According to one example of the invention an optical fiber comprises: (i) silica based, rare earth doped core having a first index of refraction n1; (ii) at least one silica based cladding surrounding the core and having a second index of refraction n2, such that n1>n2 #8# ; wherein at least one of the core or cladding is doped with Al2O3, such that the ratio of max wt % to min wt % of Al2O3 concentration is less than 2:1.
|
10. An optical fiber comprising:
(i) a silica based, rare earth doped core having a first index of refraction n1; #8#
(ii) at least one silica based layer surrounding the core and having a second index of refraction n2, such that n1>n2; wherein said layer includes in weight percent:
16. An optical fiber comprising:
silica based, rare earth doped core having a first index of refraction n1; #8#
at least one silica based layer surrounding the core and having a second index of refraction n2, such that n1>n2; wherein said layer includes in weight percent: Boron—at least 8 wt %, and Fluorine—at least 2 wt %.
1. An optical fiber comprising:
(i) a silica based, rare earth doped core having a first index of refraction n1; #8#
(ii) at least one silica based cladding surrounding the core and having a second index of refraction n2, such that n1>n2; wherein at least one of the core or cladding is doped with Al2O3, such that the ratio of max wt % to min wt % of Al2O3 concentration in said core or cladding is less than 1.5:1 and the fiber exhibits less than 8 db/km core background loss at a wavelength of 1280 nm.
0. 26. An optical fiber comprising:
a silica based core having a first index of refraction n1 #8# ;
at least one silica based layer surrounding the core and having a second index of refraction n2, such that n1 is greater than n2; wherein at least one of the core or cladding is doped with Al2O3, such that the ratio of maximum weight percent to minimum weight percent of Al2O3 concentration in said core or cladding is less than 1.5:1, and wherein said layer includes at least 8 weight percent boron and at least 2 weight percent fluorine.
0. 21. An optical fiber comprising:
(i) a silica based core having a first index of refraction n1 #8# ;
(ii) at least one silica based cladding surrounding the core and having a second index of refraction n2, such that n1>n2; wherein at least one of the core or cladding is doped with Al2O3, such that the ratio of maximum weight percent to minimum weight percent of Al2O3 concentration in said core or cladding is less than 1.5:1, and wherein the at least one silica based cladding surrounding the core includes: fluorine in an amount of 0.5 to 5 weight percent; and boron in an amount of 0.5 to 20 weight percent.
6. The optical fiber as in any one of
7. The optical fiber of
8. The optical fiber according to claims claim 1 #8# wherein said fiber is manufactured by the outside vapor deposition process.
9. The optical fiber according to claims claim 8 #8# wherein AlCl3 is delivered to a burner with heated Helium gas.
11. The optical fiber according to
12. The optical fiber according to
13. The optical fiber according to
15. The optical fiber according to
17. The optical fiber according to
18. The optical fiber according to
19. The optical fiber according to
0. 22. The optical fiber according to claim 21, wherein the amount of boron and fluorine is as follows:
fluorine 1 to 5 wt % and
boron 3 to 20 wt %. #8#
0. 23. The optical fiber according to claim 21, wherein the amount of boron and fluorine is as follows:
fluorine 1 to 4 wt % and
boron 5 to 15 wt %. #8#
0. 24. The optical fiber according to claim 21, wherein the amount of boron is at least 8 wt % and the amount of fluorine is at least 2 wt %.
0. 25. The optical fiber according to claim 21, wherein said layer is a cladding layer.
|
Parts of this invention were made with Government support under Agreement No. MDA972-02-3-004 awarded by DARPA. The Government may have certain rights in some of the claims of the invention.
1. Field of the Invention
The present invention relates generally to double clad rare earth doped optical fibers, and particularly to all glass rare earth doped optical fibers suitable for use with high power light sources or in optical fiber lasers and optical amplifiers.
2. Technical Background
Optical fiber has become a favorite medium for telecommunications due to its high capacity and immunity to electrical noise. Single clad rare earth doped optical fiber has been widely used in the field of optical amplifiers and fiber lasers. This type of fiber has low capability of handling high power multimode optical sources due to the difficulty of efficiently coupling multimode light from a high power optical (light) source (also referred to herein as optical pump or pump) into the rare-earth doped fiber core.
To solve this problem and to increase the output power of fiber lasers, those of skill in the art utilize optical fiber with a double clad structure (referred herein as double clad optical fiber). Double clad rare-earth doped optical fiber is a fiber that has a core, an inner cladding layer surrounding the core and an outer cladding layer surrounding the inner cladding layer. Optical fibers with Yb doped cores and two cladding layers surrounding the core are disclosed, for example, in U.S. Pat. Nos. 6,477,307; 6,483,973; 5,966,491 and 5,949,941.
Double clad optical fiber has been used in applications requiring utilization of optical sources providing between 10 to 100 Watts of optical power, because double clad optical fiber is more efficient in retaining/utilizing optical power provided by the pump than single clad optical fiber. This higher efficiency is due to fiber's utilization of clad-to-core coupling of optical pump power. More specifically, rare-earth doped double clad optical fibers accept light from the optical pump into the inner cladding and then transfer light to the rare-earth doped core through the core-to-inner cladding interface, along the length of the optical fiber. Thus, the optical fiber converts a significant part of the multi-mode light propagated through the inner cladding into a single-mode output at a longer wavelength, by coupling this pump light into the rare-earth doped core.
The inner cladding of the double clad optical fiber has a higher index of refraction than the outer cladding, thus the pump energy is confined inside the inner cladding and is re-directed into the core. The optical fiber is optically active due to the presence of rare-earth dopant in the core, which can be excited to higher electronic energy levels when the optical fiber is pumped by a strong optical pump. Cladding pumping can be utilized in fiber amplifiers, or employed to build high-power single mode fiber pump lasers.
The single-stripe broad-area diode laser remains the most efficient and least expensive pump source. Recent progress in semiconductor laser technology has led to creation of a single-stripe multi mode broad-area laser diodes with output powers of more than 10 Watts.
Recent progress in semiconductor laser technology has led to the creation of light sources utilizing either single stripe broad-area laser diodes or laser diode bars, directly coupled to the intermediate fiber incorporated within the light source. The maximum output power of these light sources is more than 150 Watt at a wavelength of 976 nm at the output end of the intermediate fiber. The intermediate fiber diameter and numerical aperture NA of the light source is 200 μm and 0.22, respectively.
In a double-clad laser, an outer cladding of the optical fiber confines the pump light provided by an optical pump in the optical fiber's multi-mode inner cladding. The much smaller cross-sectional area of the optical fiber's core is typically doped with at least one rare-earth element, for example, neodymium or ytterbium, to provide lasing capability in a single-mode output signal. Typically, a neodymium- or ytterbium-doped double-clad fiber is pumped with one or several high-power broad-area diode lasers (at 800 nm or 915 nm) to produce a single transverse mode output (at the neodymium four-level transition of 1060 nm or the ytterbium four level transition of 1030 nm-1120 nm, respectively). Thus, conventional double-clad arrangements facilitate pumping of the fiber using a multi-mode first cladding for accepting and transferring pump energy to a core along the length of the device. Double-clad laser output can also be used to pump a cascaded Raman laser to convert the wavelength to around 1480 nm, which is suitable for pumping erbium.
How much pump light can be coupled into a double-clad fiber's inner cladding depends on the cladding size and numerical aperture NA. As is known, the “etendue” (numerical aperture multiplied by the aperture dimension or spot size) of the inner cladding should be equal to or greater than the etendue of the optical pump for efficient coupling. If the numerical aperture and spot size of the optical source (optical pump are) be different in both axes, in order to have better coupling efficiency, the etendue of the inner cladding should be maintained or exceed that of the pump in both the x and y directions.
Typically, a high numerical aperture NA of the inner cladding, which is related to the difference in refractive index between the inner and outer cladding, is desired. In the well-known design, the first clad layer (inner cladding) is made of glass and the second layer (outer cladding) is made of plastic (for example, fluorinated polymer) with relatively low refractive index in order to increase the numerical aperture NA of the inner cladding. Such plastic may not have the desired thermal stability for many applications, may delaminate from the first cladding, and may be susceptible to moisture damage. In addition, this type of double clad optical fiber may be suitable only for sustained use with relatively low power (lower than 20 Watts) optical sources. When high power sources (more than 100 Watts) are utilized, this type of optical fiber heats and the polymer material of the outer cladding layer carbonizes or burns, resulting in device failure, especially when the fiber is bent. At medium powers (20 Watts to below 100 Watts), the polymer outer cladding ages relatively quickly, losing its mechanical and optical characteristics and becoming brittle, thus shortening the device life.
All-glass, Yb doped optical fibers are also known. An example of such fiber is disclosed in U.S. Pat. No. 6,411,762. The disclosed fiber, however, is not suitable for high power applications because it has a relatively low outer cladding diameter and NA, and therefore, low coupling efficiency due to light leakage outside of the optical fiber. That is, a relatively large portion of the light does not enter the optical fiber and is lost. Although this may not be an issue in applications when only a small amount of optical power needs to be coupled into the fiber, such fiber is not efficient for high power applications when the light source power is 100 Watts or more.
The scope of the present invention is determined by the appended claims.
According to one example of the invention an optical fiber comprises: (i) silica based, rare earth doped core having a first index of refraction n1; (ii) at least one silica based cladding surrounding the core and having a second index of refraction n2, such that n1>n2; wherein at least one of the core or cladding is doped with Al2O3, such that the ratio of max wt % to min wt % of Al2O3 concentration is less than 2:1.
According to one embodiment of the present invention, the method of making an optical fiber comprises the steps of: (i) delivering desired vapor ingredients to a flame provided by a burner, wherein at least one of the vapor ingredient includes Al and the ingredient is delivered to the flame by heated helium gas; and (ii) making a glass preform by depositing the products resulting from the vapor ingredients reacting with oxygen in a flame, to form the soot-particles, wherein at least one of the products is Al2O3.
According to one embodiment of the present invention the optical fiber comprises:
(i) a silica based, rare earth doped core having a first index of refraction n1;
(ii) at least one silica based layer surrounding the core and having a second index of refraction n2, such that n1>n2; wherein the silica based layer includes in weight percent: F, 0.5 wt % to 5 wt %; and B, 0.5 wt % to 20 wt %.
According to one embodiment of the present invention the optical fiber comprises: (i) a silica based, rare earth doped core having a first index of refraction n1; (ii) at least one silica based layer surrounding the core and having a second index of refraction n2, such that n1>n2; wherein the silica based layer includes in weight percent: Boron—at least 8 wt %, and Fluorine—at least 2 wt %.
Using the fiber design and the techniques described herein the optical fiber had been made which exhibits less than 8 dB/km core background loss at a wavelength of 1280 nm.
According to one embodiment of the present invention a method of making an optical fiber comprises the steps of: (i) delivering desired vapor ingredients to a flame provided by a burner; (ii) making a glass preform by depositing products resulting from the vapor ingredients reacting with oxygen in a flame, to form the soot-particles; (iii) consolidating the preform in a furnace at consolidation temperatures between 1500° C. to 1600° C.; and (iv) during the consolidation step moving the preform with respect to the furnace at the rate of at least 7 mm/min.
Some of the advantages the optical fibers disclosed herein are: high coupling efficiency, suitability for high optical power applications (100 Watts or higher), and suitability for use as polarization maintaining fiber and long deployment life.
Additional features and advantages of the invention will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the invention as described herein, including the detailed description which follows, the claims, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description present embodiments of the invention, and are intended to provide an overview or framework for understanding the nature and character of the invention as it is claimed. The accompanying drawings are included to provide a further understanding of the invention, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments of the invention, and together with the description serve to explain the principles and operations of the invention.
Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Whenever possible, the same reference numerals will be used throughout the drawings to refer to the same or like parts. One embodiment of double clad optical fiber in accordance with the present invention is shown schematically in
In this embodiment the silica based core 12 is doped with Yb, but other rare earth materials, such as Er may also be utilized. The core 12 may also include at least one index raising dopant. The outer cladding further 16 preferably includes an index lowering dopant, such that n2>n3 The inner cladding diameter DIN is at least 125 μm and preferably at least 200 μm. It is even more preferable that inner cladding diameter DIN is at least 225 μm and most preferable at least 250 μm. Applicants discovered that the thick inner cladding 14 and all-glass construction of the optical fiber work in synergy to allow the optical fiber to be coupled to high energy source, and to couple the high power into the core without damaging the optical fiber. Thus, such fiber is especially suitable for high power applications.
It is preferable that the outer cladding 16 be relatively thin, with wall thickness less than 80 μm and preferably between about 5 μm and 35 μm. It is most preferable that the wall thickness of the outer cladding 16 be between about 10 μm to 25 μm. It is preferable that the diameter DC of the fiber core 12 be about 5 μm to 20 μm, the inner cladding diameter DIN be about 125 μm to 2000 μm and more preferably about 125 μm to 1500 μm. It is even more preferable that DIN be about 125 μm to 350 μm. It is preferable that the diameter of the outer cladding diameter (DOUT) be about 145 to 2100 μm, more preferably between about 145 μm to 1600 μm and even more preferable that DOUT be about 145 μm to 500 μm. If the inner cladding 14 does not have a circular cross section, Din is defined as the smallest distance from one side of the inner cladding's crossection to the oppositely situated side of the crossection. It is also noted that the outer cladding 16 may not be circular. If the outer cladding 16 is not circular, DOUT is defined as the smallest distance from one side of the outer cladding's crossection to the oppositely situated side of the outer cladding's crossection.
It is preferable that the inner cladding's 14 cross-sectional area be at least 200 times larger than the cross sectional area of the core 12. It is even more preferable that the cross sectional area of the inner cladding 14 be between 300 and 3000 times larger than the cross sectional area of the core 12. For example, the cross sectional area of the inner cladding 16 may be 500, 700, 1000, 1200, 1500, 1600, 2000 or 2500 times larger than the cross sectional area of the core 12.
According to this embodiment, the fiber core 12 includes, in weight percent:
Rare earth
0.1 to 2.5
wt %;
P
0 to 5
wt %;
Al
0.5 to 15
wt %;
Ge
0 to 15
wt %;
F
0 to 1
wt %.
The rare earth dopants in the fiber core 12 provide active ions to enable either a gain or a lasing action. Exemplary rare earth dopants are Yb, Er, Nd, Tm, Sm and Tb. It is preferable that the amount of rare earth dopant in the core 12 be 0.5 wt % to 1.5 wt %. Phosphorus may be added to the core materials in order to lower the softening temperature of the core glass, which may be advantageous if the core is produced by the inside vapor deposition process (described below). Phosphorus may also be utilized as a refractive index raising agent. However too much phosphorus (10% or more) provides nonlinearity through Stimulated Raman Scattering which may inhibit the lasing action. Aluminum may be added to the core as a de-clustering agent (for example, to de-cluster Yb, preferably at the ratio of Al to Yb of 5:1 to 10:1). The core 12 may also include Germanium which is an index raising dopant, and/or fluorine which is an index lowering dopant as well as a de-clustering agent.
The preferred ranges of the core 12 composition in weight percent are:
Rare earth
0.3 to 1
wt %;
P
0 to 2
wt %;
Al
2 to 8
wt %;
Ge
3 to 15
wt %; and
F
0.1 to 0.5
wt %.
It is preferable that the inner cladding 14 contain 5 wt % to 30 wt % Ge to in order to provide high NA. It is even more preferable that the inner cladding comprise 5 wt % to 20 wt % Ge. It is noted that 5 wt % to 10 wt % Ge works well for many applications.
It is preferable that the index lowering dopant of the outer cladding 16 comprises Fluorine and/or Boron in weight percent:
F
0 to 5
wt %;
B
0 to 20
wt %.
The amount of dopant(s) for the outer cladding 16 is chosen to preferably result in inner cladding NA of between 0.15 to 0.5. However, it is preferable that the outer cladding 16 contain at least one of B or/and F. It is preferable that the minimum amount of B and/or F is at least 0.5 wt %. It is preferable that the amount of B is at least 3 wt %. It is preferable to have more than 1 wt % and more preferably more than 2 wt % of F along with more than 8 wt % of B in the outer cladding 16. It is preferable that the outer cladding 16 has less than 5 wt % of F, and less than 15 wt % of B. It is even more preferable that the amount of B and F be: 2 to 4 wt % of B, 3 to 10 wt % of F.
Other embodiments of the double clad optical fiber of the present invention are shown schematically in
The optical fiber core 12 is either circular, or elliptical, as shown in
In order to have polarization maintaining single mode fiber, the core 12 may be elliptical and should have an aspect ratio of at least 1.5 to 1. The numerical aperture NA of the core 12 is between 0.05 (for high power laser application) and 0.25 (for lower power application). The numerical aperture NA of the core 12 is defined as (N12−N22)1/2. If the core 12 is not circular, it is preferable that the aspect ratio of the core be between 3:1 and 10:1.
The silica based inner cladding 14 may have a circular outer perimeter, as shown in
In general, a double-clad structure that could be used in a fiber laser or in an amplifier includes two claddings. A first (inner) multi-mode cladding acts as a multi-mode pumping core. The inner cladding is adjacent to the core and a second (outer) cladding surrounds the first cladding. The core 12 may be either single mode or multi mode at the core lasing wavelength. The inner cladding 14 serves as a waveguide with a high numerical aperture NA for the input (pumping) light. The larger the inner cladding diameter, the more pump light is coupled into the inner cladding from the optical source. The cross-section of the first multi-mode inner cladding (DIN is the shorter dimension of the inner cladding as seen in
Recent progress in semiconductor laser technology has led to the creation of light sources utilizing discrete or arrayed broad-area laser diodes coupled to the intermediate fiber incorporated within the light source. The output power of this light source is more than 150 Watt at 976 nm at the output end of the intermediate fiber. The diameter of the intermediate fiber and NA of light source is 200 μm and 0.22 NA, respectively.
The light from this light source is then coupled to a double clad optical fiber via high NA and large aperture lenses. With this approach one can obtain 85-90% of coupling efficiency.
The invention will be further clarified by the following examples.
The fiber of
More specifically, the exemplary vapor-precursor-materials used to make the fiber of
As shown in
The Yb vapor delivery is carried by Argon gas and is accomplished by heating organometallic Yb(fod)3 in the temperature range of 150° C.-180° C., which results in a soot preform core with Yb2O3 concentration from about 0.2 wt % to 3 wt %. In order to make the optical fiber 10 of this example, the Yb(fod)3 containing vessel temperature of 163° C. was used to achieve the Yb2O3 concentration of about 0.6 wt %. The delivery of other materials is carried out by conventional oxygen delivery at temperatures below 100° C.
More specifically, according to one embodiment of the present invention, the Yb(fod)3, AlCl3, SiF4, SiCl4 and GeCl4 are delivered to a gas burner 56. (See
Applicants discovered that a proper choice of high temperatures and fast down-feed rates during consolidation results in low crystallization formation in the resulting glass preform, which results in an optical fiber having very low passive (background) loss, and also eliminates the conventional double-redraw process associated with Al doped blanks.
More specifically, preform 62 is down fed relative to the furnace at the rate and temperature sufficient to minimize crystallization such that the background loss of the resultant fiber core is less than 8 dB/km at a wavelength of 1280 nm. As illustrated in FIG. 9, the ‘core-inner cladding’ soot preform 62 is consolidated into solid glass-preform 63 in a high temperature (1400° C. to 1600° C.) furnace 64. It is preferred that the furnace temperature during consolidation be 1500° C. to 1600° C., and more preferably 1530° C. to 1580° C. In order to produce the optical fiber 10 of this example we utilized the furnace temperature of 1550° C. Applicants found that for temperatures of below 1500° C. the preform glass forms crystals and the amount of crystallization is significantly reduced with furnace temperatures of above 1530° C. While in the furnace, the soot preform 62 is moved relative to the furnace 64 (e.g., down-fed) at a rate of 7 mm/min or faster. It is preferred that this rate be 8 mm/min to 12 mm/min. The optical fiber of this example made by was down-feeding the soot preform 62 at the rate of 9 mm/min. It is noted that instead of down-feeding the soot preform, the soot preform may be held in a constant position and the furnace may be moved instead. Thus, by specifying that the soot preform is moved relative to the furnace, applicants intend to cover any relative movement between the soot preform and the furnace. Generally, it is recommended that the higher the furnace temperature, the faster the rate of relative motion between the furnace and the soot preform.
With the above described high consolidation temperatures and fast down-feed rate, the resultant optical fiber 10 has the core background loss of less than 8 dB/km. More preferably, the core background loss of less than 5 dB/km. In this example the background loss of the core is less than 3 dB/km. The core background loss was measured by making (single mode) optical fiber without the outer cladding and measuring the background loss of this fiber. The low inner cladding loss of this fiber (measured by optical-time-domain-reflectometer OTDR) is shown in
If a non-circular inner cladding shape is desired, the glass preform may be machined or ground to provide desired outer perimeter shape. For example, to achieve a fiber of
SiO2 with index lowering dopants was then deposited on the ground glass preform to form the outer cladding portion of the preform. In this example, the index lowering dopants are B and F. The soot particles of B and F provide low refractive index (less than that of pure silica).
More specifically, B2O3 and SiO2 were vapor deposited on the ground glass preform to form a B2O3 and SiO2 soot layer by using tri-ethyl borate and SiCl4 delivered to the burner. The blank (i.e. machined or ground glass preform) covered with the B2O3-doped silica soot layer was then Fluorine doped during the consolidation step by using SiF4 gas provided to the consolidation furnace. During this second consolidation step, the consolidation furnace is operated at the temperature range of 1300° C.-1400° C. At these consolidation temperatures Fluorine diffuses into the boron/silica soot layer, but does not penetrate into the underlying glass layer. For the optical fiber of this example was produced by utilizing consolidation temperature of 1350° C., so as to facilitate adequate Fluorine doping through diffusion.
In this example, the third layer of the preform (outer cladding) has a shape similar to that of the second layer (inner cladding).
The fiber drawing was conventional. The resulting all-glass double-clad optical fiber has the following core, inner-cladding, outer-cladding compositional format:
The double clad fiber produced by the OVD process is especially suitable for use in a higher power fiber laser device.
The double clad optical fiber illustrated in
The specific composition for the optical fiber of the second example is:
It will be apparent to those skilled in the art that various modifications and variations can be made to the present invention without departing from the spirit and scope of the invention. Thus it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Zenteno, Luis A., Wang, Ji, Walton, Donnell T., Kimball, Ronald L., Knowlton, Robert A., McCarthy, Joseph E.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4184859, | Jun 09 1978 | ALCATEL NA CABLE SYSTEMS, INC A CORP OF DELAWARE | Method of fabricating an elliptical core single mode fiber |
4274854, | Jan 13 1978 | Bell Telephone Laboratories, Incorporated | Polarization-preserving optical fiber |
4307938, | Jun 19 1979 | FLEET CAPITAL CORPORATION A CORPROATION OF RHODE ISLAND | Dielectric waveguide with elongate cross-section |
4733939, | Aug 18 1984 | MITSUBISHI MATERIALS CORPORATION A CORP OF JAPAN | Radiation-resistant optical conductor |
4793676, | Nov 13 1984 | The Board of Trustees of the Leland Stanford Junior University | Optical fiber acousto-optic amplitude modulator |
5067793, | Aug 16 1989 | PLASMA OPTICAL FIBRE B V | Polarization-maintaining single-mode optical fibre and method of making same |
5246475, | Mar 28 1991 | Shin-Etsu Chemical Co., Ltd.; Kokusai Denshin Denwa Co., Ltd. | Method for preparing a fused silica glass body co-doped with a rare earth element and aluminum |
5474588, | Apr 07 1992 | Fujikura Ltd | Solution doping of a silica preform with erbium, aluminum and phosphorus to form an optical fiber |
5526459, | Apr 07 1992 | Fujikura Ltd | Erbium-doped silica optical fiber preform |
5949941, | Nov 21 1997 | FURUKAWA ELECTRIC NORTH AMERICA, INC | Cladding-pumped fiber structures |
5966491, | Nov 22 1995 | FURUKAWA ELECTRIC NORTH AMERICA, INC | Cladding-pumped fiber structure |
6411762, | Dec 09 1997 | FIBERCORE, LTD | Optical fiber with irregularities at cladding boundary |
6474106, | Nov 30 1999 | Corning Incorporated | Rare earth and alumina-doped optical fiber preform process |
6477295, | Jan 16 1997 | Lumentum Operations LLC | Pump coupling of double clad fibers |
6477301, | Jun 26 1997 | Cisco Technology, Inc | Micro-optic coupler incorporating a tapered fiber |
6477307, | Oct 23 2000 | Nufern | Cladding-pumped optical fiber and methods for fabricating |
6483973, | Apr 09 1999 | Lucent Technologies, INC | Cladding member for optical fibers and optical fibers formed with the cladding member |
6614974, | Jun 09 2000 | GAZILLION BITS, INC | Optical fiber having extended single-mode capability |
6779364, | Oct 23 2000 | Nufern | Cladding-pumped optical fiber and methods for fabricating |
6954575, | Mar 16 2001 | IMRA America, Inc | Single-polarization high power fiber lasers and amplifiers |
6970632, | May 03 2004 | Corning Incorporated | Solid type single polarization fiber and apparatus |
7120340, | Jun 19 2003 | Corning Incorporated | Single polarization optical fiber laser and amplifier |
7139458, | Jan 20 2004 | Corning Incorporated | Double clad rare earth doped fiber |
7203407, | Oct 21 2004 | DARPA | Rare earth doped single polarization double clad optical fiber and a method for making such fiber |
20020197039, | |||
20030026565, | |||
20030059184, | |||
20030137722, | |||
20030213268, | |||
20040086245, | |||
20040258341, | |||
20050117860, | |||
20050244118, | |||
20060029344, | |||
20060045446, | |||
20060088261, | |||
EP561276, | |||
EP896404, | |||
EP918382, | |||
EP1286433, | |||
GB2116744, | |||
JP9309738, | |||
WO2007089421, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 29 2009 | Corning Incorporated | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jun 25 2015 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
May 14 2019 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 11 2016 | 4 years fee payment window open |
Dec 11 2016 | 6 months grace period start (w surcharge) |
Jun 11 2017 | patent expiry (for year 4) |
Jun 11 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 11 2020 | 8 years fee payment window open |
Dec 11 2020 | 6 months grace period start (w surcharge) |
Jun 11 2021 | patent expiry (for year 8) |
Jun 11 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 11 2024 | 12 years fee payment window open |
Dec 11 2024 | 6 months grace period start (w surcharge) |
Jun 11 2025 | patent expiry (for year 12) |
Jun 11 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |