A skin seal or trocar stabilizer with an inflatable membrane disposed inside, whereby medical instruments may be passed through the skin seal into a endoscopic work space while the inflatable membrane is inflated, thereby allowing the use of normal short conventional open surgery instruments during endoscopic procedures and during insufflation.
|
1. A method of sealing a skin incision for performing a minimally invasive surgical procedure at a surgical site in a body, said method comprising:
providing a sealing device comprising a tube having a proximal end and a distal end, an inner bore and an outer surface, said proximal end having a larger outer diameter than said distal end, and an inflatable membrane disposed within said inner bore, said sealing device further comprising a plurality of protrusions extending inwardly from said inflatable membrane, said plurality of protrusions extending inwardly engaging one another to form a seal upon inflation of the inflatable membrane;
making an incision in the body;
inserting said distal end of said sealing device through said incision;
advancing said sealing device through said incision to form a seal between said incision and said outer surface of said outer bore; and
inflating said inflatable membrane.
9. A method of sealing a skin incision for performing a minimally invasive surgical procedure at a surgical site in a body, said method comprising:
providing a sealing device comprising a tube having a proximal end and a distal end, an inner bore and an outer surface, said proximal end having a larger outer diameter than said distal end, an inflatable membrane disposed within said inner bore, said inflatable membrane being adapted to completely fill said inner bore when inflated and to leave an open lumen through said inner bore when deflated, said sealing device further comprising a plurality of protrusions extending inwardly from said inflatable membrane, said plurality of protrusions extending inwardly engaging one another to form a seal upon inflation, wherein said tube further comprises a plurality of protrusions extending from said outer surface of said tube;
making an incision in the body;
inserting said distal end of said sealing device through said incision;
advancing said sealing device through said incision to form a seal between said incision and said outer surface of said outer bore; and
inflating said inflatable membrane.
0. 15. A method of performing surgery comprising: inserting an obturator into a skin seal, the skin seal including a housing having a top surface lying in a first plane and defining a width, the housing defining a proximalmost opening and a distal opening, the proximalmost opening and distal opening being interconnected by an inner bore communicating with a working space under the patient's skin, the proximalmost opening defined in the first plane and spanning the width of the top surface of the housing, the housing having a first portion that is generally conically shaped, a second portion that is generally cylindrical and extends from the first portion, and a set of threads formed on an outer surface of both the first portion and the second portion, and a seal member across the inner bore at the proximalmost opening of the housing so the seal member extends distally from the first plane into the inner bore, the seal member including a packing of a gel material, a surface of the gel material being configured and dimensioned to be exposed and directly accessible when the housing is inserted into an incision through a patient's skin, the packing capable of conforming around a surgical instrument, the packing of gel material extending distally from the first plane, the obturator including a lip defining a proximally oriented recess, the lip configured to engage a distal end of the housing, the seal member allowing the obturator to be inserted therethrough and the gel material maintaining the substantially fluid-tight barrier in both the presence and the absence of the obturator; positioning the skin seal having the obturator inserted therein at least partially into a patient's skin; insufflating the working space; removing the obturator from the skin seal; and performing surgery in the working space through the seal member while maintaining insufflation of the working space.
2. The method of
3. The method of
4. The method of
5. The method of
7. The method of
inserting a surgical instrument through said sealing device and into the surgical site.
8. The method of
deflating the inflatable member sufficiently to allow passage of a surgical tool through said inner bore of the sealing device while substantially maintaining a seal between said inflatable membrane and said surgical tool; and
performing a surgical procedure through the incision with said surgical tool.
10. The method of
11. The method of
13. The method of
inserting a surgical instrument through said sealing device and into the surgical site.
14. The method of
deflating the inflatable member sufficiently to allow passage of a surgical tool through said inner bore of the sealing device while substantially maintaining a seal between said inflatable membrane and said surgical tool; and
performing a surgical procedure through the incision with said surgical tool.
0. 16. A method of performing surgery as in claim 15, wherein in the step of inserting an obturator into a skin seal, the housing of the skin seal has an internal wall and the inner bore is bounded by the internal wall, the packing of gel material having an upper surface, a lower surface, and an outer surface having a length extending from the upper surface to the lower surface, the outer surface contiguous with the internal wall of the inner bore along its length.
0. 17. A method of performing surgery as in claim 15, wherein in the step of inserting an obturator into a skin seal, the housing of the skin seal has an internal wall and the inner bore is bounded by the internal wall, the packing of gel material having a proximal region and a distal region wherein the distal region is in contact with the internal wall of the inner bore.
|
This application is a continuation of co-pending U.S. application Ser. No. 10/446,365, filed on May 28, 2003, which is a reissue of U.S. Pat. No. 6,238,373, which is a continuation of U.S. application Ser. No. 08/840,104, filed on Apr. 11, 1997, now U.S. Pat. No. 5,997,515 which is a continuation-in-part of U.S. application Ser. No. 08/444,396, filed on May 19, 1995, now U.S. Pat. No. 5,634,911. The priority of these prior applications is expressly claimed and their disclosures are hereby incorporated by reference in their entirety. U.S. patent application Ser. No. 12/004,439, filed Dec. 20, 2007, is a division of co-pending U.S. application Ser. No. 10/446,365, which is a reissue of U.S. Pat. No. 6,238,373. U.S. patent application Ser. No. 12/004,441, filed Dec. 20, 2007, is a continuation of co-pending U.S. application Ser. No. 10/446,365, which is a reissue of U.S. Pat. No. 6,238,373.
This invention relates to the field of surgical endoscopy, specifically to improvements in skin seals and cannulas.
Surgical endoscopy is a surgical technique of using small diameter long-handled tools such as graspers, forceps, scissors, retractors, dissectors, and clamps specially designed to be inserted through small incisions in the skin (or other openings in the body) to perform operations within the body. The surgeon performing the surgery often cannot see the operation directly and must watch the procedure on a video monitor fed by an endoscopic camera or endoscope. Endoscopic surgery replaces open surgery, which requires large incisions, essentially opening the body cavity completely, in order to perform surgery deep within the body. Endoscopic techniques have been used for gall stone removal, gall bladder removal, hernia repair, tumor removal, lymph node removal, appendectomy, and many other operations. Endoscopic surgery is also called laparoscopic surgery, video assisted surgery, minimally invasive surgery, and bandaid surgery, but throughout this specification the term endoscopic surgery or laparoscopic surgery will be used.
To illustrate the background of the inventions described below, the example of the laparoscopic cholecystectomy, hernia repair or lymphadenectomy, as well as the operation for harvesting a blood vessel, will be used to illustrate both the old laparoscopic procedures and the new laparoscopic procedures now possible with the new devices. In the old procedure, a workspace was created in the abdomen using the process called pneumoperitoneum or insufflation. Insufflation is the process of injecting gas into the body to blow it up like a balloon, creating a chamber filled with gas. When performed on the abdomen, the peritoneum is inflated, and the procedure is known as pneumoperitoneum. The procedure can be used for inflating a space between the peritoneum and the skin to permit laparoscopic hernia repair, as illustrated in U.S. Pat. No. 5,496,345, issued to Kieturakis et al. and entitled “An Expansible Tunneling Apparatus for Creating an Anatomic Working Space.” Insufflation can be used also to inflate a tunnel-shaped work space over a blood vessel, to facilitate blood vessel harvesting as described in U.S. Pat. No. 5,601,589 entitled “Extraluminal Balloon Dissection Apparatus and Method,” incorporated herein by reference. While the chamber is filled with gas, the surgeon inserts long slender laparoscopic tools through trocars and cannulas that pierce the skin and provide access ports into the insufflated chamber.
For abdominal surgery such as a cholecystectomy (gall bladder removal), the insufflation is accomplished by the following procedure. An incision is made at the lower edge of the belly button or umbilicus. The surgeon uses his fingers or a blunt dissection tool such as a blunt nosed obturator to uncover the fascia or abdominal muscles, then a large needle, referred to as a Verres needle, is inserted into the abdomen or peritoneal cavity. The Verres needle punctures the fascia and peritoneum that cover the abdomen. A pressurized gas such as CO2 is injected into the abdomen through the needle, in effect inflating the abdomen like a balloon. After the abdomen is inflated, the Verres needle is removed. After the needle is removed, trocars and cannulas are inserted into the space created by the insufflation. Endoscopic instruments, including an endoscope or laparoscope, scissors, graspers, etc., are inserted into the abdomen through the cannulas and manipulated to dissect tissue surrounding the gall bladder, remove the gall bladder, and stitch the internal wounds.
To harvest the saphenous vein using laparoscopic procedures, the surgeon may insufflate a tunnel-shaped workspace over a blood vessel. The tunnel is first created using obturators or tunneling devices, or balloons inserted through small incisions along or over the saphenous vein. After the tunnel is created, the surgeon may insert skin seals and cannulas, and insufflation gas is injected through one of the trocars. While the tunnel is insufflated, the cannulas permit the surgeon to insert laparoscopic instruments into the tunnel to perform surgery on the saphenous vein.
The cannula used in the procedures described above is a length of rigid tube. The trocars and cannula are designed to allow laparoscopic instruments to pass through them and prevent gas from escaping the abdomen or other insufflated work space. The cannula may have a flapper valve or a trumpet valve inside which opens to allow an endoscope or laparoscope or other instrument to pass through, and valve closes when the laparoscope is removed. Some trocar/cannula devices also contain a duckbill valve to assist in scaling the trocar. The cannulas are typically about 6 inches or 15 centimeters long, and come in diameters matching various laparoscopic devices, generally from 2 to 15 mm.
Some surgeons use bare cannulas, secured only by a tight fit with the skin and fascia. However, cannulas frequently slip out of the body during use, disrupting the procedure and possibly endangering the patient. To prevent this danger, surgeons have devised a variety of methods to secure the cannula to the body and prevent it from slipping out of the body. Some cannulas are provided with threaded sleeves fixed to the cannula. Some cannulas are provided with a threaded gripper with a smooth inner bore that matches the size of the cannula, so that the cannula can slide inside the gripper as shown in
The surgeon usually needs to place several trocars and cannulas into the abdomen and inserts as many as needed to accomplish the intended operation. The first cannula placed through the belly button is used to insert a laparoscope so that the placement of other trocars and cannulas can be viewed from inside the abdomen. After several cannulas are in place, the surgeon can view the procedure through any port and can insert laparoscopic scissors, cutters and graspers, and other tools through the cannulas in order to perform the surgery. The typical endoscopic graspers 3 used for stitching inside the abdomen are shown, deployed inside the cannulas, in
The arrangement of the cannulas and trocars is required because the abdomen must be inflated to make room for the surgeon to work. The small diameter of the cannulas keeps the incisions small, and the matching diameter of the laparoscopic instruments is necessary to prevent leakage of the insufflation gas from the abdomen. Laparoscopic instruments of various designs are available, and they generally are about 5 to 12 mm in diameter (to match the inside bore of the cannulas) and about 10 to 40 cm in length. They are long and therefore difficult to use, and they are usually used when the surgeon can see them only through the laparoscope. Modern laparoscopic procedures require the surgeon to view the procedure on a video monitor. It may take a surgeon a lot of practice before becoming comfortable and skillful with the laparoscopic graspers, grippers and scissors. These tools are more difficult to use than the surgical tools that every surgeon uses in normal surgery, such as those shown in
It would be advantageous to use normal surgical tools during laparoscopic procedures, but this is usually not permitted by the typical construction of the trocars and cannulas that are too narrow, long, and rigid to permit passage of the normal surgical tools. Most surgeons are very well trained in using conventional nonendoscopic instruments, such as the open-incision graspers shown in
In a typical endoscopic or laparoscopic operation, a surgeon creates a work space inside the body through insufflation. To create the working space for abdominal surgery, the surgeon makes a small incision at, for example, the inferior margin of the umbilicus 1 as shown in
As mentioned above, the trocars and cannulas can be used in endoscopic blood vessel surgery, laparoscopic cholecystectomy, and laparoscopic hernia repairs where a working space is created under the skin. In the blood vessel harvesting operation where the saphenous vein is to be removed, a surgeon creates a tunnel between two small incisions over the saphenous vein. Then a cannula and skin seal are inserted into each incision. The tunnel is insufflated through one of the cannulas. In these procedures, the laparoscopic instruments are also inserted into the working space through the cannulas, and the surgeon can watch the surgery through a laparoscope inserted through the one of the cannulas.
The devices presented herein allow for use of normal surgical tools (such as the forceps and scissors used in open-incision surgery) in laparoscopic procedures. The skin seal is fitted with one or more balloons on the inner bore. These balloons can be inflated after the skin seal is inserted into the incision into the abdomen. Placement of the skin seal can be accomplished as usual with the aid of a blunt or sharp trocar or cannula placed within the threaded skin seal. Where the skin seal is flexible, the blunt or sharp trocar may include a circumferential lip about its distal end to prevent rollback of and streamline the distal end of the skin seal during placement of the skin seal. The threaded skin seal can be made of rigid plastic, as is customary, or preferably it may be made of soft and pliable material such as latex or silicone rubber. When the threaded skin seal is in place, the trocar may be removed and the balloon may be inflated until it expands to fill the inner bore of the threaded skin seal, thus sealing the bore to maintain the pressure created inside the abdomen with the insufflation gas. The balloons are soft and pliable and can conform around the elements of the instruments as they are moved about during use. Thus, normal or conventional surgical instruments may be passed between the balloons. Both normal surgical instruments and laparoscopic instruments may be inserted into the body through the balloons without disrupting the seal created by the balloons. The efficiency of the seal created by the balloon is further enhanced by the use of a plurality of tab-like or brush-like protrusions extending inwardly from the balloon to form a tortuous path type seal or labyrinth type seal. Alternatively, the protrusions may be inflatable.
The balloon is soft and pliable so that normal surgical tools may be operated inside the inflated balloon segments and the balloon segments will not hamper the operation of the tool to a significant degree. The skin seal may be provided with a balloon membrane that expands outside the lumen of the skin seal to create a dumbbell, dog bone, or bow tie-shaped balloon which pinches the skin and, when necessary, fills the lumen of the skin seal.
More than one tool may be inserted through a single skin seal, because the balloons are sufficiently pliable and may be inflated to a lesser degree. In this manner, normal surgical instruments may be used in laparoscopic procedures, taking advantage of the fact that they are easier to use and more surgeons know how to use them, compared to the long laparoscopic instruments. The balloon filled skin seal may be used also as a seal for laparoscopic incisions which are no longer necessary or which the surgeon desires to plug temporarily while still leaving a skin seal in place for later use.
The cannulas and grippers described below allow for use of normal surgical instruments in laparoscopic surgical procedures. The typical gripper configuration is modified by adding a balloon or inflatable membrane to the inner bore of the gripper and adding an inflation port to the wall of the gripper to allow for inflation of the balloon. When the balloon is inflated, it closes off the inner bore of the gripper, so that it provides an airtight seal during insufflation. The balloon is pliable so that tools can be inserted through the inner bore of the balloon and the balloon expands around the surgical tool to maintain the seal with little or no leakage of insufflation gas.
Referring to
A balloon membrane 20 has a generally conical or frustum shape matching the inner bore 14 of the threaded skin seal 10 and having the same overall length of the threaded skin seal. The balloon membrane fits inside the threaded skin seal and is sealed to the skin seal funnel at the upper edge and lower edge of the balloon membrane. The balloon membrane may be shorter than the skin seal, and may be sealed to the inner surface of the skin seal at points inside the skin seal, rather than at the immediate distal and proximal edges of the skin seal. Also, the balloon membrane may be longer than the skin seal and may be cuffed or folded back around the outside of the skin seal at the proximal and distal ends, and sealed at the cuffs.
An inflation port 21 is provided (see also
In the preferred embodiment, the balloon membrane 20 is made of biocompatible elastomeric or elastic material such as latex, silicone rubber, or any other suitable compliant material, elastic material or inflatable material. The cannula 10 is made of rigid or flexible material, soft or hard plastic, high density, or low density polyethylene, polypropylene, thick latex, silicone rubber, or any other suitable material including plastic, elastic or nonelastic biocompatible material.
As shown in
It will be readily appreciated that such operation would not be possible using standard cannulas. The normal surgical tools are much easier to use than the long laparoscopic instruments shown in
Placement of the skin seals may be facilitated with special blunt obturators shown in
Placement of flexible skin seals may be facilitated with an alternative obturator or trocar shown in
An alternative embodiment of the screw-type skin seal uses a resilient packing in the lumen of the skin seal cannula. As shown in
Referring to
A balloon membrane 120 has a generally continuously tapered shape matching a portion of the inner bore 114 of the threaded skin seal 110. The balloon membrane 120 fits inside the threaded skin seal 110 and is sealed to the inner surface of the skin seal 110 at the upper and lower edges of the balloon membrane 120. The balloon membrane 120 may be shorter than the skin seal 110, and thus may be sealed to the inner surface of the skin seal 110 at various points inside the skin seal 110. Also, the balloon membrane 120 may be longer than the skin seal 110 and may be cuffed or folded back around the outside of the skin seal 110 at the proximal and distal ends 115 and 116, and sealed at the cuffs.
An inflation port 121 extends from the wall 122 of the threaded skin seal 110 and communicates with the balloon membrane 120 through a hole in the wall 122. Preferably, the inflation port 121 extends upwardly from the wall 122 of the skin seal at an angle θ to a horizontal plane formed by a cross-section of the skin seal 110. Preferably, the angle θ is in the range of about 30° to 70°. This configuration advantageously provides access to the inflation port 121 when the skin seal is screwed into the body tissue of a patient regardless of the patient's body type and/or angle of entry. In an obese patient, a radially extending inflation port may be obstructed by the patient's excess fatty body tissue. However, if the inflation port 121 is angled as shown in
An inflation tube 123 or Luer fitting connects the inflation port 121 to a squeeze pump 125. In addition, a one-way valve or stopcock 126 may be used to seal the balloon membrane 120 so that the squeeze pump 125 may be detached from the skin seal 110 when not needed.
To provide a more efficient seal, a plurality of tabbed protrusions 117 extend inwardly from the balloon membrane 120 in a helical pattern along the balloon membrane or in a series of rings longitudinally spaced along the balloon membrane 120. The squeeze pump 125 is used to force air into the space between the balloon membrane 120 and the wall 122 of the skin seal 110, causing the balloon membrane 120 to inflate within the skin seal 110 (see
As shown in
Turning to
The skin seals described above can be used for any endoscopic or laparoscopic surgery to permit use of normal surgical instruments, i.e., ordinary open-incision surgical instruments. While the skin seals described above are useful in procedures requiring insufflation, they may also be used in other endoscopic or laparoscopic procedures. The use of the skin seal in any endoscopic or laparoscopic procedures will allow deployment of normal surgical tools while protecting the area of the incision from trauma caused by the operation of the surgical instruments. Where insufflation or flushing is required, the bladder in the skin seal may be inflated to prevent undesired flow out of the cannula. Also, although the skin seal described above has been described in the best known embodiments, fabricated with suitable materials to the inventors, the particular materials and shapes depicted in the illustrations may be altered and improved upon without departing from the inventions as claimed. It is specifically contemplated that the materials be improved upon. Furthermore, although the devices have been described in relationship to surgery requiring insufflation and endoscopic or laparoscopic surgery, the claimed devices and methods may be used in surgical and nonsurgical applications wherever the features of these device and methods prove beneficial.
Hermann, George D., de la Torre, Roger A., Thayer, Christopher Eric
Patent | Priority | Assignee | Title |
10299827, | May 11 2015 | Arthrex, Inc. | Arthroscopy cannula with one or more inflatable components |
10543107, | Dec 07 2009 | Devices and methods for minimally invasive spinal stabilization and instrumentation | |
10548740, | Oct 25 2016 | Devices and methods for vertebral bone realignment | |
10575961, | Sep 23 2011 | Spinal fixation devices and methods of use | |
10610380, | Dec 07 2009 | Devices and methods for minimally invasive spinal stabilization and instrumentation | |
10687848, | Mar 07 2018 | MIKOL, EDWARD J | Surgical cannula with passive priming and methods for using surgical cannulas |
10695105, | Aug 28 2012 | Spinal fixation devices and methods of use | |
10709475, | Mar 07 2018 | MIKOL, EDWARD J | Pumping surgical cannula |
10744000, | Oct 25 2016 | Devices and methods for vertebral bone realignment | |
10857003, | Oct 14 2015 | Devices and methods for vertebral stabilization | |
10857004, | Dec 07 2009 | Devices and methods for minimally invasive spinal stabilization and instrumentation | |
10918498, | Nov 24 2004 | Devices and methods for inter-vertebral orthopedic device placement | |
10945861, | Dec 07 2009 | Devices and methods for minimally invasive spinal stabilization and instrumentation | |
10973648, | Oct 25 2016 | Devices and methods for vertebral bone realignment | |
11006982, | Feb 22 2012 | Spinous process fixation devices and methods of use | |
11058548, | Oct 25 2016 | Samy, Abdou | Devices and methods for vertebral bone realignment |
11096799, | Nov 24 2004 | Devices and methods for inter-vertebral orthopedic device placement | |
11173040, | Oct 22 2012 | Cogent Spine, LLC | Devices and methods for spinal stabilization and instrumentation |
11179248, | Oct 02 2018 | Samy, Abdou | Devices and methods for spinal implantation |
11246718, | Oct 14 2015 | Devices and methods for vertebral stabilization | |
11259935, | Oct 25 2016 | Devices and methods for vertebral bone realignment | |
11324608, | Sep 23 2011 | Spinal fixation devices and methods of use | |
11382658, | Sep 15 2015 | Applied Medical Resources Corporation | Surgical robotic access system |
11471142, | Mar 15 2013 | Applied Medical Resources Corporation | Mechanical gel surgical access device |
11517449, | Sep 23 2011 | Spinal fixation devices and methods of use | |
11559336, | Aug 28 2012 | Spinal fixation devices and methods of use | |
11627867, | Sep 12 2016 | Applied Medical Resources Corporation | Surgical robotic access system for irregularly shaped robotic actuators and associated robotic surgical instruments |
11752008, | Oct 25 2016 | Devices and methods for vertebral bone realignment | |
11839413, | Feb 22 2012 | Spinous process fixation devices and methods of use | |
11883068, | Sep 15 2015 | Applied Medical Resources Corporation | Surgical robotic access system |
11918483, | Oct 22 2012 | Cogent Spine LLC | Devices and methods for spinal stabilization and instrumentation |
11918486, | Dec 07 2009 | Devices and methods for minimally invasive spinal stabilization and instrumentation | |
11992184, | Sep 12 2016 | Applied Medical Resources Corporation | Surgical robotic access system for irregularly shaped robotic actuators and associated robotic surgical instruments |
11992423, | Nov 24 2004 | Devices and methods for inter-vertebral orthopedic device placement | |
9186053, | May 03 2012 | Covidien LP | Methods of using light to repair hernia defects |
9265526, | Mar 27 2010 | Variable-shaped, expandable device and method for minimally-invasive use | |
9295459, | Feb 25 2003 | Applied Medical Resources Corporation | Surgical access system |
9642608, | Jul 18 2014 | Applied Medical Resources Corporation | Gels having permanent tack free coatings and method of manufacture |
Patent | Priority | Assignee | Title |
1690995, | |||
3057350, | |||
3313299, | |||
3799166, | |||
3853127, | |||
3970089, | Aug 05 1974 | Cardiovascular catheter seal device | |
4475548, | Jun 01 1982 | Fitting for endotracheal tube apparatus and method of making the fitting | |
4555242, | Jan 19 1984 | Urinary drainage appliance | |
4610665, | Jan 18 1983 | Terumo Kabushiki Kaisha | Medical instrument |
4654030, | Feb 24 1986 | Endotherapeutics Corporation | Trocar |
4738666, | Jun 11 1985 | Genus Catheter Technologies, Inc. | Variable diameter catheter |
4760933, | Oct 07 1985 | Fuel tank tube vapor/fuel seal | |
4796629, | Jun 03 1987 | Stiffened dilation balloon catheter device | |
4828554, | Nov 25 1987 | One-way valve for leg urinals or the like | |
5071411, | Mar 26 1990 | Cordis Corporation | Pressure-actuated valve for sealing flow conduit |
5127626, | Oct 31 1989 | Applied Medical Resources Corporation | Apparatus for sealing around members extending therethrough |
5158553, | Dec 26 1990 | BIOSURFACE ENGINEERING TECHNOLOGIES, INC | Rotatably actuated constricting catheter valve |
5211633, | Jun 24 1992 | MEDADVANCE, INC | Selectable seal cannula |
5226890, | Nov 13 1991 | United States Surgical Corporation | Tissue gripping device |
5273545, | Oct 15 1991 | COOPERSURGICAL, INC | Endoscopic cannula with tricuspid leaf valve |
5290310, | Oct 30 1991 | SciMed Life Systems, INC; Boston Scientific Scimed, Inc | Hemostatic implant introducer |
5300034, | Jul 29 1992 | Graseby Medical Limited | Iv injection site for the reception of a blunt cannula |
5330437, | Nov 12 1993 | Ethicon Endo-Surgery | Self sealing flexible elastomeric valve and trocar assembly for incorporating same |
5331975, | Mar 02 1990 | Medtronic Spine LLC | Fluid operated retractors |
5338313, | Dec 17 1992 | Medtronic Ave, Inc | Adjustable valve having a radially compressible sealing body |
5360417, | Apr 24 1992 | Tyco Healthcare Group LP | Valve assembly for introducing instruments into body cavities |
5364372, | Mar 29 1993 | Sherwood Services AG | Trocar and cannula |
5366478, | Jul 27 1993 | Ethicon, Inc. | Endoscopic surgical sealing device |
5391153, | Apr 09 1993 | Habley Medical Technology Corporation | Trocar with linear movement seal |
5391156, | Jun 30 1992 | Ethicon, Inc. | Flexible encoscopic surgical port |
5403336, | Sep 20 1993 | General Surgical Innovations, Inc. | Skin seal device and assembly thereof |
5413571, | Jul 16 1992 | Sherwood Medical Company | Device for sealing hemostatic incisions |
5460616, | Apr 19 1994 | Cordis Corporation | Catheter introducer with fluid chamber valve |
5468248, | May 29 1991 | TYCO HEALTHCARE GROUP AG; Covidien AG | Endoscopic inflatable retraction devices for separating layers of tissue |
5480410, | Mar 14 1994 | IMAGYN MEDICAL TECHNOLOGIES, INC | Extracorporeal pneumoperitoneum access bubble |
5514109, | Dec 17 1992 | Medtronic Ave, Inc | Adjustable valve having a radially compressible sealing body |
5514133, | Aug 26 1994 | Tyco Healthcare Group LP | Access device for endoscopic surgery |
5538509, | Jan 31 1994 | Conmed Corporation | Trocar assembly |
5540711, | Jun 02 1992 | General Surgical Innovations, Inc | Apparatus and method for developing an anatomic space for laparoscopic procedures with laparoscopic visualization |
5545150, | May 06 1994 | Sherwood Services AG | Trocar |
5545179, | Jul 21 1995 | Ethicon Endo-Surgery, Inc. | Endoscopic access assembly |
5580344, | Oct 22 1992 | Incision converter & method of using the same | |
5607443, | Sep 20 1993 | General Surgical Innovations, Inc | Expansible tunneling apparatus for creating an anatomic working space with laparoscopic observation |
5634911, | May 19 1995 | General Surgical Innovations, Inc | Screw-type skin seal with inflatable membrane |
5634937, | May 19 1995 | General Surgical Innovations, Inc | Skin seal with inflatable membrane |
5653705, | Oct 07 1994 | General Surgical Innovations, Inc | Laparoscopic access port for surgical instruments or the hand |
5662615, | Sep 01 1995 | Valve and valve cartridge for trocar | |
5697914, | Mar 16 1995 | Becton Dickinson and Company | Control forward/flashback forward one hand introducer needle and catheter assembly |
5720730, | Sep 01 1995 | Lubricated trocar valve | |
5741298, | Apr 28 1995 | Method and devices for video-assisted surgical techniques | |
5743884, | Dec 17 1992 | Sealing structure for medical instrument | |
5803921, | Feb 18 1994 | Gaya Limited | Access port device for use in surgery |
5814026, | Mar 19 1996 | Endoscopic portal having a universal seal and methods for introducing instruments therethrough | |
5865807, | Sep 01 1995 | Seal for trocar | |
5906577, | Apr 30 1997 | ETHICON ENDO-SURGERY INC | Device, surgical access port, and method of retracting an incision into an opening and providing a channel through the incision |
5913847, | Mar 19 1996 | Endoscopic portal having a universal seal | |
5916198, | Aug 05 1997 | Ethicon, Inc | Non-binding surgical valve |
5964781, | Jun 02 1997 | General Surgical Innovations, Inc. | Skin seal with inflatable membrane |
5989232, | Mar 19 1996 | Endoscopic portal having universal seals and methods for introducing instruments therethrough | |
5989233, | Mar 19 1996 | Endoscopic portal having a universal seal and methods for introducing instruments therethrough | |
6004303, | Dec 10 1997 | Ethicon Endo-Surgery, Inc | Choker catheter |
6440063, | Apr 30 1997 | ETHICON ENDO-SURGERY INC | Surgical access port and laparoscopic surgical method |
6578577, | Dec 01 1998 | JNC Corporation | Laparoscopic sealed access device |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Jul 16 2016 | 4 years fee payment window open |
Jan 16 2017 | 6 months grace period start (w surcharge) |
Jul 16 2017 | patent expiry (for year 4) |
Jul 16 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 16 2020 | 8 years fee payment window open |
Jan 16 2021 | 6 months grace period start (w surcharge) |
Jul 16 2021 | patent expiry (for year 8) |
Jul 16 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 16 2024 | 12 years fee payment window open |
Jan 16 2025 | 6 months grace period start (w surcharge) |
Jul 16 2025 | patent expiry (for year 12) |
Jul 16 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |