The measuring array with an earth connection point (5) for determining the insulation resistance (Riso) of an energized electrical apparatus or of an installation with a supply voltage UB with a positive pole (6) and a negative pole (7), two switches (S1, S2) or a corresponding two-way switch being provided for creating a current path between one of the two poles and said earth connection point (5) in order to determine the insulation resistance (Riso) generally obtained when one or a plurality of insulation faults occur at any potential reference, two measurements being performed one after the other for determining the insulation resistance, the first switch (S1) being closed and the second switch (S2) open during the first of these two measurements and the first switch (S1) being open and the second switch (S2) closed during the second of these measurements.
|
0. 13. A method for determining an insulating resistance (Riso) of a circuit, the circuit having a first switch between a positive node and an earth connection point and a second switch between a negative node and the earth connection point, the circuit further comprising a current measuring element connected between a connection node between the first switch and the second switch and the earth connection point, the method comprising:
providing a supply voltage (UB) between the positive node and the negative node;
measuring a first current (IPE) with the current measuring element, wherein the first current is measured when the first switch is closed and the second switch is open;
measuring a second current (IPE′) with the current measuring element, wherein the second current is measured when first switch is open and second switch is closed; and
calculating the insulating resistance (Riso) according to Riso=UB/(IPE-IPE′) by a microcontroller or microprocessor.
0. 17. A circuit having a positive node, a negative node and an earth connection point, the circuit comprising:
a first switch between the positive node and the earth connection point;
a second switch between the negative node and the earth connection point;
a current measuring element connected between the earth connection point and a connection node between the first switch and the second switch; and
a microcontroller configured to perform a first current measurement when the first switch is closed and the second switch is open, and a second current measurement when the first switch is open and the second switch is closed,
wherein the microcontroller is further configured to calculate an insulation resistance (Riso), wherein the insulation resistance (Riso) is calculated according to Riso=UB/ (IPE-IPE), wherein IPE is a current measured in the first current measurement, and IPE′ is a current measured in the second current measurement, and wherein UB is a supply voltage over the positive node and the negative node.
0. 25. A circuit having an earth connection point, a first node and a second node, the circuit comprising:
a first switch between the first node and the earth connection point;
a second switch between the second node and the earth connection point;
a current measuring element connected between the first node and the first switch and a constant current source connected between the second node and the second switch;
a transistor disposed parallel to the first switch and the second switch, wherein an emitter or a source of the transistor is connected to the constant current source, and wherein a collector or a drain connection is connected to the current measuring element; and
a microcontroller configured to perform a first current measurement when the first switch is closed and the second switch is open, and a second current measurement when the first switch is open and the second switch is closed, and the microcontroller further configured to calculate an insulation resistance (Riso) based on the first current measurement and the second current measurement.
0. 30. A system comprising:
an inverter, the inverter having an earth connection point, a first node and a second node, the inverter comprising
a first switch between the first node and the earth connection point;
a second switch between the second node and the earth connection point;
a current measuring element connected between the first node and the first switch and a constant current source connected between the second node and the second switch;
a transistor disposed parallel to the first switch and the second switch, wherein an emitter or a source of the transistor is connected to the constant current source, and wherein a collector or a drain connection is connected to the current measuring element;
a microcontroller configured to perform a first current measurement when the first switch is closed and the second switch is open, and a second current measurement when the first switch is open and the second switch is closed, and the microcontroller further configured to calculate an insulation resistance (Riso) based on the first current measurement and the second current measurement; and
a photovoltaic generator having a first generator terminal and a second generator terminal, wherein the first generator terminal is electrically connected to the first node, and wherein the second generator terminal is electrically connected to the second node.
0. 20. A method for determining an insulating resistance (Riso) of a circuit, the circuit having a first switch between a first node and an earth connection point and a second switch between a second node and the earth connection point, the circuit further comprising a current measuring element between the first node and the first switch, a constant current source between the second node and the second switch and a transistor disposed parallel to the first switch and the second switch, wherein an emitter or a source of the transistor is connected to the constant current source, and wherein a collector or a drain connection is connected to the current measuring element, the method comprising:
providing a supply voltage (UB) between the first node and the second node;
measuring a first current including a current of the constant current source with the current measuring element, wherein the first current is measured when the first switch is closed and the second switch is open;
measuring a second current including the current of the constant current source with the current measuring element, wherein the second current is measured when the first switch is open and the second switch is closed; and
calculating the insulating resistance (Riso) by a microcontroller or microprocessor based on the first current, the second current and the supply voltage (UB).
1. A measuring array with an earth connection point for determining an insulation resistance (Riso) of an energized electrical apparatus or of an installation including a supply voltage UB with a positive pole and a negative pole, the measuring array comprising:
two switches (S1, S2) or a corresponding two-way switch being provided for creating a current path between one of the two poles and said earth connection point in order to determine the insulation resistance (Riso) generally obtained when one or a plurality of insulation faults occur at any potential reference;
a current measuring system connected between the connection point of the two switches (S1, S2) and the earth connection point;
a microcontroller configured for determining the insulation resistance by performing two measurements one after the other, in which during the first of these two measurements, the first switch (S1) is closed whilst the second switch (S2) is open, and during the second of these measurements, the first switch (S1) is open whilst the second switch (S2) is closed; and
said microcontroller is further configured for measuring a current between the connection point of the two switches (S1, S2) and the earth connection point so that the currents measured at that point during the two measurements are used to calculate the insulation resistance (Riso), wherein the insulation resistance (Riso) is calculated from Riso=UB/ (IPE-IPE′)wherein IPE is the current measured with the current measuring system with switch S1 Being closed and switch S2 being open, and IPE′ is the current measured with the current measuring system with switch S2 being closed and switch S1 being open.
6. A measuring array with an earth connection point for determining an insulation resistance (Riso) of an energized electrical apparatus or of an installation including a supply voltage UB with a positive pole and a negative pole, the measuring array comprising:
two switches (S1, S2) or a corresponding two-way switch being provided for creating a current path between one of the two poles and said earth connection point in order to determine the insulation resistance (Riso) generally obtained when one or a plurality of insulation faults occur at any reference;
a current measuring system connected between the connection of one of the two switches (S1, S2) that is not connected to the earth connection point and one of the two poles, and the connection of the other switch that is not connected to the earth connection point is connected to the other one of the two poles through a constant current source;
a transistor mounted in parallel to the two switches in such a manner that its emitter or source connection is connected to the current source whilst its collector or drain connection is connected to the current measuring system;
a microcontroller configured for determining the insulation resistance by performing two measurements one after the other, in which during the first of these two measurements, the first switch (S1) is closed whilst the second switch (S2) is open, and during the second of these measurements, the first switch (S1) is open whilst the second switch (S2) is closed; and
said microcontroller is further configured for calculating the insulation resistance (Riso) based on the currents measured with the current measuring system during the two measurements.
2. The measuring array as set forth in
3. Use of a measuring array as set forth in
4. Use of a measuring array as set forth in
5. Use of a measuring array as set forth in
7. The measuring array as set forth in
8. The measuring array as set forth in
9. The measuring array as set forth in
10. Use of a measuring array as set forth in
11. Use of a measuring array as set forth in
12. Use of a measuring array as set forth in
0. 14. The method according to claim 13, wherein the first switch and the second switch are embodied in a two way switch.
0. 15. The method according to claim 13, wherein the first switch is a relay or a semiconductor switch, and wherein the second switch is a relay or a semiconductor switch.
0. 16. The method according to claim 13, wherein the current measuring element is a shunt.
0. 18. The circuit according to claim 17, wherein the first switch and the second switch are embodied in a two way switch.
0. 19. The circuit according to claim 17 wherein first switch or the second switch is a relay or a semiconductor switch.
0. 21. The method according to claim 20, wherein the first switch and the second switch are embodied in a two way switch.
0. 22. The method according to claim 20, wherein the first switch or the second switch is a relay or a semiconductor switch.
0. 23. The method according to claim 20, wherein the first node is a positive node and the second node is a negative node.
0. 24. The method according to claim 20, further comprising applying a constant current source supply voltage to the constant current source by the transistor, wherein the constant current source supply voltage is substantially smaller than the supply voltage (UB).
0. 26. The circuit according to claim 25, wherein the first switch and the second switch are embodied in a two way switch.
0. 27. The circuit according to claim 25, wherein the first switch or the second switch is a relay or a semiconductor switch.
0. 28. The circuit according to claim 25, wherein the current measuring element is a shunt.
0. 29. The circuit according to claim 25, wherein the first node is a positive node and the second node is a negative node.
0. 31. The system according to claim 30, wherein the first switch and the second switch are embodied in a two way switch.
0. 32. The system according to claim 30, wherein the first switch or the second switch is a relay or a semiconductor switch.
0. 33. The system according to claim 30, wherein the first generator terminal and the first node are positive, and wherein the second generator terminal and the second node are negative.
0. 34. The system according to claim 30, wherein the inverter is a transformerless inverter.
|
This application claims Priority from German Application No. DE 10 2006 022 686.0-35 filed on 16, May 2006
The invention relates to a measuring array with an earth connection point for determining the insulation resistance (Riso) of an energized electrical apparatus or of an installation with a supply voltage (UB) with a positive pole and a negative pole, two switches (S1 and S2) or a corresponding two-way switch being provided for creating a current path between one of the two poles and the earth connection point in order to determine the insulation resistance (Riso) generally obtained when one or a plurality of insulation faults occur at any potential reference.
In electrical installations, faults due to moisture, dirt, shorts or other causes may occur in the insulation between a voltage-carrying installation part and earth.
In grounded electrical installations, such a fault immediately results in a current flow in the earth connection so that the insulation may e.g., be monitored by measuring the current in the earth connection so as to immediately remedy the fault. In ungrounded equipment or installations in which the earth connection only occurs through connection with another grounded installation (e.g., connection to the public mains) or through contact with an installation part, monitoring is more difficult. Here, at first, an insulation fault does not result in a current flow. But if the installation is contacted (at another point), the double connection to earth causes a current circuit, in which dangerous body currents may flow, to close. A similar problem arises if the installation is connected to a grounded apparatus: in this case a current flows through the two apparatus which it may damage. In order to avoid such faults, it is advisable to regularly measure the insulation resistance of the installation in order to allow for appropriate measures to be taken in case it falls below a limit value.
Various equivalent network diagrams (ESB) are widely used to represent the insulation state of voltage-carrying equipment or of a voltage-carrying installation. In installations consisting but of a positive and a negative pole, such as third rail systems, it is sensible to combine all the earth faults at the positive pole in one resistance Rp and all the earth faults at the negative pole in one resistance Rn (
The insulation resistance is easy to measure if only one insulation fault Rp occurs between the positive pole and earth or if an insulation fault Rn occurs between the negative pole and earth. For this purpose, it suffices to connect earth (PE) to the two poles through respective known high-impedance resistances Raux1, Raux2 and to measure two of the three voltages
If insulation faults Rp and Rn occur concurrently, the described method is no longer operative since it only allows for finding one value Rn or Rp. An earth fault occurring at a potential different from the positive or the negative pole can no longer be described with an equivalent network diagram representing only one resistance.
Hence, the document EP 1 265 076 describes an widened method in which the above measurement is first performed before a known resistance is connected between earth and one of the two poles via a switching element, then voltage measurements are performed. The disadvantage of this array is the poor measurement accuracy if a low-impedance insulation fault is to be determined in parallel to the connected branch. By connecting the known high-impedance resistance in parallel, the voltage conditions vary but slightly so that the change in voltage that is to be evaluated is very small compared to the measurement range of the voltage measurement. Accordingly, the relative measurement error increases a lot.
A low-impedance insulation fault may be better evaluated if e.g., in case of an insulation fault from positive to earth, the known high-impedance resistance is connected to the negative pole and vice versa. In the document DE 35 13 849, is this is provided in this manner, the additional measurement with the switch being closed being only performed when the measurement with open switches yields values exceeding limit values. It is not ensured that earth faults which do not occur directly at the positive or at the negative pole but at potentials in between said poles will be found with this method. For example, an earth fault in the center of a photovoltaic generator would not lead to a change in the voltage measured when the switches are open so that there would be no reason to perform a measurement with the switch being closed, the earth fault remaining undetected as a result thereof. In the drawings in DE 35 13 849 two-way switches are illustrated, said switches possessing a central position, i.e., the function corresponds to the function of two individual switches that cannot be closed at the same time. The method is for example known for monitoring the insulation resistances of an electrical installation with an earth-free current supply of a telecommunication or signalling system. Racks for accommodating grounded components are provided.
The document EP 0 833 423 describes the same electrical array as the document DE 35 13 849, the measurement procedure being however generally defined so that one measurement cycle comprises one measurement with two open switches and one measurement with one open and one closed switch. The document does not indicate which one of the two switches is to be closed; appropriately, this decision will be taken like in the document DE 35 13 849. Assuming that ideal measurement systems are provided, any earth fault may be exactly determined with this method. For this purpose, the computation rules indicated in the document are used:
The disadvantage thereof is that for computing the leakage resistances Rn(RL1) and Rp (RL2), it is necessary to measure two respective instantaneous values of two different voltages and to know the exact value of the additionally connected resistance. Since in practice all the measurands are afflicted with an error, the measurement errors of the two voltages enter into the computed resistance values.
This array is for example utilized in a DC system for the London Underground.
The object of the invention is to provide a measurement array that allows for exact measurement of the insulation resistance Riso even if leakage resistances respectively occur simultaneously to positive and to negative Rp and Rn or if a leakage resistance occurs at an intermediate potential. In order to keep the influence of possible measurement errors low, it is intended to make use of the smallest possible number of measurands for computing Riso.
In accordance with the invention, this object is solved by the features of claim 1. For this purpose, the measurement procedure has been changed over the method described in the document EP 0 833 423 in such a manner that a measurement cycle comprises both one measurement with the switch S1 being open and the switch S2 being closed and one measurement with the switch S2 being open and the switch S1 being closed.
In a first implementation of the invention in accordance with claim 2, the rest of the structure may remain unchanged, two high-impedance resistances Rs with a known, equal value being more particularly used in series with the two switches. As may be readily incurred and verified, the leakage resistances Rn and Rp may then be determined through the relations
The variables U1, U2 without prime represent measured values with the switch S1 being closed and the switch S2 being open, whilst the variables with prime U1′, U2′ are given for the measured values with the switch S1 being open and the switch S2 closed. In the nomenclature of the document EP 0 833 423, the following relations would be obtained
Only one measurand and, as a result thereof, only one measurement error is included in both equations so that the measurement accuracy is improved. In order to determine the value for Riso the parallel connection must be determined in the known manner from Rn and Rp.
The measurement array of the invention allows for high accuracy in measuring the insulation resistance. By switching the switches in accordance with the invention, the equations obtained are very easy to handle for fast and easy computation through a computing unit.
A major advantage of the invention is that high accuracy measurement is also possible in case of several leakage resistances. Meaning, the measurement array is also perfectly operative if leakage resistances Rn and Rp occur at the same time or if an insulation error occurs at a point that is not located on the positive or the negative pole, for example in the center of a solar generator. With a simple prior art array as described in
In a second implementation of the invention in accordance with claim 3, the two voltage measurement systems may be replaced with only one current measurement apparatus between the connection point of the two switches and earth (
If IPE is the current when switch S1 is closed and switch S2 open and IPE, the current when switch S2 is closed and S1 open, we have
Due to the difference measurement, an offset error of the current measurement has no influence on the calculated Riso value so that measurement accuracy is again improved.
In a preferred third embodiment in accordance with claim 4 of the invention, the complex potential free current measurement is relocated to one of the two poles of the installation so that the evaluation is easier to perform by a microprocessor having a corresponding reference potential (
Again, thanks to the difference measurement, both offset errors of the current measurement and scatterings of the current source do not enter into the calculation so that here also the measurement accuracy obtained is high. For ease of measurement evaluation by a microcontroller, the current Ipos may be lead through a shunt that is connected to an AC/DC converter in the microcontroller. The microcontroller may then register one after the other the measurement values for UB, Ipos and Ipos′ and calculate Riso.
The measurement of the insulation resistance in photovoltaic installations for producing electric energy is particularly advantageous. By precisely monitoring earth faults, the hazard to people or sensitive electronic equipment can be detected in time even if several insulation faults occur at different potentials.
The utilization of the measurement array of the invention in transformerless inverters is particularly advantageous. For these inverters, low-impedance earth faults also constitute a hazard if they occur in the center of the generator since they virtually short-circuit the inverter output. The resulting high currents may damage or destroy the high-performance semi-conductors. Although damages to the semi-conductors of the inverter may be avoided by other safety provisions such as current monitoring, the fault cause would not be displayed. The search for the fault would then be tedious and cost-intensive without the measurement of the insulation resistance. The measurement of the insulation resistance of the invention is capable of displaying the fault in time and of preventing the need for additionally connecting the inverter to the public mains. The invention allows in particular to reliably protect transformerless inverters and to efficiently shorten down times.
Further advantageous implementations of the invention will become apparent from the dependent claims.
The invention will be described in closer detail herein after with respect to the drawings.
Other examples of possible insulation faults in the photovoltaic generator or inverter illustrated herein are a leakage resistance Rp 12 between the positive pole 6 and earth 5, a leakage resistance Rn 13 between the negative pole 7 and earth 5 as well as a leakage resistance Rx 14 from any potential to earth 5. The following applies:
If the installation parts are touched, the existing insulation faults lead to body currents that constitute a hazard to people. If connected to the mains, a current flows through the entire installation, which may damage or destroy the components of the installation.
One single insulation fault at the positive or the negative pole, i.e., one single leakage resistance Rp or Rn can be determined with a simple array according to
With the method discussed and the measurement arrays described, the insulation resistance Riso of an energized electrical equipment or installation can be determined with a positive pole 6 and a negative pole 7. Upon closing, both switches S1, S2 create a current path between earth and a respective one of the two poles 6, 7. This array allows for detecting insulation faults at both poles 6, 7 at any potential therein between as well as any combination of these faults. The insulation resistance generally obtained can be very accurately determined in a simple way.
Patent | Priority | Assignee | Title |
9581652, | Nov 19 2009 | LITHION BATTERY INC | Battery insulation resistance measurement methods, insulation resistance measurement methods, insulation resistance determination apparatuses, and articles of manufacture |
9606165, | Jun 01 2012 | Commissariat a l Energie Atomique et aux Energies Alternatives | Device for detecting a defect in insulation |
Patent | Priority | Assignee | Title |
4392026, | Oct 08 1980 | Nippon Telegraph & Telephone Corporation | Subscriber line testing system |
4952871, | Jun 25 1986 | MANIA TECHNOLOGIE AG | Method and apparatus of testing printed circuit boards and assembly employable therewith |
6753692, | Mar 29 2000 | Canon Kabushiki Kaisha | METHOD AND APPARATUS FOR TESTING SOLAR PANEL, MANUFACTURING METHOD FOR MANUFACTURING THE SOLAR PANEL, METHOD AND APPARATUS FOR INSPECTING SOLAR PANEL GENERATING SYSTEM, INSULATION RESISTANCE MEASURING APPARATUS, AND WITHSTAND VOLTAGE TESTER |
6927955, | Sep 26 2001 | Canon Kabushiki Kaisha | Apparatus and method of detecting ground fault in power conversion system |
6952103, | Jan 09 2003 | Daimler AG | Circuit and method for detecting insulation faults |
7079406, | Mar 29 2000 | Canon Kabushiki Kaisha | Power converting apparatus, control method therefor, and solar power generation apparatus |
DE1513510, | |||
DE3513849, | |||
EP833423, | |||
EP1265076, | |||
EP1437600, | |||
GB1504181, | |||
WO2004093284, | |||
WO9605516, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 18 2011 | SMA SOLAR TECHNOLOGY AG | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Feb 10 2017 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Feb 15 2021 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 27 2016 | 4 years fee payment window open |
Feb 27 2017 | 6 months grace period start (w surcharge) |
Aug 27 2017 | patent expiry (for year 4) |
Aug 27 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 27 2020 | 8 years fee payment window open |
Feb 27 2021 | 6 months grace period start (w surcharge) |
Aug 27 2021 | patent expiry (for year 8) |
Aug 27 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 27 2024 | 12 years fee payment window open |
Feb 27 2025 | 6 months grace period start (w surcharge) |
Aug 27 2025 | patent expiry (for year 12) |
Aug 27 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |