A method of generating a code sequence and method of adding additional information using the same are disclosed, by which a code sequence usable for a channel for synchronization is generated and by which a synchronization channel is established using the generated sequence. The present invention, in which the additional information is added to a cell common sequence for time synchronization and frequency synchronization, includes the steps of generating the sequence repeated in time domain as many as a specific count, masking the sequence using a code corresponding to the additional information to be added, and transmitting a signal including the masked sequence to a receiving end.

Patent
   RE44351
Priority
Dec 20 2005
Filed
Dec 20 2006
Issued
Jul 09 2013
Expiry
Dec 20 2026
Assg.orig
Entity
Large
2
28
all paid
1. A method of transmitting a cell common sequence for synchronization by a transmitter, the method comprising:
acquiring the cell common sequence generated such that a frequency index with a constant interval is allocated to each sample of the cell common sequence in a frequency domain and the cell common sequence is masked with a code for a specific information; and
transmitting the acquired cell common sequence to a receiver.
10. A transmitter transmitting a cell common sequence for synchronization, the transmitter comprising:
a sequence generating module for acquiring the cell common sequence generated such that a frequency index with a constant interval is allocated to each sample of the cell common sequence in a frequency domain and the cell common sequence is masked with a code for a specific information; and
a transmitting module for transmitting the acquired cell common sequence to a receiver.
2. The method of claim 1, wherein the masking comprises multiplying each sample of the cell common sequence by each sample of the code.
3. The method of claim 1, wherein the interval depends on the specific count.
4. The method of claim 1, wherein the acquired cell common sequence is transmitted as secondary synchronization channel (S-SCH) signals.
5. The method of claim 1, wherein the transmitting comprises transmitting the signal using a plurality of orthogonal subcarriers.
6. The method of claim 1, wherein the cell common sequence comprises at least one of
a first sequence generated such that a frequency index with an even number is allocated to each sample of the first sequence, and
a second sequence generated such that a frequency index with an odd number is allocated to each sample of the second sequence.
7. The method of claim 1, wherein the specific information comprises information indicating a subframe number via which the cell common sequence is transmitted.
8. The method of claim 1, wherein the cell common sequence is generated to have guard subcarriers.
9. The method of claim 1, wherein the cell common sequence is transmitted such that no sample of the cell common sequence is transmitted via DC subcarrier.
11. The transmitter of claim 10, wherein the acquired cell common sequence is transmitted as secondary synchronization channel (S-SCH) signals.
12. The transmitter of claim 10, wherein the cell common sequence comprises at least one of
a first sequence generated such that a frequency index with an even number is allocated to each sample of the first sequence, and
a second sequence generated such that a frequency index with an odd number is allocated to each sample of the second sequence.
13. The transmitter of claim 10, wherein the specific information comprises information indicating a subframe number via which the cell common sequence is transmitted.
14. The transmitter of claim 10, wherein the cell common sequence is generated to have guard subcarriers.
15. The transmitter of claim 10, wherein the cell common sequence is transmitted such that no sample of the cell common sequence is transmitted via DC subcarrier.

In Formula 9C, ‘h(n)’ indicates an impulse response of channel, ‘n(n)’ indicates AWGN, and ‘*’ indicates a convolutional operation. A result of Formula 9C can be represented as Formula 9D.
rpsch(k)=Pbit(k)*H(k)+N(k)  [Formula 9D]

In Formula 9D, a signal indicates a frequency domain signal. In this case, ‘H(k)’ indicates a frequency response of channel and ‘N(k)’ indicates AWGN. Time and frequency domain signals received on S-SCH are represented as Formula 9E and Formula 9F, respectively.
rssch(n)=s(n)*h(n)+h(n)  [Formula 9E]
Rssch(k)=S(k)*H(k)+N(k)  [Formula 9F]

In Formula 9E and Formula 9F, ‘S(k)’ indicates an S-SCH signal transmitted in frequency domain and ‘s(n)’ indicates an S-SCH signal transmitted in time domain.

According to the above assumptions, channel estimation is executed in S-SCH. For instance, LS (least square) channel estimation can be executed according to Formula 9G.

H ( k ) ^ = R ssch ( k ) S ( k ) [ Formula 9 G ]

In Formula 9G, as mentioned in the foregoing description, since the detection for cell ID has been completed, ‘S(k)’ is a value already known by the receiving end.

P-SCH is recovered as Formula 9H using the estimated radio channel.
Req(k)=Rpsch(k)/H{circumflex over (()}{circumflex over (k)}=Pbit(k)+N(k)/H{circumflex over (()}{circumflex over (k)}  [Formula 9H]

It is able to detect added bit information by Formula 9I using ‘Req(k)’ of which channel is compensated for.

m ^ = M 2 π arg { 1 N k = 0 N - 1 R eq ( k ) P ( k ) } [ Formula 9 I ]

In Formula 9I, ‘arg { }’ indicates a phase component. And, ‘{ }’ indicates a complex result value of correlation.

The aforesaid additional information adding method is applicable to the hybrid SCH or the non-hierarchical SCH. Namely, by an operation of rotation by a phase corresponding to the additional information, it is able to add the additional information.

Hereinafter, a new method in which the first to third methods and the fourth method are combined together is proposed as follows.

A fifth method in the following description relates to a method of adding additional information using both code masking and micro-constellation modulation.

5. Fifth Method

First of all, it is preferable that a fifth method is applied to a sequence having a repetitive structure in time domain. For instance, the fifth method is applied to hybrid SCH as follows.

Three methods of adding additional information by masking are proposed. The fifth method can use one of the three methods of adding addition information. Hereinafter, a method which uses the third method is explained.

According to the aforesaid third method, in case of allocating a sequence to an odd-order frequency index, additional information ‘1’ (or ‘0’) is indicated. In case of allocating a sequence to an even-order frequency index, additional information ‘0’ (or ‘1’) is indicated.

According to the aforesaid explanation, if a sequence is allocated to an odd-order frequency index, a [C|−C] type waveform, as mentioned in (c) of FIG. 11, is formed in time domain. If a sequence is allocated to an even-order frequency index, a [B|B] type waveform, as mentioned in (b) of FIG. 11, is formed in time domain.

In addition, micro-constellation modulation can be performed on the corresponding result. In particular, by rotating a phase by 0° or 180°, it is able to add additional information.

FIG. 18 is a diagram of examples by both a third method of the present embodiment and micro-constellation modulation.

Referring to FIG. 18, in case that added additional information is ‘00’, a sequence type is [B|B]. So, MSB of additional information is decided as ‘0’. Meanwhile, since a phase is changed by 0° according to micro-constellation modulation, LSB of additional information is decided as ‘0’.

In case that added additional information is ‘01’, a sequence type is [B|B]. So, MSB of additional information is decided as ‘0’. Meanwhile, since a phase is changed by 180° according to micro-constellation modulation, LSB of additional information is decided as ‘1’.

In case that added additional information is ‘10’, a sequence type is [C|−C]. So, MSB of additional information is decided as ‘1’. Meanwhile, since a phase is changed by 0° according to micro-constellation modulation, LSB of additional information is decided as ‘0’.

In case that added additional information is ‘11’, a sequence type is [C|−C]. So, MSB of additional information is decided as ‘1’. Meanwhile, since a phase is changed by 180° according to micro-constellation modulation, LSB of additional information is decided as ‘1’.

In order to detect additional information by the fifth method, it is decided whether a sequence has a [B|B] type or a [C|−C] type and a phase value rotated by micro-constellation modulation is then calculated.

The fourth and fifth methods of the present embodiment are characterized in using micro-constellation modulation.

In the above examples, a case that a count of added additional informations corresponds to a power of 2, which does not put limitation on the present embodiment.

Namely, it is able to convert Formula 9A to Formula 10A.

P bit ( n ) = j 2 π m X p ( n ) n = 0 , 1 , , N - 1 m = 0 , 1 , , X - 1 [ Formula 10 A ]

And, it is able to convert Formula 9B to Formula 10B.

P bit ( k ) j 2 π m X P ( k ) k = 0 , 1 , , N - 1 m = 0 , 1 , , X - 1 [ Formula 10 B ]

In this case, Formulas 9C to 9H are applied as they are. And, Formula 91 is converted to Formula 10C to be applied.

m ^ = X 2 π arg { 1 N k = 0 N - 1 R eq ( k ) P ( k ) } [ Formula 10 C ]

The above-explained example shown in FIG. 18 is applicable to hierarchical or non-hierarchical SCH.

In case that additional information is added through non-hierarchical SCH, it is able to reconstruct the additional information by the following operation.

First of all, an operation of adding additional information by a transmitting end is identically applied to the non-hierarchical SCH or other SCHs.

A receiving end is able to detect initial synchronization based on auto-correlation. And, the receiving end is able to acquire frequency synchronization.

Subsequently, the receiving end detects a sequence index used for SCH. The receiving end performs integer-times frequency offset estimation using the detected sequence index. The receiving end then corrects the estimated offset.

The receiving end estimates a channel using the detected sequence and then compensates for the channel.

After completion of the channel estimation, additional information by micro-constellation modulation is obtained.

In the fourth or fifth method of the present embodiment, micro-constellation modulation is able to use a plus phase value or a minus phase value. Namely, it is able to convert Formula 10A and Formula 10B to Formula 11A and Formula 11B, respectively.

P bit ( n ) = - j 2 π m X p ( n ) n = 0 , 1 , , N - 1 m = 0 , 1 , , X - 1 [ Formula 11 A ] P bit ( k ) - j 2 π m X P ( k ) k = 0 , 1 , , N - 1 m = 0 , 1 , , X - 1 [ Formula 11 B ]

And, it is able to convert Formula 10C to Formula 11C.

m ^ = - X 2 π arg { 1 N k = 0 N - 1 R eq ( k ) P ( k ) } [ Formula 11 C ]

In a constellation map, a phase of each symbol (e.g., QPSK symbol, etc.) can be rotated clockwise or counterclockwise by micro-constellation modulation.

The additional information inserting method has the following advantages. First of all, it is able to insert additional bit information without changing a previous structure. Secondly, additional complexity is prevented from taking place.

The additional information added by the present method is explained as follows.

First of all, no limitation is put on a type of the additional information. And, various kinds of information for communications can be included. For instance, it is able to use the additional information as information for a length of cyclic prefix (hereinafter abbreviated CP). For instance, cyclic prefixes can be classified into short CP and long CP according to their lengths. In this case, it is able to represent a type of CP via the additional information.

And, the information may include information for an antenna mode. In particular, the information is able to indicate whether an antenna is a single antenna or a multi-antenna.

Besides, various kinds of information are possible. For instance, various kinds of information such as subframe synchronization information (indicating whether a first subframe of Nth radio frame or a second subframe of Nth radio frame), BCH bandwidth (1.25 MHz or 5 MHz) and the like can be included. And, cell group ID information can be additionally inserted.

FIG. 19 is a flowchart of a method of generating a sequence for a synchronization channel according to an embodiment of the present invention. FIG. 19 shows an example of P-SCH among sequences for synchronization channels.

Referring to FIG. 19, according to the above-explained five kinds of methods, a sequence for a synchronization channel (e.g., P-SCH sequence, S-SCH sequence, hybrid sequence, non-hierarchical SCH sequence) is generated. And, additional information is then inserted in the generated sequence (S1001). The additional information inserting step is carried out by one of the above-explained five kinds of methods. In particular, masking for codes is used, the additional information inserting scheme using micro-constellation modulation is used, or both of the masking and the micro-constellation modulation are used.

The P-SCH generated by the above step is transformed into a time domain sequence by steps S1003 to S1009 corresponding to the aforesaid steps S103 to S106 of FIG. 10 and is then transmitted to a user equipment.

A communication apparatus according to the present embodiment is able to include independent modules for the respective steps.

FIG. 20 is a block diagram of a transmitting apparatus according to an embodiment of the present invention.

Referring to FIG. 20, a transmitting apparatus according to an embodiment of the present invention may include a sequence generation & additional information insertion module 21 according to one of the five kinds of methods, an FFT module 22, a DC & guard subcarrier inserting module 23, a PAPR scheme applying module 24 and an IFFT module 25.

And, the communication apparatus according to the present invention can be implemented according to FIG. 21.

FIG. 21 is a block diagram of a communication apparatus for transmitting P-SCH according to the present invention.

Referring to FIG. 21, a communication apparatus for transmitting P-SCH according to the present invention includes a serial-to-parallel converting unit 11, a subchannel mapping & PAPR enhancement module 12 performing symbol-to-subcarrier mapping and PAPR enhancement, an IFFT module 13 performing IFFT, a parallel-to-serial converting module 14, and a CP inserting module 15 inserting a cyclic prefix.

An output signal by the steps S1001 to S1009 is inputted to the apparatus shown in FIG. 21 and is then transmitted to a receiving end. Yet, since the step S107 is performed by the apparatus shown in FIG. 15, if the output signal is transmitted by the apparatus shown in FIG. 21, it is able to omit the step S1007. Moreover, since an operation of inserting the guard subcarrier in the step S1005 can be implemented by a filter (not shown in the drawing) separately provided to the apparatus shown in FIG. 21, it is able to omit the guard subcarrier inserting operation.

First of all, a method of generating a sequence usable for a synchronization channel is explained as follows. Meanwhile, it is able to use both of the first embodiment and the second embodiment of the present invention simultaneously. In particular, after a sequence is generated according to the second embodiment of the present invention, it is able to add additional information to the generated sequence according to the first embodiment of the present invention.

A code sequence configuring a synchronization channel or a preamble includes orthogonal or quasi-orthogonal codes having good characteristics of cross-correlation. And, the preamble signal indicates a reference signal used for such a purpose as initial synchronization, cell search, channel estimation and the like used by a communication system.

For instance, in case of PI(Portable Internet, Specifications for 2.3 GHz band Portable Internet Service—Physical Layer)PN codes are masked on 127 kinds of sequences except a case of all zeros using 128×128 Hardamard matrix and the corresponding sequences are inserted in frequency domain.

For another instance, in case of OFDM based IEEE 802.11a system, there exists a short preamble used for AGC (automatic gain control), diversity selection, timing synchronization or coarse frequency synchronization. In the short preamble, a specific reference signal is inserted in a subcarrier corresponding to a quadruple number only (4-space interval in frequency domain). A sequence inserted with an equi-spaced interval l in frequency domain appears in time domain in a manner that a same pattern is repeated l times. Such a repetitive pattern facilitates acquisitions of timing synchronization and frequency synchronization. FIG. 22A and FIG. 22B are diagrams of frequency and time domain signals of a short preamble used by IEEE 802.11a, respectively. FIG. 23A and FIG. 23B are diagrams of auto-correlation characteristics of a short preamble used by IEEE 802.11a in frequency and time domains, respectively.

Preferably, there exist a number of sequences having good cross-correlation characteristics for the discrimination of cell or mobile subscriber station (i.e., user equipment) in a mobile communication system. In binary Hardamard codes or polyphase CAZAC (constant amplitude zero auto-correlation) codes, a count of codes maintaining orthogonality as orthogonal codes is limited. For instance, a count of N-length orthogonal codes, which can be converted to N×N Hardamard matrix, is ‘N’, and a count of N-length orthogonal codes, which can be generated from CAZAC codes, becomes a count of natural numbers that are relatively prime with ‘N’ and equal to or smaller than ‘N’. [David C. Chu, “Polyphase Codes with Good Periodic Correlation Properties”, Information Theory IEEE Transaction on, vol. 18, issue 4, pp. 531-532, July, 1972]

For instance, in OFDM (orthogonal frequency division multiplexing) system, a length of one OFDM symbol normally has a length of power of 2 for the fast implementations of FFT (Fast Fourier Transform) and IFFT (Inverse Fast Fourier Transform). In this case, if a sequence is generated using Hardamard codes, it is able to generate sequence types corresponding to a total length. If a sequence is generated using CAZAC codes, it is able to generate sequence types corresponding to N/2. So, a count of the sequence types is limited.

FIG. 24 is a flowchart of a code sequence generating method according to one preferred embodiment of the present invention.

Referring to FIG. 24, a code sequence generating method according to one preferred embodiment of the present invention includes a step S301 of generating a unit code sequence set including a plurality of unit code sequences having a length L each by code generating algorithm according to a code type, a step S302 of generating a repetitive code sequence set including a plurality of repetitive code sequences, which have a total length N=LNr, generated by repeating each of the unit code sequences belonging to the unit code sequence set Nr times, and a step S305 of masking each of the repetitive code sequences belonging to the repetitive code sequence set with an orthogonal code having a length Nr.

The unit code sequence set generating step is the step of generating a unit code sequence set

a N seq _ L × L
having a length L of each unit code sequence and a count NseqL of unit code sequences. And, the unit code sequence set

a N seq _ L × L
can be represented as matrix NseqL×L shown in Formula 12.

a N seq _ L × L = [ a N seq _ L × L 0 a N seq _ L × L 1 a N seq _ L × L N seq _ L - 1 [ [ Formula 12 ]

In Formula 12,

a N seq _ L × L k = [ a N seq _ L × L k ( 0 ) a N seq _ L × L k ( 1 ) a N seq _ L × L k ( L - 1 ) ] ,

a N seq _ L × L k
is a row vector indicating a sequence of a k(=0, 1, 2, - - - , NseqL−1)th sequence type index, and

a N seq _ L × L k ( l )
indicates an l(=0, 1, 2, - - - , L−1)th element of a kth sequence.

Two cases can be taken into consideration for a method of generating a unit code sequence set having a plurality of unit code sequences each of which length is L. A first case is a method of generating a unit code sequence having a code length L by specific code generating algorithm (first scheme). A second case is a method of generating a unit code sequence having a code length L by generating a code sequence having a length L′(L′ is a natural number greater than L.) by specific code generating algorithm and by eliminating (L′−L) elements from elements configuring the generated sequence (second scheme). In case of CAZAC codes, it is preferable that L′ is a smallest prime number among natural numbers greater than L.

For the above two cases, a method of generating CAZAC code of L=256 is explained in detail by taking an example as follows.

First of all, in the first scheme, a unit code sequence set

a N seq _ L × L
including unit code sequences of length L=256 can be generated by CAZAC code generating algorithm represented as Formula 13. [David C. Chu, “Polyphase Codes with Good Periodic Correlation Properties”, Information Theory IEEE Transaction on, vol. 18, issue 4, pp. 531-532, July, 1972]

a index ( M ) ( l ) = { exp ( M π ( l + 1 ) L ) , when L is odd exp ( M π l 2 L ) , when L is even [ Formula 13 ]

where l=0, 1, 2, - - - , L−1

In Formula 13, M includes natural numbers relatively prime with L and index(M)(=0, 1, 2, - - - , NseqL−1) indicates an index in case of aligning the M in an ascending series order. Since L=256 is an even number, a code sequence is generated by the second expression of Formula 13 and a code sequence count NseqL becomes NseqL=256/2=128. And, by the number of M, the code sequence count is determined.

In the second scheme, in order to generate a unit code sequence set including unit code sequences of length L=256, a unit code sequence of L=256 is generated in a manner of generating a code sequence having a length of L′=257 by applying the CAZAC code generating algorithm like Formula 13 to L′=257 that is a smallest prime number among natural numbers greater than L (substituting L′ for L in Formula 13) and eliminating an element corresponding to a 256th index of the generated code sequence. In this case, as the unit code sequences having the code length of L=256 each can be generated as many as 256 (=257-1), it is able to increment the count of the unit code sequences more than that of the first case.

In FIG. 24, in the repetitive code sequence set generating step S303, a repetitive code sequence set

a N seq _ L × N
including repetitive code sequences of a total length N=LNr is generated by repeating each of the unit code sequences belonging to the unit code sequence set generated by the above method Nr times, which can be represented as Formula 14.

a N seq _ L × N = [ a N seq _ L × L 0 , , a N seq _ L × L N r - 1 ] , [ Formula 14 ]
where

a N seq _ L × L 0 = = a N seq _ L × L N r - 1 .

If a unit code sequence having a code length of L=256 is repeated Nr=4 times, a repetitive code sequence having a total code length N=1024 is generated. An auto-correlation characteristic of a repetitive code sequence having a code length N is to have a peak value of Nr times for the length N.

In FIG. 24, the step S305 of masking the repetitive code sequence with the orthogonal code of length Nr is the step of generating a final code sequence set

a N seq _ L · N seq _ r × N
by masking each repetitive code sequence belonging to a repetitive code sequence set

a N seq _ L × N
per unit a repeated unit code sequence with different type orthogonal codes

h N seq _ r × N r
(e.g., Hardamard codes) having good auto-correlation characteristic and a code length of Nr. And, the masking step can be represented as Formula 15.

a N seq _ L · N seq _ r × N N seq _ L · r + k ( l ) = h N seq _ r × N r r ( floor ( l L ) ) · a N seq _ L × N k ( l ) k = 0 , 1 , , N seq _ L - 1 r = 0 , 1 , , N seq _ r - 1 l = 0 , 1 , , N - 1 [ Formula 15 ]

In Formula 15,floor(k) indicates an integer closest to a negative infinitive from ‘k’.

FIG. 25 is a diagram to explain a method of generating a final code sequence by masking a repetitive code sequence of a total code length N=1024 generated from repeating a unit code sequence of a code length L=256 Nr=4 times with 4×4 Hardamard codes.

Since the unit code sequence of Nr=4 is repeated in each repetitive code sequence, if masking is carried on per unit code sequence with Hardamard codes [1 1 1 1], [1 −1 1 −1], [1 1 −1 −1], and [1 −1 −1 1], four different final code sequences are generated for each repetitive code sequence. So, assuming that a repetitive code sequence set includes NseqL repetitive code sequences, a finial code sequence set has Nseq4 final code sequences.

FIG. 26 and FIG. 27 show CDF (cumulative distribution function) and PDF (probability density function) of cross-correlation between a CAZAC code sequence of N=1024 generated by repeating a unit code sequence of length L=256 Nr=4 times and a final code sequence generated by making a repetitive code sequence of length N=1024 generated by repeating a unit code sequence of length L=256 generated by the first or second scheme according to one preferred embodiment of the present invention Nr=4 times with 4×4 Hardamard codes.

As can be confirmed through FIG. 26 and FIG. 27, the correlation characteristics of the code sequence generated by the method according to one preferred embodiment of the present invention are as good as or better than those of the code sequence according to the related art. Comparing the counts of the finally generated code sequences, the count (128) of the code sequences generated according to the present invention is increased higher than that (first scheme-512, second scheme-1024) of the code sequences generated according to the related art.

FIG. 28 and FIG. 29 show CDF and PDF of cross-correlation between a repetitive code sequence of length N=1024 generated by repeating a unit code sequence 1, 2, 4, 8 times by the first scheme according to one preferred embodiment of the present invention and a final code sequence generated by masking with Hardamard codes. In this case, a count of final code sequences that can be generated for repetition counts of all cases is 512.

FIG. 30 and FIG. 31 show CDF and PDF of cross-correlation between a repetitive code sequence of length N=1024 generated by repeating a unit code sequence 1, 2, 4, 8 times by the second scheme according to one preferred embodiment of the present invention and a final code sequence generated by masking with Hardamard codes. In this case, a count of final code sequences that can be generated for repetition counts of all cases is 1,030 for a repetition count 1, 1,040 for a repetition count 2, 1,024 for a repetition count 4, or 1,040 for a repetition count 8.

In a communication system requiring a code length N, a code sequence set of a code length N=1024 undergoes data processing into a format requested by the communication system and can be inserted for a use of preamble, pilot signal or the like. As mentioned in the foregoing description, in a sequence inserted with an equi-space l in frequency domain, a same pattern appears in time domain repeatedly l times. A code sequence or code sequence set of the present invention is generated in time domain. So, if the code sequence or code sequence set of the present invention is used by a communication system requiring data processing in time domain, the code sequence generated according to the present invention is used as it is. If the code sequence or code sequence set of the present invention is used by a communication system requiring data processing in frequency domain, the time domain code sequence generated according to the present invention can be used by being transformed into a frequency domain signal by DFT (Discrete Fourier Transform) or FFT (Fast Fourier Transform).

FIG. 32 and FIG. 33 are block diagrams to explain a signal transmitting method and a transmitting apparatus according to one preferred embodiment of the present invention, in which the technical features of the present invention are applied to OFDM/OFDMA/SC-FDMA based radio communication system. FIG. 32 is a block diagram of a transmitter and FIG. 33 is a block diagram of a receiver corresponding to the transmitter shown in FIG. 32.

Referring to FIG. 32, traffic data and control data are inputted and then multiplexed by a muxer 61. In this case, the traffic data is directly associated with a service provided by a transmitting side to a receiving side and the control data indicates data inserted to control the transmitting and receiving sides to perform communications with each other smoothly. A code sequence generated by the above technical features of the present invention is a sort of control data and can be inserted for the use of initial synchronization acquisition, cell search or channel estimation by the receiving side. A position in which the code sequence is inserted may vary according to a communication system. For instance, in IEEE 802.16 broadband wireless access system, the code sequence can be inserted in a form of preamble or pilot signal. In case that a multi-antenna (MIMO) system is applied, it is able to insert the code sequence in a form of midamble.

Input data including the traffic data and the control data undergoes channel coding by a channel coding module 62. Channel coding is a process for adding parity bits to enable the receiving side to correct an error occurring in the course of transmission of a signal transmitted by the transmitting side. And, convolution coding, turbo coding, LDPC (low density parity check) coding or the like can be used for the channel coding.

The data channel-coded by the channel coding module 62 undergoes digital modulation through symbol mapping according to algorithm such as QPSK, 16QAM and the like by a digital modulating module 63.

Data symbols through the symbol mapping undergo subchannel modulation by a subchannel modulating module 74, are mapped to each subcarrier of an OFDM or OFDMA system, and are then transformed into time domain signals according to IFFT conducted by an IFFT module 65.

The IFFT-transformed data symbol undergoes a filtering process by a filter 66, is converted to an analog signal by a DAC module 67m is converted to an RF signal by an RF module 68, and is then transmitted to the receiving side through an antenna 69.

Alternatively, according to a type of a generated code (e.g., CAZAC code), channel coding or symbol mapping of a specific code sequence is omitted. And, the specific code sequence is mapped to a subchannel by the subchannel modulating module 64 and then transmitted through the subsequent data processing steps.

Referring to FIG. 33, a receiver reconstructs the received data through a process reverse to the data processing of the transmitter and then finally obtains the traffic data and the control data.

The configurations of the transmitter and receiver shown in FIG. 32 and FIG. 33 are just exemplary to help the understanding of the technical features of the present invention. And, it is apparent to those skilled in the art that the data processing method for the receiving side to transmit the code sequence for the use of initial synchronization acquisition, cell search or channel estimation can be achieved in various ways known to public.

A code sequence or code sequence set according to the present invention is applicable to a CDMA based wireless mobile communication system by the mobile communication standardization organization such as 3GPP, 3GPP2 and the like or a wireless internet system by Wibro or Wimax in a manner of being transmitted to a receiving side after having been data-processed by a transmitting side according to a system requested by the corresponding system.

Accordingly, the present invention provides the following effects.

First of all, the present invention proposes a method of generating a synchronization channel carrying additional information.

Secondly, information can be provided to a user equipment via the synchronization channel without increasing complexity.

Thirdly, the present invention is able to use the related art synchronization estimating method.

While the present invention has been described and illustrated herein with reference to the preferred embodiments thereof, it will be apparent to those skilled in the art that various modifications and variations can be made therein without departing from the spirit and scope of the invention. Thus, it is intended that the present invention covers the modifications and variations of this invention that come within the scope of the appended claims and their equivalents.

Han, Seung Hee, Kwon, Yeong Hyeon, Noh, Min Seok, Lee, Hyun Woo, Yun, Young Woo, Kim, Dong Cheol, Park, Hyun Hwa

Patent Priority Assignee Title
10491369, Jan 18 2006 Huawei Technologies Co., Ltd. Method for improving synchronization and information transmission in a communication system
9369271, Jan 18 2006 Huawei Technologies Co., Ltd. Method for improving synchronization and information transmission in a communication system
Patent Priority Assignee Title
6888880, Jan 11 2000 SAMSUNG ELECTRONICS CO , LTD Apparatus for searching for a cell and method of acquiring code unique to each cell in an asynchronous wideband DS/CDMA receiver
7583981, Mar 16 2005 Fujitsu Limited Mobile station and weighting control method
7907592, Jul 06 2007 LG Electronics Inc.; LG ELECTRONICS, INC Method of performing cell search in wireless communication system
7907906, Aug 16 2004 Fujitsu Limited Mobile station
20020048315,
20040141458,
20050111522,
20050201475,
20060035664,
20060050799,
20070140106,
20070183306,
20070270273,
20080013516,
CN1350380,
CN1658534,
EP245868,
EP1199820,
EP1401114,
JP1151335,
JP2002135167,
JP7170210,
JP9098153,
KR100342520,
KR1020020096833,
KR1020030035843,
KR1020040045996,
KR1020050082655,
////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Dec 20 2006LG Electronics Inc.(assignment on the face of the patent)
Oct 22 2008HAN, SEUNG HEELG Electronics IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0282370152 pdf
Oct 22 2008NOH, MIN SEOKLG Electronics IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0282370152 pdf
Oct 22 2008KWON, YEONG HYEONLG Electronics IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0282370152 pdf
Oct 22 2008YUN, YOUNG WOOLG Electronics IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0282370152 pdf
Oct 22 2008PARK, HYUN HWALG Electronics IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0282370152 pdf
Oct 22 2008LEE, HYUN WOOLG Electronics IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0282370152 pdf
Oct 22 2008KIM, DONG CHEOLLG Electronics IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0282370152 pdf
Date Maintenance Fee Events
Oct 30 2013ASPN: Payor Number Assigned.
Sep 16 2014M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Aug 08 2018M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Aug 07 2022M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Jul 09 20164 years fee payment window open
Jan 09 20176 months grace period start (w surcharge)
Jul 09 2017patent expiry (for year 4)
Jul 09 20192 years to revive unintentionally abandoned end. (for year 4)
Jul 09 20208 years fee payment window open
Jan 09 20216 months grace period start (w surcharge)
Jul 09 2021patent expiry (for year 8)
Jul 09 20232 years to revive unintentionally abandoned end. (for year 8)
Jul 09 202412 years fee payment window open
Jan 09 20256 months grace period start (w surcharge)
Jul 09 2025patent expiry (for year 12)
Jul 09 20272 years to revive unintentionally abandoned end. (for year 12)