 | Diesel Technology Company | Control valve |
6119960, | May 07 1998 | Caterpillar Inc. | Solenoid actuated valve and fuel injector using same |
6220528, | Jun 24 1998 | DELPHI INTERNATIONAL OPERATIONS LUXEMBOURG S A R L | Fuel injector including an outer valve needle, and inner valve needle slidable within a bore formed in the outer valve needle |
6279840, | Mar 09 1999 | Delphi Technologies, Inc | Fuel injector |
6298822, | Mar 30 2000 | BRP US INC | Direct fuel injection using multiple fluid actuators per nozzle |
6338445, | Oct 06 1999 | DELPHI INTERNATIONAL OPERATIONS LUXEMBOURG S A R L | Fuel injector |
6340121, | Sep 23 1999 | Delphi Technologies, Inc | Fuel injector |
6378503, | Jul 14 1999 | DELPHI INTERNATIONAL OPERATIONS LUXEMBOURG S A R L | Fuel injector |
6422199, | Aug 26 1999 | DELPHI INTERNATIONAL OPERATIONS LUXEMBOURG S A R L | Fuel injector |
6516774, | May 08 2000 | Cummins Inc | Premixed charge compression ignition engine with variable speed SOC control and method of operation |
6557532, | Dec 15 1999 | Hitachi, LTD | Fuel injection apparatus and method for cylinder injection type internal combustion engine |
6557779, | Mar 02 2001 | Cummins Engine Company, Inc. | Variable spray hole fuel injector with dual actuators |
6561157, | May 08 2000 | Cummins Inc | Multiple operating mode engine and method of operation |
6601566, | Jul 11 2001 | Caterpillar Inc | Fuel injector with directly controlled dual concentric check and engine using same |
6637675, | Jul 13 2001 | Cummins Inc. | Rate shaping fuel injector with limited throttling |
6659071, | May 08 2000 | Cummins, Inc | Internal combustion engine operable in PCCI mode with early control injection and method of operation |
6684852, | May 08 2000 | Cummins Inc | Internal combustion engine operable in PCCI mode with post-ignition injection and method of operation |
6705543, | Aug 22 2001 | Cummins Inc | Variable pressure fuel injection system with dual flow rate injector |
6769634, | Mar 06 2000 | Robert Bosch GmbH | Injection nozzle |
6769635, | Sep 25 2002 | Caterpillar Inc | Mixed mode fuel injector with individually moveable needle valve members |
6843434, | Feb 28 2003 | Caterpillar Inc | Dual mode fuel injector with one piece needle valve member |
6886762, | Dec 20 2001 | Caterpillar Inc. | Nozzle insert for dual mode fuel injector |
6918377, | Jan 03 2003 | Robert Bosch GmbH | Inward-opening variable fuel injection nozzle |
6945475, | Dec 05 2002 | IRRITEC S P A | Dual mode fuel injection system and fuel injector for same |
6978760, | Sep 25 2002 | Caterpillar Inc | Mixed mode fuel injector and injection system |
20040055559, | |||
DE3824467, | |||
EP470348, | |||
EP905360, | |||
EP1041272, | |||
EP1045136, | |||
EP1069308, | |||
EP1108877, | |||
JP11280609, | |||
JP11351091, | |||
JP2000303936, | |||
JP2000337226, | |||
JP200045848, | |||
JP200073905, | |||
JP2001159382, | |||
JP2001214830, | |||
JP2001241370, | |||
JP2002296681, | |||
JP63158962, | |||
JP9236067, | |||
JP968133, | |||
WO15956, | |||
WO34647, | |||
WO218775, | |||
WO9807973, | |||
WO9810179, | |||
WO9942718, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 26 2006 | Caterpillar Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Sep 24 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 19 2016 | 4 years fee payment window open |
Sep 19 2016 | 6 months grace period start (w surcharge) |
Mar 19 2017 | patent expiry (for year 4) |
Mar 19 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 19 2020 | 8 years fee payment window open |
Sep 19 2020 | 6 months grace period start (w surcharge) |
Mar 19 2021 | patent expiry (for year 8) |
Mar 19 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 19 2024 | 12 years fee payment window open |
Sep 19 2024 | 6 months grace period start (w surcharge) |
Mar 19 2025 | patent expiry (for year 12) |
Mar 19 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |