A method of manufacturing a tensioner (10) by mounting an end member (38) on an end of a hollow tensioner shaft (24) includes a step of providing an end member (38) of sheet material with an opening (76) having a plurality of annularly spaced inwardly extending pointed projections (78). A hollow shaft (24) has an outwardly extending shoulder (82) at an end portion thereof. A relative axial movement between the end member (38) and the hollow shaft (24) is effected so that the end member (38) abuts against the shoulder (82) of the hollow shaft (24). The hollow shaft (24) is deformed at the end portion radially outward to embed the projections (78) into the hollow shaft (24) to thereby form a joint (32) therebetween.
|
1. A tensioner comprising a fixed structure, a pivoting structure mounted on said fixed structure for pivotal movement about a pivotal axis, a pulley mounted on said pivoting structure for rotational movement about a rotational axis parallel to said pivotal axis, a spring operatively connected between said fixed structure and said pivoting structure resiliently biasing the pivoting structure in one direction, said fixed structure including a hollow shaft and an end member formed of sheet metal of predetermined thickness fixed to an end portion of said hollow shaft, said hollow shaft receiving a bolt for fixedly attaching the tensioner to a mounting structure, said end member engaging said mounting structure for regulating a position of said tensioner relative to said mounting structure,
said end member including an opening having a plurality of annularly spaced inwardly extending pointed projections and a mounting knob positioned to engage within an associated mating recess of said mounting structure,
said end portion of said hollow shaft having an outwardly extending shoulder and a shaft end section adjacent said shoulder, said end portion including a circumferential groove formed in said shaft end section and positioned between said shoulder and said shaft end section, said circumferential groove having a first diameter and said shaft end section having a second diameter greater than said first diameter, said end member abutting against said shoulder, said end portion being deformed radially outwardly embedding the pointed projections into said hollow shaft, said circumferential groove providing a deformation path as said end portion of said hollow shaft deforms radially outwardly.
0. 7. A tensioner comprising a fixed structure, a pivoting structure mounted on said fixed structure for pivotal movement about a pivotal axis, a drive member mounted on said pivoting structure for rotational movement about a rotational axis parallel to said pivotal axis, a spring operatively connected between said fixed structure and said pivoting structure resiliently biasing said pivoting structure in one direction, said fixed structure including a hollow shaft and an end member fixed to an end portion of said hollow shaft, said hollow shaft including a longitudinally extending aperture that is adapted for receiving a bolt for fixedly attaching the tensioner to a mounting structure, said end member engaging said mounting structure for regulating a position of said tensioner relative to said mounting structure,
said end member including an opening,
said end portion of said hollow shaft having an outwardly extending shoulder and a shaft end section adjacent said shoulder, said end member abutting against said shoulder, said longitudinally extending aperture being deformed radially outwardly such that said hollow shaft is received in a radially outward direction into said opening,
wherein said drive member is adapted to support an endless power transmission element, and
wherein said longitudinally extending aperture includes a cylindrical portion and a frustoconical portion that diverges outwardly from said cylindrical portion,
wherein said opening of said end member includes a plurality of annularly spaced inwardly extending projections,
wherein said longitudinally extending aperture is deformed radially outwardly such that said hollow shaft is received in a radially outward direction into said inwardly extending projections,
wherein said end member includes a mounting knob that is adapted to engage within an associated mating recess in said mounting structure; and
wherein said end portion of said hollow shaft includes a circumferential groove formed in said shaft end section and positioned between said shoulder and said shaft end section, said circumferential groove having a first diameter and said shaft end section having a second diameter greater than said first diameter, said circumferential groove providing a deformation path as said end portion of said hollow shaft deforms radially outwardly.
2. A tensioner as claimed in
3. A tensioner as claimed in
4. A tensioner as claimed in
5. A tensioner as claimed in
6. A tensioner as claimed in
|
This application 81 of the hollow shaft 24.
The punch 86, also shown in
The resulting joint between the end member 38 and the hollow shaft 24 possesses a much greater torque retention capability than the prior art, since the metal of the hollow shaft between the projections must shear off in order for the joint to fail. Furthermore, the present invention is more cost effective due to the elimination of an additional manufacturing process and the use of conventional production processes.
In the preferred embodiment, if the sharp projections 78 can be manufactured with a relatively high degree of sharpness, the end member 38 and hollow shaft 24 can have the same degree of hardness. However, due to manufacturing difficulties encountered in ensuring sharp edges on the tips of the sharp projections 78, a greater difference in relative hardness is preferred. By way of example, the shaft 24 is made from a relatively softer material such as SAE J403, 12L14 steel (machined bar stock), having a hardness: Rockwell B 65-85. The end member 38 is made from a relatively harder material such as SAE J404 4130 steel (stamped sheet), having a hardness: Rockwell C 36-46. The hardness can be achieved by furnace heat treat after stamping.
While the present invention has been described in relation to the above exemplary embodiments it will be understood that various modifications may be made within the spirit and scope of the invention. While the objects of the present invention have been fully and effectively accomplished, it will be realized, however, that the foregoing exemplary embodiments have been functional and structural principles of this invention and are subject to change without departure from such principles. Therefore, this invention includes all modifications encompassed within the scope of the following claims.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3734697, | |||
4557707, | Apr 09 1984 | TITAN INTERNATIONAL, INC | Belt tensioner |
5015217, | Jan 04 1990 | Dayco Products, LLC | Belt tensioner and method of making the same |
5030172, | Sep 06 1989 | Dayco Products, LLC | Belt tensioner and method of making the same |
5472243, | May 17 1994 | Reynolds Metals Company | Fluted tube joint |
5803850, | Feb 16 1996 | Dayco Products, Inc. | Tensioner for a power transmission belt and method of making the same |
6196941, | Sep 24 1997 | Koyo Seiko Co., Ltd. | Auto tensioner |
EP857890, | |||
FR2026590, | |||
FR2772317, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 13 2001 | Litens Automotive Partnership | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Apr 30 2014 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
May 17 2018 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
May 07 2016 | 4 years fee payment window open |
Nov 07 2016 | 6 months grace period start (w surcharge) |
May 07 2017 | patent expiry (for year 4) |
May 07 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 07 2020 | 8 years fee payment window open |
Nov 07 2020 | 6 months grace period start (w surcharge) |
May 07 2021 | patent expiry (for year 8) |
May 07 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 07 2024 | 12 years fee payment window open |
Nov 07 2024 | 6 months grace period start (w surcharge) |
May 07 2025 | patent expiry (for year 12) |
May 07 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |