A flip chip interconnect is made by mating the interconnect bump directly onto a lead, rather than onto a capture pad. Also, a flip chip package includes a die having solder bumps attached to interconnect pads in an active surface, and a substrate having electrically conductive traces in a die attach surface, in which the bumps are mated directly onto the traces. In some embodiments the interconnection is formed without employing a solder mask. In some methods a curable adhesive is dispensed either onto the bumps on the die or onto the traces on the substrate; the adhesive is partly cured during the mating process, and the partly cured adhesive serves to confine the molten solder during a reflow process.
|
18. A semiconductor device, comprising:
a semiconductor die;
a substrate having a trace, the trace including an interconnect portion, the interconnect portion having a width that is no more than 120% of a trace design rule width; and
a composite interconnect having a fusible portion and a non-fusible portion, the composite interconnect formed between the interconnect portion and a bump pad on the semiconductor die, the fusible portion of the composite interconnect formed directly onto the interconnect portion.
1. A method of making a semiconductor device, comprising:
providing a semiconductor die;
providing a substrate;
forming a plurality of traces on the substrate, each trace having an interconnect site with edges parallel to the trace from a plan view for increasing escape routing density, a width of the interconnect site no greater than 120% of a width of the trace; and
forming a plurality of composite interconnects between the interconnect sites and bump pads on the semiconductor die, each composite interconnect having a fusible portion and a non-fusible portion.
6. A method of making a semiconductor device, comprising:
providing a semiconductor die;
providing a substrate having a trace, the trace including an interconnect site; and
forming a composite interconnect between the interconnect site and a bump pad on the semiconductor die, the composite interconnect having a fusible portion adjacent to the trace and a non-fusible portion adjacent to the bump pad on the semiconductor die, wherein a width of the interconnect site under the composite interconnect is less than 1.2 times a width of the trace away from the composite interconnect.
13. A method of making a semiconductor device, comprising:
providing a semiconductor die;
providing a substrate having a trace;
forming a composite bump material between an interconnect site on the trace and a bump pad on the semiconductor die, a width of the trace at the interconnect site no more than 120% of a trace design rule width for the trace, the composite bump material having a fusible portion and a non-fusible portion; and
reflowing the composite bump material to form a composite interconnect between the interconnect site and the bump pad on the semiconductor die, the interconnect site defined as a portion of the trace that is in direct physical contact with the composite interconnect.
2. The method of
3. The method of
4. The method of
5. The method of
forming the fusible portion of the composite interconnect adjacent to the trace; and
forming the non-fusible portion of the composite interconnect adjacent to the bump pad on the semiconductor die.
7. The method of
8. The method of
9. The method of
12. The method of
14. The method of
15. The method of
16. The method of
17. The method of
forming the fusible portion of the composite bump material adjacent to the interconnect site on the trace; and
forming the non-fusible portion of the composite bump material adjacent to the bump pad on the semiconductor die.
19. The semiconductor device of
20. The semiconductor device of
21. The semiconductor device of
22. The semiconductor device of
23. The semiconductor device of
24. The semiconductor device of
|
The present application is a reissue application of U.S. Pat. No. 7,901,983, which is a continuation of U.S. patent application Ser. No. 12/062,293, filed Apr. 3, 2008, now U.S. Pat. No. 7,700,407, which is a division of U.S. patent application Ser. No. 10/985,654, filed Nov. 10, 2004, now U.S. Pat. No. 7,368,817, filed Nov. 10, 2004 which claims the benefit of U.S. Provisional Application No. 60/533,918, filed Dec. 31, 2003, and U.S. Provisional Application No. 60/518,864, filed Nov. 10, 2003.
This invention relates to semiconductor packaging and, particularly, to flip chip interconnection.
Flip chip packages include a semiconductor die mounted onto a package substrate with the active side of the die facing the substrate. Conventionally, interconnection of the circuitry in the die with circuitry in the substrate is made by way of bumps which are attached to an array of interconnect pads on the die, and bonded to a corresponding (complementary) array of interconnect pads (often referred to as “capture pads”) on the substrate.
The areal density of electronic features on integrated circuits has increased enormously, and chips having a greater density of circuit features also may have a greater density of sites for interconnection with a package substrate.
The package is connected to underlying circuitry, such as a printed circuit board (e.g., a “motherboard”) in the device in which it is employed, by way of second level interconnects (e.g., pins) between the package and the underlying circuit. The second level interconnects have a greater pitch than the flip chip interconnects, and so the routing on the substrate conventionally “fans out”. Significant technological advances have enabled construction of fine lines and spaces; but in the conventional arrangement space between adjacent pads limits the number of traces than can escape from the more inward capture pads in the array, and the fan out routing between the capture pads beneath the die and the external pins of the package is conventionally formed on multiple metal layers within the package substrate. For a complex interconnect array, substrates having multiple layers may be required to achieve routing between the die pads and the second level interconnects on the package.
Multiple layer substrates are expensive, and in conventional flip chip constructs the substrate alone typically accounts for more than half the package cost (about 60% in some typical instances). The high cost of multilayer substrates has been a factor in limiting proliferation of flip chip technology in mainstream products.
In conventional flip chip constructs the escape routing pattern typically introduces additional electrical parasitics, because the routing includes short runs of unshielded wiring and vias between wiring layers in the signal transmission path. Electrical parasitics can significantly limit package performance.
According to the invention flip chip interconnect is accomplished by connecting the interconnect bump directly onto a lead, rather than onto a pad. The invention provides more efficient routing of traces on the substrate. Particularly, the signal routing can be formed entirely in a single metal layer of the substrate. This reduces the number of layers in the substrate, and forming the signal traces in a single layer also permits relaxation of some of the via, line and space design rules that the substrate must meet. This simplification of the substrate greatly reduces the overall cost of the flip chip package. The bump-on-lead architecture also helps eliminate such features as vias and “stubs” from the substrate design, and enables a microstrip controlled impedance electrical environment for signal transmission, thereby greatly improving performance.
In one general aspect the invention features a flip chip interconnection having solder bumps attached to interconnect pads on a die and mated onto corresponding traces on a substrate.
In another general aspect the invention features a flip chip package including a die having solder bumps attached to interconnect pads in an active surface, and a substrate having electrically conductive traces in a die attach surface, in which the bumps are mated directly onto the traces.
In general the bump-on-lead interconnection is formed according to methods of the invention without use of a solder mask to confine the molten solder during a re-melt stage in the process. Avoiding the need for a solder mask allows for finer interconnection geometry.
In some embodiments the substrate is further provided with a solder mask having openings over the interconnect sites on the leads. In some embodiments the substrate is further provided with solder paste on the leads at the interconnect sites.
In another general aspect the invention features a method for forming flip chip interconnection, by providing a substrate having traces formed in a die attach surface and a die having bumps attached to interconnect pads in an active surface; supporting the substrate and the die; dispensing a quantity of a curable adhesive on the substrate (covering at least the connection sites on the traces) or on the active side of the die (covering at least the bumps); positioning the die with the active side of the die toward the die attach surface of the substrate, and aligning the die and substrate and moving one toward the other so that the bumps contact the corresponding traces (leads) on the substrate; applying a force to press the bumps onto the mating traces, sufficient to displace the adhesive from between the bump and the mating trace; at least partially curing the adhesive; melting and then re-solidifying the solder, forming a metallurgical interconnection between the bump and the trace.
In another general aspect the invention features a method for forming flip chip interconnection, by providing a substrate having traces formed in a die attach surface and having a solder mask having openings over interconnect sites on the leads, and a die having bumps attached to interconnect pads in an active surface; supporting the substrate and the die; positioning the die with the active side of the die toward the die attach surface of the substrate, and aligning the die and substrate and moving one toward the other so that the bumps contact the corresponding traces (leads) on the substrate; melting and then re-solidifying to form the interconnection between the bump and the trace.
In some embodiments the solder bump includes a collapsible solder portion, and the melt and solidifying step melts the bump to form the interconnection on the lead. In some embodiments the substrate is further provided with a solder paste on the leads, and the step of moving the die and the substrate toward one another effects a contact between the bumps and the solder on the leads, and the melt and solidifying step melts the solder on the lead to form the interconnection.
In another general aspect the invention features a method for forming flip chip interconnection, by providing a substrate having traces formed in a die attach surface and having a solder mask having openings over interconnect sites on the leads and having solder paste on the leads at the interconnect sites, and a die having bumps attached to interconnect pads in an active surface; supporting the substrate and the die; positioning the die with the active side of the die toward the die attach surface of the substrate, and aligning the die and substrate and moving one toward the other so that the bumps contact the solder paste on the corresponding traces (leads) on the substrate; melting and then re-solidifying the solder paste, forming a metallurgical interconnection between the bump and the trace.
The invention will now be described in further detail by reference to the drawings, which illustrate alternative embodiments of the invention. The drawings are diagrammatic, showing features of the invention and their relation to other features and structures, and are not made to scale. For improved clarity of presentation, in the FIGs. illustrating embodiments of the invention, elements corresponding to elements shown in other drawings are not all particularly renumbered, although they are all readily identifiable in all the FIGs.
The conventional flip chip interconnection is made by using a melting process to join the bumps (conventionally, solder bumps) onto the mating surfaces of the corresponding capture pads and, accordingly, this is known as a “bump-on-capture pad” (“BOC”) interconnect. Two features are evident in the BOC design: first, a comparatively large capture pad is required to mate with the bump on the die; second, an insulating material, typically known as a “solder mask” is required to confine the flow of solder during the interconnection process. The solder mask opening may define the contour of the melted solder at the capture pad (“solder mask defined”), or the solder contour may not be defined by the mask opening (“non-solder mask defined”); in the latter case—as in the example of
As
Escape routing patterns for bump-on-lead (“BOL”) substrates according to the invention are shown by way of example in
As
Referring particularly now to
Conventional capture pads typically are about the same width (diameter) as the bumps, and are typically two to four times as wide as the trace or lead width. As will be appreciated, some variation in the width of leads is expected. As used herein, a variation in trace width of as much as 120% of the nominal or trace design rule width does not constitute a capture pad, and bump-on-lead interconnection according to the invention includes bumps formed on such wider portions of leads.
Similarly, referring to
As
The BOL interconnection structure of embodiments such as are shown by way of example in
In embodiments as in
In embodiments as in
In embodiments as in
Accordingly, in some embodiments the solder-on-lead configuration according to the invention is employed for interconnection of a die having high-melting temperature solder bumps (such as a high-lead solder, conventionally used for interconnection with ceramic substrates) onto an organic substrate. The solder paste can be selected to have a melting temperature low enough that the organic substrate is not damaged during reflow. To form the interconnect in such embodiments the high-melting interconnect bumps are contacted with the solder-on-lead sites, and the remelt fuses the solder-on-lead to the bumps. Where a noncollapsible bump is used, together with a solder-on-lead process, no preapplied adhesive is required, as the displacement or flow of the solder is limited by the fact that only a small quantity of solder is present at each interconnect, and the noncollapsible bump prevents collapse of the assembly.
In other embodiments the solder-on-lead configuration according to the invention is employed for interconnection of a die having eutectic solder bumps.
One embodiment of a preferred method for making a bump-on-lead interconnection is shown diagrammatically in
Referring to the FIGs., a substrate 112 is provided, having at least one dielectric layer and having a metal layer on a die attach surface 113, the metal layer being patterned to provide circuitry, particularly traces or leads 114 having sites for interconnection, on the die attach surface. The substrate 112 is supported, for example on a carrier or stage 116, with a substrate surface 111 opposite the die attach surface 113 facing the support. A quantity of an encapsulating resin 122 is dispensed over the die attach surface 113 of the substrate, covering at least the interconnect sites on the leads 114. A die 102 is provided, having bumps 104 attached to die pads (not shown in the FIG.) on the active side 103. The bumps include a fusible material which contacts the mating surfaces of the leads. A pick-and-place tool 108 including a chuck 106 picks up the die by contact of the chuck 106 with the backside 101 of the die. Using the pick-and-place tool, the die is positioned facing the substrate with the active side of the die toward the die attach surface of the substrate, as shown in
The process is shown in further detail in
In an alternative embodiment of a preferred method, the adhesive can be pre-applied to the die surface, or at least to the bumps on the die surface, rather than to the substrate. The adhesive can, for example, be pooled in a reservoir, and the active side of the die can be dipped in the pool and removed, so that a quantity of the adhesive is carried on the bumps; then, using a pick-and-place tool, the die is positioned facing a supported substrate with the active side of the die toward the die attach surface of the substrate, and the die and substrate are aligned and moved one toward the other so that the bumps contact the corresponding traces (leads) on the substrate. Such a method is described in U.S. Pat. No. 6,780,682, Aug. 24, 2004, which is hereby incorporated by reference. Then forcing, curing, and melting are carried out as described above.
A force and temperature schedule for a process according to the invention is shown diagrammatically by way of example in
The adhesive in embodiments as in
Alternative bump structures may be employed in the bump-on-lead interconnects according to the invention. Particularly, for example, so-called composite solder bumps may be used. Composite solder bumps have at least two bump portions, made of different bump materials, including one which is collapsible under reflow conditions, and one which is substantially non-collapsible under reflow conditions. The non-collapsible portion is attached to the interconnect site on the die; typical conventional materials for the non-collapsible portion include various solders having a high lead (Pb) content, for example. The collapsible portion is joined to the non-collapsible portion, and it is the collapsible portion that makes the connection with the lead according to the invention. Typical conventional materials for the collapsible portion of the composite bump include eutectic solders, for example.
An example of a bump-on-lead interconnect employing a composite bump is shown in a diagrammatic sectional view in
As may be appreciated, the bumps in embodiments as shown in, for example,
Other embodiments are within the following claims.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5186383, | Oct 02 1991 | Freescale Semiconductor, Inc | Method for forming solder bump interconnections to a solder-plated circuit trace |
5378859, | Mar 02 1992 | Casio Computer Co., Ltd. | Film wiring board |
5386624, | Jul 06 1993 | NXP, B V F K A FREESCALE SEMICONDUCTOR, INC | Method for underencapsulating components on circuit supporting substrates |
5434410, | May 29 1992 | L-3 Communications Corporation | Fine-grain pyroelectric detector material and method |
5508561, | Nov 15 1993 | NEC Corporation | Apparatus for forming a double-bump structure used for flip-chip mounting |
5519580, | Sep 09 1994 | Intel Corporation | Method of controlling solder ball size of BGA IC components |
5650595, | May 25 1995 | International Business Machines Corporation | Electronic module with multiple solder dams in soldermask window |
5710071, | Dec 04 1995 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Process for underfilling a flip-chip semiconductor device |
5844782, | Mar 29 1996 | Sony Corporation | Printed wiring board and electronic device using same |
5854514, | Aug 05 1996 | INTERNATIONAL BUISNESS MACHINES CORPORATION; IBM Corporation | Lead-free interconnection for electronic devices |
5869886, | Mar 22 1996 | NEC Corporation | Flip chip semiconductor mounting structure with electrically conductive resin |
5872399, | Apr 01 1996 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Solder ball land metal structure of ball grid semiconductor package |
5889326, | Feb 27 1996 | Godo Kaisha IP Bridge 1 | Structure for bonding semiconductor device to substrate |
5915169, | Dec 22 1995 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor chip scale package and method of producing such |
5985456, | Jul 21 1997 | CREATIVE ELECTRON, INC | Carboxyl-containing polyunsaturated fluxing adhesive for attaching integrated circuits |
6109507, | Nov 11 1997 | Fujitsu Limited | Method of forming solder bumps and method of forming preformed solder bumps |
6201305, | Jun 09 2000 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Making solder ball mounting pads on substrates |
6218630, | Jun 30 1997 | FUJIFILM Corporation | Printed circuit board having arrays of lands arranged inside and outside of each other having a reduced terminal-pitch |
6228466, | Apr 11 1997 | Ibiden Co. Ltd. | Printed wiring board and method for manufacturing the same |
6229220, | Jun 27 1995 | International Business Machines Corporation | Bump structure, bump forming method and package connecting body |
6259163, | Dec 25 1997 | LAPIS SEMICONDUCTOR CO , LTD | Bond pad for stress releif between a substrate and an external substrate |
6281450, | Jun 26 1997 | Hitachi Chemical Company, Ltd. | Substrate for mounting semiconductor chips |
6297560, | Oct 31 1996 | Invensas Corporation | Semiconductor flip-chip assembly with pre-applied encapsulating layers |
6324754, | Mar 25 1998 | Tessera, Inc | Method for fabricating microelectronic assemblies |
6329605, | Mar 26 1998 | TESSERA, INC , A CORPORATION OF DELAWARE | Components with conductive solder mask layers |
6335568, | Oct 28 1998 | Seiko Epson Corporation | Semiconductor device and method of fabrication thereof, circuit board, and electronic equipment |
6335571, | Jul 21 1997 | Invensas Corporation | Semiconductor flip-chip package and method for the fabrication thereof |
6383916, | Dec 21 1998 | Qualcomm Incorporated | Top layers of metal for high performance IC's |
6396707, | Dec 03 1999 | Siliconware Precision Industries Co., Ltd. | Ball grid array package |
6409073, | Jul 15 1998 | Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V. | Method for transfering solder to a device and/or testing the device |
6441316, | Aug 27 1999 | Mitsubishi Denki Kabushiki Kaisha | Printed-circuit board and a semiconductor module, and a manufacturing process of the semiconductor module |
6448665, | Oct 15 1997 | Kabushiki Kaisha Toshiba | Semiconductor package and manufacturing method thereof |
6458622, | Jul 06 1999 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Stress compensation composition and semiconductor component formed using the stress compensation composition |
6573610, | Jun 02 2000 | Siliconware Precision Industries Co., Ltd. | Substrate of semiconductor package for flip chip package |
6600234, | Feb 03 1999 | AOI ELECTRONICS CO , LTD | Mounting structure having columnar electrodes and a sealing film |
6608388, | Nov 01 2001 | Siliconware Precision Industries Co., Ltd. | Delamination-preventing substrate and semiconductor package with the same |
6660560, | Sep 10 2001 | DELPHI TECHNOLOGIES IP LIMITED | No-flow underfill material and underfill method for flip chip devices |
6678948, | Sep 01 1998 | Robert Bosch GmbH | Method for connecting electronic components to a substrate, and a method for checking such a connection |
6710458, | Oct 13 2000 | SHENZHEN TOREY MICROELECTRONIC TECHNOLOGY CO LTD | Tape for chip on film and semiconductor therewith |
6734557, | Mar 12 2002 | Sharp Kabushiki Kaisha | Semiconductor device |
6774497, | Mar 28 2003 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Flip-chip assembly with thin underfill and thick solder mask |
6780673, | Jun 12 2002 | Texas Instruments Incorporated | Method of forming a semiconductor device package using a plate layer surrounding contact pads |
6780682, | Feb 27 2001 | STATS CHIPPAC, INC | Process for precise encapsulation of flip chip interconnects |
6787918, | Jun 02 2000 | Siliconware Precision Industries Co., Ltd. | Substrate structure of flip chip package |
6809262, | Jun 03 2003 | VIA Technologies, Inc. | Flip chip package carrier |
6818545, | Mar 05 2001 | Qualcomm Incorporated | Low fabrication cost, fine pitch and high reliability solder bump |
6821878, | Feb 27 2003 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Area-array device assembly with pre-applied underfill layers on printed wiring board |
6849944, | May 30 2003 | Texas Instruments Incorporated | Using a supporting structure to control collapse of a die towards a die pad during a reflow process for coupling the die to the die pad |
6870276, | Dec 26 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Apparatus for supporting microelectronic substrates |
6888255, | May 30 2003 | Texas Instruments Incorporated | Built-up bump pad structure and method for same |
6913948, | Nov 10 1999 | International Business Machines Corporation | Partially captured oriented interconnections for BGA packages and a method of forming the interconnections |
7005585, | Sep 02 2002 | Murata Manufacturing Co., Ltd. | Mounting board and electronic device using same |
7005750, | Aug 01 2003 | ASE SHANGHAI INC | Substrate with reinforced contact pad structure |
7049705, | Jul 15 2003 | Advanced Semiconductor Engineering, Inc. | Chip structure |
7057284, | Aug 12 2004 | Texas Instruments Incorporated | Fine pitch low-cost flip chip substrate |
7064435, | Jul 29 2003 | Samsung Electronics Co., Ltd. | Semiconductor package with improved ball land structure |
7098407, | Aug 23 2003 | Samsung Electronics Co., Ltd. | Non-solder mask defined (NSMD) type wiring substrate for ball grid array (BGA) package and method for manufacturing such a wiring substrate |
7102239, | Aug 18 2003 | Siliconware Precision Industries Co., Ltd. | Chip carrier for semiconductor chip |
7173828, | Jul 28 2003 | Siliconware Precision Industries Co., Ltd. | Ground pad structure for preventing solder extrusion and semiconductor package having the ground pad structure |
7224073, | May 18 2004 | UTAC HEADQUARTERS PTE LTD | Substrate for solder joint |
7242099, | Oct 25 2002 | Qualcomm Incorporated | Chip package with multiple chips connected by bumps |
7271484, | Sep 25 2003 | Polaris Innovations Limited | Substrate for producing a soldering connection |
7294929, | Dec 30 2003 | Texas Instruments Incorporated | Solder ball pad structure |
7317245, | Apr 07 2006 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Method for manufacturing a semiconductor device substrate |
7405484, | Sep 30 2003 | Sanyo Electric Co., Ltd. | Semiconductor device containing stacked semiconductor chips and manufacturing method thereof |
7436063, | Oct 04 2004 | ROHM CO , LTD | Packaging substrate and semiconductor device |
7521284, | Mar 05 2007 | Texas Instruments Incorporated | System and method for increased stand-off height in stud bumping process |
7642660, | Dec 17 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method and apparatus for reducing electrical interconnection fatigue |
7670939, | May 12 2008 | ATI Technologies ULC | Semiconductor chip bump connection apparatus and method |
7671454, | May 12 2006 | SHENZHEN TOREY MICROELECTRONIC TECHNOLOGY CO LTD | Tape carrier, semiconductor apparatus, and semiconductor module apparatus |
7700407, | Nov 10 2003 | STATS CHIPPAC PTE LTE | Method of forming a bump-on-lead flip chip interconnection having higher escape routing density |
7732913, | Feb 03 2006 | Siliconware Precision Industries Co., Ltd. | Semiconductor package substrate |
7750457, | Mar 30 2004 | SHENZHEN TOREY MICROELECTRONIC TECHNOLOGY CO LTD | Semiconductor apparatus, manufacturing method thereof, semiconductor module apparatus using semiconductor apparatus, and wire substrate for semiconductor apparatus |
7790509, | Jun 27 2008 | Texas Instruments Incorporated | Method for fine-pitch, low stress flip-chip interconnect |
7791211, | Oct 19 2007 | Advanced Semiconductor Engineering, Inc. | Flip chip package structure and carrier thereof |
7847399, | Dec 07 2007 | Texas Instruments Incorporated | Semiconductor device having solder-free gold bump contacts for stability in repeated temperature cycles |
7847417, | Dec 22 2005 | Shinko Electric Industries Co., Ltd. | Flip-chip mounting substrate and flip-chip mounting method |
7851928, | Jun 10 2008 | Texas Instruments Incorporated | Semiconductor device having substrate with differentially plated copper and selective solder |
7898083, | Dec 17 2008 | Texas Instruments Incorporated | Method for low stress flip-chip assembly of fine-pitch semiconductor devices |
7902660, | May 24 2006 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Substrate for semiconductor device and manufacturing method thereof |
7902678, | Mar 29 2004 | Godo Kaisha IP Bridge 1 | Semiconductor device and manufacturing method thereof |
7902679, | Mar 05 2001 | Qualcomm Incorporated | Structure and manufacturing method of a chip scale package with low fabrication cost, fine pitch and high reliability solder bump |
7932170, | Jun 23 2008 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Flip chip bump structure and fabrication method |
7947602, | Feb 21 2007 | Texas Instruments Incorporated | Conductive pattern formation method |
7973406, | Apr 03 2008 | STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD | Bump-on-lead flip chip interconnection |
20010013423, | |||
20020041036, | |||
20030049411, | |||
20040035909, | |||
20040056341, | |||
20040105223, | |||
20040232562, | |||
20050103516, | |||
20050248037, | |||
20060131758, | |||
20070200234, | |||
20080093749, | |||
20080179740, | |||
20080277802, | |||
20090108445, | |||
20090114436, | |||
20090152716, | |||
20090191329, | |||
20090288866, | |||
20090308647, | |||
20100139965, | |||
20110049703, | |||
JP10256307, | |||
JP11145176, | |||
JP11233571, | |||
JP2000031204, | |||
JP2000349194, | |||
JP2001156203, | |||
JP2002270732, | |||
JP2004165283, | |||
JP2004221205, | |||
JP2005109187, | |||
JP200528037, | |||
JP4355933, | |||
JP6503687, | |||
JP9097791, | |||
WO3071842, | |||
WO9306964, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 23 2012 | STATS ChipPAC, Ltd. | (assignment on the face of the patent) | / | |||
Aug 06 2015 | STATS CHIPPAC, INC | CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 036288 | /0748 | |
Mar 29 2016 | STATS ChipPAC Ltd | STATS CHIPPAC PTE LTE | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 038378 | /0235 | |
Mar 29 2016 | STATS ChipPAC Ltd | STATS CHIPPAC PTE LTD | CORRECTIVE ASSIGNMENT TO CORRECT THE THE ASSIGNEE S NAME PREVIOUSLY RECORDED AT REEL: 038378 FRAME: 0235 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 065236 | /0741 | |
May 03 2019 | CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY AGENT | STATS CHIPPAC, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052850 | /0237 | |
May 03 2019 | CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY AGENT | STATS CHIPPAC PTE LTD FORMERLY KNOWN AS STATS CHIPPAC LTD | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052850 | /0237 |
Date | Maintenance Fee Events |
Sep 08 2014 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 10 2018 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Sep 08 2022 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 16 2016 | 4 years fee payment window open |
Jan 16 2017 | 6 months grace period start (w surcharge) |
Jul 16 2017 | patent expiry (for year 4) |
Jul 16 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 16 2020 | 8 years fee payment window open |
Jan 16 2021 | 6 months grace period start (w surcharge) |
Jul 16 2021 | patent expiry (for year 8) |
Jul 16 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 16 2024 | 12 years fee payment window open |
Jan 16 2025 | 6 months grace period start (w surcharge) |
Jul 16 2025 | patent expiry (for year 12) |
Jul 16 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |