The present invention relates to a nail and fastener assembly for use in providing a stable construct for optimal fixation of the hindfoot and to methods for implanting the nail and fastener assembly. One embodiment of the nail and fastener assembly provides additional fixation, for example, in the form of one or more threaded bores, to hold the fasteners in a fixed position. Another embodiment provides angled bores to allow multi-planar and multi-axial implantation of the fasteners. In some instances, the fasteners may cross one or more articulating surfaces of the foot. For example, the fastener may traverse one or more of the calcaneo-cuboid and the talo-calcaneal articulating surfaces to aid in more secure stabilization of the hindfoot.

Patent
   RE44501
Priority
Feb 18 2005
Filed
Aug 12 2010
Issued
Sep 17 2013
Expiry
Feb 18 2025
Assg.orig
Entity
Large
18
209
all paid
0. 11. A method of ankle arthrodesis on a patient, the patient having a tibia, a cuboid, a talus, and a calcaneus, the tibia having a tibial canal, the method comprising:
reaming the tibial canal;
inserting a nail into the tibial canal;
inserting a first fastener into the calcaneus, through the nail, and directed toward the cuboid; and
inserting a second fastener into the calcaneus, through the nail, and into the talus, wherein the first and second fasteners are non-parallel and a tip portion of the second fastener terminates within the talus.
3. A method of ankle arthrodesis on a patient, the patient having a tibia, a cuboid, a talus, and a calcaneus, the tibia having a tibial canal, the method comprising the steps of:
a. selecting a properly sized nail;
b. reaming the tibial canal;
c. inserting the nail into the tibial canal;
d. inserting a first fastener into the calcaneus, through the nail, and into the cuboid; and
e. inserting a second fastener into the calcaneus, through the nail, and into the talus, wherein a tip portion of the second fastener achieves purchase within the talus.
0. 20. A method of ankle arthrodesis on a patient, the patient having a tibia, a cuboid, a talus, and a calcaneus, the tibia having a tibial canal, the method comprising:
reaming the tibial canal;
inserting a nail into the tibial canal;
inserting a first fastener into the calcaneus, through the nail, and directed toward the cuboid;
inserting a second fastener into the calcaneus, through the nail, and into the talus, wherein a tip portion of the second fastener terminates within the talus; and
inserting a third fastener between the first and second fastener relative to a longitudinal axis of the nail.
0. 18. A method for fusing bones in a hindfoot fusion process, comprising:
providing a nail having a proximal portion and a distal portion and a central longitudinal axis extending therebetween, the distal portion defining three fastener-receiving holes, at least two of the holes defining through axes offset and non-perpendicular to the nail axis, the third hole being positioned between the at least two of the holes relative to the longitudinal axis;
providing three fasteners;
implanting the nail into a patient's tibial canal; and
inserting the fasteners each through one of the holes in the nail, wherein one of the fasteners is inserted into the talus.
0. 10. A method for fusing bones in a hindfoot fusion process, comprising:
providing a nail having a proximal portion and a distal portion and a central longitudinal axis extending therebetween, the distal portion defining at least two fastener-receiving holes, each of the holes defining a through axis offset and non-perpendicular to the nail axis, the through axes being non-parallel and constrained to non-parallel planes;
providing at least two fasteners;
implanting the nail into a patient's tibial canal; and
inserting one of the fasteners through one of the holes in the nail and inserting the other fastener through the other of the holes in the nail.
0. 8. A method for fusing bones in a hindfoot fusion process, comprising:
providing a nail having a proximal portion and a distal portion and a central longitudinal axis extending therebetween, the distal portion defining at least two fastener-receiving holes, each of the holes defining a through axis offset and non-perpendicular to the nail axis, the through axes being non-parallel;
providing at least two fasteners;
implanting the nail into a patient's tibial canal; and
inserting one of the fastener through one of the holes in the nail and inserting the other fastener through the other of the holes in the nail, wherein inserting one of the fasteners comprises inserting the one of the fasteners into the talus.
1. A method for at least partially fusing a patient's calcaneo-cuboid articulating surface and talo-calcaneal articulating surface in a hindfoot fusion process, the method comprising:
(a) providing a nail having a proximal portion and a distal portion, the distal portion having a first angled fastener-receiving hole and a second angled fastener-receiving hole;
(b) providing a first fastener adapted to be received in the first angled fastener-receiving hole and a second fastener adapted to be received in the second angled fastener-receiving hole;
(c) implanting the nail into a patient's tibial canal;
(d) inserting the first fastener through the first angled fastener-receiving hole in the nail, such that the first fastener at least partially crosses the patient's calcaneo-cuboid articulating surface; and
(e) inserting the second fastener through the second angled fastener-receiving hole in the nail, such that the second fastener at least partially crosses the talo-calcaneal articulating surface.
2. The method of claim 1, wherein at least one of the first fastener-receiving hole and the second fastener-receiving hole is at least partially threaded.
4. The method of claim 3, further comprising the step of removing cartilage from one or more bones.
5. The method of claim 3, further comprising the step of incising a non-weight bearing part of a sole of the patient's foot.
6. The method of claim 3, further comprising the step of inserting a guide wire into the tibial canal.
7. The method of claim 3, further comprising the step of inserting a transverse fastener into the calcaneus and the nail.
0. 9. The method of claim 8 wherein inserting the other fastener comprises inserting the other fastener into the cuboid.
0. 12. The method of claim 11 further comprising providing the first fastener with sufficient length to engage the cuboid.
0. 13. The method of claim 12 wherein inserting the second fastener comprises inserting the second fastener into the cuboid.
0. 14. The method of claim 11 further comprising providing the nail with two holes, each for receiving one of the fasteners, the holes having non-parallel through axes.
0. 15. The method of claim 14 wherein providing the nail comprises the through axes being constrained to non-parallel planes.
0. 16. The method of claim 14 wherein providing the nail comprises the distal portion defining a third hole between the two fastener-receiving holes relative to a central longitudinal axis of the nail.
0. 17. The method of claim 16 further comprising providing a third fastener and inserting the third fastener through the third hole in the nail.
0. 19. The method of claim 18 wherein another of the fasteners is inserted into the cuboid.
0. 21. The method of claim 20 further comprising providing the nail with three holes, each hole for receiving one of the fasteners, the holes for receiving the first and second fasteners having non-parallel through axes constrained to non-parallel planes.
0. 22. The method of claim 21 wherein providing the nail comprises the third hole being about perpendicular to the nail axis.

The invention relates to nail and fastener assemblies that provide stable fixation of the hindfoot.

Serious ankle problems can be caused by a number of conditions, such as arthritis (e.g., osteoarthritis, rheumatoid arthritis), diabetes, trauma, accidents, or severe deformation. One solution is to replace the ankle joint with an implant or ankle prosthesis. However, prostheses often fail due to subsidence, wear, and loosening within a few years following implantation. There are also anatomical considerations that make such implants non-feasible in some cases. Poor results with prostheses have led many surgeons to abandon implant arthroplasty in more serious cases and return to ankle arthrodesis—fusing the joint to ultimately result in bone fusion. Often, by the time fusion is selected as the best option, there is minimal motion at the joint prior to surgery.

Ankle fusion typically involves using screws and pins to hold the bone together. In a typical fusion surgery, the ankle joint is fused, allowing the tibia (shinbone) to grow together or fuse with the talus bone, the bone of the ankle that articulates with the tibia and fibula, and the calcaneus, the bone that forms the ankle joint. A long ankle arthrodesis “nail” may be inserted through the heel and fixed into place with screws or pins. Often, one or more screws or pins are inserted into the calcaneus, the bone at the lower back part of the foot forming the heel, which provides more stability.

Many of the currently available ankle fusion systems are less than optimal. One reason is because the screws or pins used to fuse the foot bones are secured only into the foot bones themselves; they are not secured to the ankle arthrodesis nail through which they are received. In some instances, an unsecured screw or pin can dislodge itself from the patient's bone and migrate out over years of use. Thus, there is a need in the art to provide a better solution to reduce the risk of migration.

Another reason that many of the currently available fusion systems are less than optimal is because they do not have angled fastener-receiving holes that allow for multi-planar fixation. Alternatively, dangled holes are present, they are not provided at optimal angle ranges for securing and immobilizing the ankle.

In some commercially available systems, the center of the fastener-receiving hole opening(s) in the ankle arthrodesis nail is perpendicular to the longitudinal axis of the nail, such that when the fastener is inserted, it is also perpendicular to the nail. This does not allow the surgeon to achieve purchase into preferred bones of the foot, but instead, limits the surgeon to securing the fastener into the calcaneus (the heel bone). Such systems also fail to provide the option of inserting fasteners in multiple axes to provide a more stable fixation system.

Moreover, fusion systems typically include one or more fasteners that engage only one foot bone in use. The fasteners do not cross articulating surfaces. It would be advantageous to provide a system that allows one or more fasteners to cross one or more articulating surfaces of the bones in the foot in order to provide more stability.

Another disadvantage of some fusion systems is that they do not provide nails with reinforced distal portions. If the nail is the same diameter throughout its length, but there are fastener holes in the distal portion, the implant may be weaker at that portion due to increased stresses from the patient's weight. Thus, there is a need for a fusion system that provides greater rigidity and stability in use.

Accordingly, it would be advantageous to provide a nail and fastener assembly that addresses many of the problems that have not been solved by currently-available systems.

The present invention comprehends various embodiments of nail and fastener assemblies, which may be employed, among other things, for use in providing a stable construct for optimal fixation of the hindfoot. It also comprehends various methods for implanting the nail and fastener assemblies.

Because bone quality is typically poor in patients who are candidates for this procedure, it is beneficial for a system to include a nail that provides additional fixation to hold the fasteners, which may be screws, pins, partially threaded screws, fasteners having a surface with threads or blades of various pitches, shapes, and rotations about the fastener, helical blades, bolts, or any other structure capable of holding and/or engaging bone, in a fixed position. It is also beneficial for a system to provide the option of stabilizing various articulating surfaces of the foot.

Accordingly, certain embodiments of the present invention provide fusion systems with fixation features between the nail and fastener that secure the fastener into the nail. Other embodiments provide a fusion system with one or more openings of the nail that receive fasteners at various angles, allowing one or more fastener to cross one or more articulating surfaces of the foot to provide for multi-planar and multi-axial implantation of the fasteners. Certain structures provide a fusion system with a fastener that crosses one or more of the talo-calcaneal and the calcaneo-cuboid articulating surfaces. Other embodiments combine these features or aspects of them.

One structure according to certain embodiments of the invention includes a hindfoot nail with a threaded fastener-receiving hole. Other structures include angled fastener-receiving bores, and further structures include assemblies adapted to fuse articulating surfaces of a patient's foot. Methods of the invention provide methods for at least partially fusing certain bones of the patient's hindfoot.

Certain devices of the present invention accomplish these results in a number of ways, some of which are discussed in detail below, with reference to the drawings.

FIG. 1 shows a dorsal view of the anatomy of the foot.

FIG. 2 shows a side view of a foot having an implanted nail according to one embodiment of the invention.

FIG. 3 shows a perspective view of one embodiment of a nail and fastener assembly.

FIG. 3A shows a perspective hind view of a foot having an implanted nail and fastener assembly according to another embodiment of the invention.

FIG. 4 shows a side view of a nail according to one embodiment of the invention.

FIG. 4A shows a cross-sectional view of the nail of FIG. 4.

FIG. 5 shows another cross-sectional view of the nail of FIG. 4.

FIG. 6 shows a cross-sectional schematic view of the threaded angled bores of the nail of FIG. 4 showing fasteners (in phantom) inserted.

Anatomy of the Foot and Ankle:

There are twenty-six bones in the human foot 10, shown in FIGS. 1 and 2. There are seven tarsal bones: the bone that forms the heel is the calcaneus 12; the talus 14 connects to and supports the tibia 30 (shown in FIG. 2) at the ankle. The five other tarsal bones are the navicular 16, the cuboid 18, and three cuneiforms 20, which form the middle of the foot. Next, five metatarsals 22 form the lower portion of the instep of the foot. The metatarsals 22 radiate out to the phalanges 24, which are the toe bones.

Of the tarsal bones, the talus 14 and the calcaneus 12 are the largest and are adjacent to each other. Also adjacent to the calcaneus 12 is the cuboid 18. The calcaneus 12 and the talus 14 define an articulating surface 40 between the two bones (the talo-calcaneal articulating surface), and the calcaneus 12 and the cuboid 18 also define an articulating surface 42 (the calcaneo-cuboid articulating surface). Some or all of these, or combinations of them, are the foot bones and articulating surfaces that can be of particular interest to certain embodiments of the present invention.

Fusion System:

FIGS. 3 and 3A each show a fusion assembly 110 according to embodiments of the invention. Assembly 110 features a nail 112 and one or more fasteners 150. In FIG. 3, some fasteners 150 are shown as partially threaded and partially smooth or fully threaded. In FIG. 3A, all fasteners 150 are shown having threads 152. In short, a surgeon may choose to use a combination of any type of fasteners.

As shown in FIG. 2, nail 112 is adapted to be implanted into a patient's tibial canal. The fasteners 150 are adapted to be inserted through and received by the nail 112 and secure to particular bones of the foot. Different nails 112 are typically provided for the left and right sides of a patient's body to account for differing angles.

As shown in FIG. 4, nail 112 has a distal portion 114 and a proximal portion 116. As best seen in FIGS. 2 and 3A, part of the proximal portion engages the tibia and part of the distal portion engages the calcaneus. Nail 112, as is the case with other components of embodiments disclosed herein, can be formed of Titanium, Titanium alloys, Surgical Steel alloys, or other desired material. Distal portion 114 is shown having a greater outer diameter relative to the proximal portion 116 and may be considered, if desired, also to include a frustoconical transition segment between the portion with the greater outer diameter and the smaller outer diameter. However, distal portion 114 need not necessarily have a greater outer diameter than other portions of the nail 112.

Nail 112 can be also cannulated, if desired. One form of such cannulation is shown in FIGS. 4-5 and can be accomplished by gundrilling or other appropriate techniques. Such cannulation enhances the ability of the nail 112 to be inserted using a closed surgical procedure, such as over a guide wire or rod. Cannulation in the distal portion 114 or portions of it, can be of greater diameter than cannulation in the proximal portion 116 or portions of it, as desired.

At the distal portion 114 is a driving end 118 that has an instrument-receiving portion 120. Instrument-receiving portion 120 may include any type of connecting portion, such as a threaded bore 119 (shown in FIG. 5) that is adapted to receive and fasten to implantation instruments. Instrument-receiving portion 120 may also have an optional keyway 121 (shown in FIG. 6) that can provide additional stabilization with respect to implantation instruments. Other options for connecting the instrument-receiving portion 120 to implantation instruments may be a ball and detent mechanism, a dovetail and slot configuration, a lock and key configuration, or any other stable locking mechanism.

Because distal portion 114 of nail 112 (which again may, if desired, contain some or all of the frustoconical transition shown in FIGS. 4-5) may include one or more angled fastener holes 122, 130, distal portion 114 may be provided with an outer diameter that is larger than the diameter at proximal portion 116. In the particular embodiment shown in FIGS. 4-5, the greater outer diameter can in some ways be considered to provide favorable properties such as any or all of increased resistance to bending, rigidity, strength, stability, durability and enhanced reception and/or retention of fasteners.

One aspect of embodiments of the present invention is that one or more fasteners are received by and secured to a nail, as well as being secured to the patient's bone. See, e.g., FIG. 3A. One structure used to accomplish the securing of the fastener to the nail can be a threaded bore and threaded fastener combination. In this example, the nail can have a threaded bore 128 and the fastener can have corresponding threads 152 at or near the portion received by the nail.

In the specific embodiment shown in FIG. 3A, the fastener is a threaded screw 150. Threads 152 may be provided in any number of shapes (e.g., trapezoidal teeth, triangular teeth, square teeth), pitches, and rotations (e.g., tightly wound around fastener or “loosely” wound such that there is a greater distance between each thread). The screw threads and the threads of the nail need not have the same shape, pitch, or rotation, although they typically will.

In an alternate embodiment (not shown), the fastener is a partially threaded screw. Again, the threads may be provided in any number of shapes, pitches, and rotations. In this example, the threads are preferably located at or near the portion where the threads are secured into nail to prevent their migration.

In a further embodiment, the fastener has a series of cutting edges that engage a patient's bone. Cutting edges may be cutting blades, helical blades, spikes, or any other structure capable of holding and/or engaging bone. Cutting edges may cover all or just a portion of fastener. Alternatively, fastener may feature a bolt, a moly bolt, a tension spring, or any other structure capable of holding and/or engaging bone.

In use, the threaded bore 128 is adapted to receive and secure a corresponding structure on fastener with respect to nail 112, as well as allow fastener to engage with bone. One or more openings in the nail 112 may be provided as threaded bores. It is also possible to provide a nail 112 having a combination of threaded and non-threaded bores (the non-threaded bore structure is described below). It is also possible to provide openings in the nail that are partially threaded and partially non-threaded.

One optional feature that may be provided with assembly 110 is an insert or bushing (not shown) to prevent rotation of the fastener. See pending S&N application Ser. No. 10/999,572, filed Nov. 30, 2004 and titled “Humeral Nail,” the entire contents of which are hereby incorporated by this reference. This feature may provide a function similar to fastener anchors that can be used to hang a picture on a wall, i.e., the insert interferes with the rotation of the fastener in the nail and can prevent it from wobbling or threading out, without interfering with the ability of the fastener to insert into the nail at a range of angles. The insert may be used in connection with a threaded or non-threaded bore. It may be secured with respect to nail by the threads, by a rib and locking ring configuration, by injecting a biologic or bone cement through the cannulation as each fastener is inserted, by an interference fit, or any other securing means.

A further aspect of some embodiments of the present invention is that fusion of the hindfoot can be established by connecting and stabilizing certain articulating surfaces of the foot. In one specific embodiment, the talus 14 and the calcaneus 12 are connected to one another by a fastener that crosses the talo-calcaneal articulating surface when implanted. In another specific embodiment, the cuboid 18 and the calcaneus 12 are connected to one another by a fastener that crosses the calcaneo-cuboid articulating surface when implanted. This may be done by specifically targeting these bones using an assembly 110 with angled holes or bores according to one embodiment of the present invention, as shown in FIG. 3A. This particular embodiment provides for multi-planar (and if desired, multi-axial) fixation. The nail may also be adapted to be secured to the tibia 30 for additional stability.

One particularly beneficial aspect of providing angled fastener holes 122, 130 is that they are provided such that any fastener received therein can target specific bones. In one structure according to certain embodiments of the invention, the fasteners are pin-like or substantially smooth. In another structure, the fasteners may have a portion that is threaded (or that contains cutting blades, helically shaped structures having any angle relative to the fastener axis, or other fastening structure to engage bone) that are adapted to secure to a patient's bone, and a portion that is at least partially smooth. These fasteners may be referred to as compression screws, an example of which is shown in FIG. 3.

Compression screws have a portion adapted to attach to a patient's bone, as well as an at least partially smooth portion that articulates with the nail for sliding compression. The at least partially smooth surface is allowed to “slide” within the nail, such that when the patient applies pressure to the implant (for example, if the implant is a weight-bearing implant in the foot, the patient applies pressure when stepping down), the fastener compresses the bones together. The bone fragments are allowed to slide and bear on each other for better healing and fusion of the site.

In certain embodiments, the portion that cooperates with a patient's bone is adapted to cooperate with the calcaneus, and in other embodiments, the portion that cooperates with a patient's bone is adapted to cross one or more articulating surfaces of the foot.

Alternatively, angled fastener holes may have internal threads 128. In use, internal threads 128 of nail 112 cooperate with fastener threads 152 of fasteners 150 to secure the fasteners into the nail 112, as well as into the patient's bone. For ease of reference, fasteners will be referred to as fasteners 150 (which are shown as threaded screws) throughout the remainder of this application, although it is understood that fasteners may take any of the above-described forms, such as compression screws, pins, partially threaded screws, and so forth. See e.g. FIG. 3.

In embodiments in which the fastener is adapted to cross articulating surfaces, fastener holes 122, 130 are provided at optimal angles that allow the surgeon to achieve fastener attachment into particular bones of the foot, such as the calcaneus 12, the talus 14, and the cuboid 18. Angled fastener holes 122, 130 are oriented so that fasteners 150 can be inserted into the nail 112 and cross one or more of the articulating surfaces 40 and 42 of the foot bones.

For example, consider nail 112 having a central longitudinal axis 124 as shown in FIGS. 4-5. At least one angled fastener hole 122 is positioned at an angle θ that is between about 45° and about 135° off of the central longitudinal axis 124. (In other words, when a fastener is inserted through the hole 122, the fastener itself creates an axis 160 that forms an angle of between about 45° and about 135° with the central longitudinal axis 124, as shown in FIG. 4A.) In a particular embodiment, at least one angled fastener hole 122 is positioned at an angle between about 65° and about 115° off of the central longitudinal axis 124. In an even more preferred embodiment, the angled fastener hole 122 is positioned at an angle between about 80° and about 90° off of the central longitudinal axis 124, and most preferably, at about 85° off of the central longitudinal axis 124.

Central longitudinal axis 124 also intersects a plurality of planes. One cross-section defined by central longitudinal axis 124 is central plane 125, which is the plane in the page of the paper. This cross-sectional view is shown in FIG. 4A. In addition to its angled orientation with respect to central longitudinal axis 124, angled fastener hole 122 may also be disposed at an angle that is rotated off of the plane 125 of the paper. (In other words, when a fastener is inserted through hole 122, the fastener forms a second plane that is not aligned with plane 125 and would either extend from or retreat into plane 125 of the paper.) In one embodiment, fastener 150 may either be rotated about 0-45° into the plane 125 of the page or rotated about 0-45° out of the plane 125 of the page. In one embodiment, angled fastener hole 122 is rotated about 2-30° off of plane 125. In a further embodiment, it is rotated about 5-15° off of plane 125, and is most preferably, about 10° off of plane 125. (This angle may be in either the medial or the lateral direction.)

In certain embodiments, angled fastener hole 122 is adapted to receive a fastener that targets the cuboid 18 in use, or that at least partially traverses the calcaneo-cuboid articulating surface 42, as shown in FIG. 3.

A second angled fastener hole 130 may also positioned on the distal portion 114 of nail 112. This angled fastener hole 130 may be positioned at an angle α that is between about 25° and about 135° off of the central longitudinal axis 124, such that a fastener inserted therein forms axis 162. In a particular embodiment, second angled fastener hole 130 is positioned at an angle between about 45° and about 115° off of the central longitudinal axis 124. In an even more prefeffed embodiment, second angled fastener hole 130 is positioned at an angle between about 50° and about 75° off of the central longitudinal axis 124, and most preferably, second angled fastener hole 130 is positioned at about 55° off of the central longitudinal axis 124.

In addition to its angled orientation with respect to central longitudinal axis 124, second angled fastener hole 130 may also be rotated at an angle off of plane 125. For example, angled fastener hole 130 may be rotated about 0-45° off of plane 125, as shown in FIG. 6. In one embodiment, angled fastener hole 130 is rotated about 2-30° off of plane 125. In a further embodiment, it is rotated about 5-15° off of plane 125, and is most preferably, about 10° off of plane 125. (Again, this angle may also be in either the medial or the lateral direction. It is preferred, although not required, that angled fastener hole 122 be about 10° in the opposite direction of angled fastener hole 130.)

In certain embodiments, second angled fastener hole 130 is adapted to receive a fastener that targets the talus 14 in use, or that at least partially traverses the talo-calcaneal articulating surface 40, as shown in FIG. 3.

There may be provided a third fastener hole 132, which also has internal threads 128, but that may or may not be provided at an angle. Consider nail 112 with a horizontal axis 127 that is perpendicular to the central longitudinal axis 124 and that defines a horizontal plane perpendicular to plane 125 (i.e., extending out from the page). FIG. 5 shows the nail of FIG. 4 cut through a plane that extends perpendicular to plane 125 and then rotated 90° to illustrate the threaded bore of fastener hole 132.

In one embodiment, fastener hole 132 is disposed through distal portion 114 of nail 112 in the horizontal plane, give or take a few degrees. When fastener 150 is inserted through fastener hole 132, the fastener creates an axis that forms an angle of between about 80°-100°, and preferably about 90° with the central longitudinal axis 124, as shown in FIG. 3. In certain embodiments, the third fastener hole 132 is a transverse fastener that targets the calcaneus 12.

In use, a surgeon may choose to use one or more of threaded holes 122, 130, 132, or any combination thereof. For example, a surgeon may only need to use hole 122. In other cases, for example, if more stability is needed, the surgeon will also use 130 and/or hole 132. Alternatively, a surgeon may only use hole 132, but again, may use additional holes for additional stability.

Fasteners 150 may be provided in any number of lengths, although it is preferable that at least one fastener be provided in a length that allows it cross one of more of articulating surfaces 40 and 42. Exemplary fastener lengths may be between 50 to 110 min.

There may also be one or more static locking holes 136 or a dynamic compression slots 137 at the proximal portion 116 of nail 112. These openings 136, 137 are provided for rotational stability of assembly 110 and are typically not threaded or angled, although they can be angled and/or threaded as desired. Although the present inventors believe that it would not be good surgical practice to fix the fasteners to the holes in the proximal portion of nail 112 by threads because the nail 112 should not be overconstrained, it is understood that there could be instances when such fixation would be desired, and threaded upper holes are considered within the scope of this invention.

The surgeon may choose between static or dynamic locking by placing a fastener, pin, or small nail through either a static hole 136 or dynamic slot 137 and into the tibia 30. It is preferred that one of each opening 136, 137 be provided in order to give the surgeon the most flexibility, although this is not required.

Method:

A surgeon first chooses the properly-sized nail 112. (Nails are typically provided in 10-50 cm lengths.) The choice is based on the length of the ankle from the bottom of the calcaneus to a suitable fixation point on the tibia. In essence, the goal is to fuse the nail 112 with the calcaneus 12 and the tibia 30 to immobilize the ankle joint. Typically, the surgeon will remove cartilage from the ankle to encourage the bones to fuse.

Although the surgery may be performed as a closed procedure (i.e., minimally invasive) and it is often preferable for it to be that way due to ease of healing, some surgeons may also wish to remove cartilage from between the bones prior to the procedure, which is often performed using open surgical techniques. In short, embodiments of the invention lend themselves to use during ether type of procedure.

In one embodiment of the procedure, the surgeon makes an incision into the non-weight bearing part of the sole of the foot (i.e., the fatty tissue part of the heel) in line with the tibial planar axis. The surgeon may insert a guide wire into the tibial canal to assist reaming and the placement of nail 112. Once the canal has been reamed to an appropriate diameter and depth, the nail 112 is driven into the center (marrow) portion of the tibia 30, typically using one or more of the instrument-receiving portion 120 or the keyway 121 for securing the implant instrumentation. Preferably, the surgeon uses a C-arm or other image intensifier to insert the nail 112 over a guide wire or rod in a closed surgical procedure as well as to insert the related fasteners.

Instrumentation may also be used to hold and guide drill bits to prepare other bones for receiving fasteners. Similar instrumentation may be used to hold and place a fastener. The fastener can be rotated into place, hammered, or otherwise inserted as desired. In some instances, guide wires may be used to place the fastener as well.

If the surgeon plans to aid the fusion process by inserting a fastener that will cross the calcaneo-cuboid articulating surface 42, the surgeon will insert the fastener through the posterior aspect of the calcaneus, through the opening in the nail, and into the cuboid to target that junction. In the embodiment shown, the surgeon would place fastener 150 into the most inferior angled fastener hole 122. The threads of fastener 150 cooperate with internal threads 128, as well as achieve purchase into the calcaneus 12 and cuboid 18. Alternatively, a compression screw, a pin, an at least partially threaded screw, or other embodiments may be used. In any event, this fastener will typically have a relatively “shallow” angle, being inserted at the calcaneus and at least partially crossing the calcaneo-cuboid articulating surface 42.

Once the first fastener is inserted, the surgeon may gently tap the driving end 118 of the nail 112 to achieve compression of the ankle. If the surgeon plans to place a transverse fastener (in this case, a fastener that will cooperate with the calcaneus 12), the fastener may be inserted through third fastener hole 132 in either the medial to lateral or lateral to medial direction. Even though this fastener is not necessarily strictly horizontal, it tends to be the most horizontally-located of the fasteners.

Next, if the surgeon plans to aid the fusion process by inserting a fastener that will cross the talo-calcaneal articulating surface 40, the surgeon will insert a fastener into the posterior of the calcaneus, through an opening of the nail, and into the talus to target that junction. In the embodiment shown, the surgeon would place fastener 150 into the superior angled fastener hole 130. The threads of fastener 150 will cooperate with internal threads 128, as well as achieve purchase into the calcaneus 12 and talus 14. Alternatively, a compression screw, a pin, an at least partially threaded screw, or other embodiments may be used. In any event, this fastener tends to be the most steeply angled of the three (assuming that all three fasteners are used). Assuming the patient's foot is standing on a horizontal surface, this fastener will have a relatively steep “upward” angle to at least partially cross the talo-calcaneal articulating surface 40.

This procedure has been described as if the surgeon is using three fasteners, although it should be understood that a surgeon may choose to use fewer or more fasteners and that nails according to structures of this invention may also have fewer or more fastener-receiving bores.

After the nail and junction fasteners have been properly placed in the patient's foot, the surgeon will secure the nail 112 with a fastener at the proximal portion 116 of the nail 112. The surgeon may choose between static or dynamic locking by placing the fastener through either a static hole 136 or a dynamic slot 137 in nail 112.

Changes and modifications, additions and deletions may be made to the structures and methods recited above and shown in the drawings without departing from the scope or spirit of the invention and the following claims.

Stewart, William, Janna, Sied W., Sanders, Roy W.

Patent Priority Assignee Title
10045803, Jul 03 2014 Mayo Foundation for Medical Education and Research Sacroiliac joint fusion screw and method
10413332, Apr 05 2016 IMDS LLC Joint fusion implant and methods
10492803, Sep 22 2016 Globus Medical, Inc.; Globus Medical, Inc Systems and methods for intramedullary nail implantation
10517737, May 22 2015 Stryker European Operations Limited Joint or segmental bone implant for deformity correction
10603177, Apr 25 2016 IMDS LLC Joint fusion instrumentation and methods
10610244, Apr 25 2016 IMDS LLC Joint fusion instrumentation and methods
10610270, Jan 15 2018 GLW, INC Hybrid intramedullary rods
10751071, Apr 25 2016 IMDS LLC; Mayo Foundation for Medical Education and Research Joint fusion instrumentation and methods
11083503, Sep 22 2016 Globus Medical, Inc.; Globus Medical, Inc Systems and methods for intramedullary nail implantation
11129649, Apr 25 2016 IMDS LLC; Mayo Foundation for Medical Education and Research Joint fusion implant and methods
11357557, Jul 03 2014 Mayo Foundation for Medical Education and Research Bone joint reaming tool
11395747, May 22 2015 Stryker European Operations Limited Joint or segmental bone implant for deformity correction
11490905, Sep 22 2016 Globus Medical, Inc. Systems and methods for intramedullary nail implantation
11633219, Jun 26 2019 Globus Medical, Inc Fenestrated pedicle nail
11759332, May 22 2015 Stryker European Operations Limited Joint or segmental bone implant for deformity correction
11826083, Jan 15 2018 GLW, Inc. Hybrid intramedullary rods
9066757, Aug 10 2009 Virak Orthopedic Research LLC Orthopedic external fixator and method of use
9132018, Aug 27 2013 ZOYA, INC Total ankle replacement
Patent Priority Assignee Title
2136471,
2952254,
2987062,
3272204,
3463158,
3531561,
3596656,
3636956,
3739773,
3876068,
3892649,
3902497,
3918100,
3937223, Apr 19 1974 American Cyanamid Company Compacted surgical hemostatic felt
3960151, Nov 09 1973 Hemotec, Inc. Method and means for the repair of peripheral nerves
4135507, May 20 1977 Condylocephalic nail for fixation of pertrochanteric fractures
4146936, Dec 30 1975 Sumitomo Chemical Company Limited Implants for bones, joints and tooth roots
4186448, Apr 16 1976 OSMED, INCORPORATED Device and method for treating and healing a newly created bone void
4191185, Sep 06 1977 Johnson & Johnson Catheter assembly
4192021, May 12 1976 Batelle-Institut e.V. Bone replacement or prosthesis anchoring material
4219015, Apr 22 1977 SYNTHES U S A Plates for osteosynthesis
4279249, Oct 20 1978 Centre National de la Recherche Scientifique New prosthesis parts, their preparation and their application
4280233, Feb 15 1979 SIRDAN RESEARCH LIMITED, INC Bone connective prosthesis comprising a reinforcement element carrying a polymer layer having a varying modulus of elasticity
4292694, Jun 25 1980 Lord Corporation Prosthesis anchoring means
4338926, Nov 21 1980 Stryker Technologies Corporation Bone fracture prosthesis with controlled stiffness
4429690, Sep 15 1980 Cise Centro Informazioni Studi Esperienze SpA Plate for broken bone fixation
4457301, Jun 18 1982 Stryker Technologies Corporation Intramedullary fixation device
4465065, Jan 07 1983 Surgical device for connection of fractured bones
4475545, Dec 06 1982 Bone-nail
4503847, Jan 15 1982 Stryker Technologies Corporation Prosthetic nail
4522202, Jan 12 1981 Schwarzkopf Development Corporation Curved intramedullary lower leg spike
4523591, Oct 22 1982 United States Surgical Corporation Polymers for injection molding of absorbable surgical devices
4550449, Nov 08 1982 DePuy Orthopaedics, Inc Absorbable bone fixation device
4612923, Dec 01 1983 Ethicon, Inc. Glass-filled, absorbable surgical devices
4622959, Mar 05 1985 MARCUS, RANDALL E Multi-use femoral intramedullary nail
4644943, Jul 20 1984 Regents of the University of Minnesota Bone fixation device
4655203, Sep 20 1983 Materials Consultants Oy Bone fracture surgical device
4705027, May 14 1984 SYNTHES U S A Intramedullary nail
4733654, May 29 1986 Intramedullar nailing assembly
4751183, Aug 16 1983 BIOTEST A G Monoclonal antibody that recognizes a structure common to human interleukin-2 (TCGF) and to the light lambda chain of human immunoglobulin and lines of hybridoma cells that produce these monoclonal antibodies
4756307, Feb 09 1987 ZIMMER TECHNOLOGY, INC Nail device
4776330, Jun 23 1986 HOWMEDICA OSTEONICS CORP Modular femoral fixation system
4781183, Aug 27 1986 Smith & Nephew, Inc Surgical prosthesis
4790302, Jun 17 1986 Method and apparatus for fixing bone fractures
4846162, Sep 14 1987 Orthopedic nail and method of bone fracture fixation
4851008, Feb 01 1988 WRIGHT MEDICAL TECHNOLOGY, INC Bone implant prosthesis with substantially stress-free outer surface
4863475, Aug 31 1984 ZIMMER TECHNOLOGY, INC Implant and method for production thereof
4875474, Jan 29 1988 Biomet Manufacturing Corp Variable wall thickness interlocking intramedullary nail
4875475, Nov 30 1984 Synthes Device for treating a bone
4895572, Nov 25 1988 Interlocking femoral prosthesis device
4896661, Feb 05 1988 HOWMEDICA OSTEONICS CORP Multi purpose orthopedic ratcheting forceps
4898186, Sep 11 1986 Gunze Limited Osteosynthetic pin
4911153, Feb 04 1988 MANVILLE, CORPORATION 717 17TH STREET, DENVER, COLORADO, A CORP OF DE Orthopedic surgical instrument
4919666, May 05 1986 Sulzer Brothers Limited Implant having recesses for therapeutically effective substances
4943292, Nov 08 1989 National Research Council of Canada Plate for broken bone fixation
4968317, Jan 13 1987 Biocon Oy Surgical materials and devices
4973333, Sep 20 1985 SMITH & NEPHEW RICHARDS, INC Resorbable compressing screw and method
4976258, Sep 09 1983 HOWMEDICA INTERNATIONAL S DE R L Locking nail
4989186, Aug 16 1982 The United States of America as represented by the Secretary of the Navy Target tracking sonar with false target detector
5009664, Oct 06 1987 MECRON medizinische Produkte GmbH Marrow nail for the treatment of bone fractures
5034013, Apr 24 1989 ZIMMER, INC Intramedullary nail
5035697, Mar 20 1990 Synthes USA, LLC Orthopedic medullary nail
5041114, Jun 23 1986 HOWMEDICA OSTEONICS CORP Modular femoral fixation system
5057110, Dec 01 1988 Johnson & Johnson Intramedullar nail
5057111, Nov 04 1987 Non-stress-shielding bone fracture healing device
5066296, Feb 02 1989 HOWMEDICA OSTEONICS CORP Apparatus for treating a fracture
5084050, Dec 14 1984 THURGAUER KANTONALBANK, A CORPORATION CHARTERED IN AND EXISTING UNDER THE LAWS OF SWITZERLAND, THAT MAINTAINS ITS PRINCIPAL OFFICES AT: Implant for bone reinforcement and for anchoring bone screws, implants and implant parts
5084051, Nov 03 1986 Biocon Oy Layered surgical biocomposite material
5108399, Sep 17 1988 Boehringer Ingelheim GmbH Device for osteosynthesis and process for producing it
5112333, Feb 07 1990 Intramedullary nail
5123911, Feb 27 1991 United States Surgical Corporation Method for attaching a surgical needle to a suture
5127913, Apr 22 1991 Apparatus and method for implanting an intramedullary rod
5190546, Oct 14 1983 Medtronic, Inc Medical devices incorporating SIM alloy elements
5201735, Feb 02 1989 HOWMEDICA OSTEONICS CORP Apparatus and method for treating a fracture
5236431, Jul 22 1991 Synthes USA, LLC Resorbable fixation device with controlled stiffness for treating bodily material in vivo and introducer therefor
5248313, Apr 17 1991 Fibular intramedullary rod
5250049, Jan 10 1992 Bone and tissue connectors
5263431, May 26 1992 The United States of America as represented by the Secretary of the Navy Combination winch and stowage reel assembly for arrays towed by submarines
5269784, Dec 10 1991 Synthes USA, LLC Screw nut for plate osteosynthesis
5275601, Sep 03 1991 Synthes USA, LLC Self-locking resorbable screws and plates for internal fixation of bone fractures and tendon-to-bone attachment
5292695, Nov 18 1992 DURATEK SERVICES, INC Process for reactivating particulate adsorbents
5413577, Apr 07 1987 Anatomical precontoured plating
5441500, Jan 30 1991 STRYKER TRAUMA GMBH, CORPORATION OF REPUBLIC OF GERMANY Bone nail
5458654, Jul 14 1993 Scyon Orthopaedics AG Screw-fixed femoral component for hip joint prosthesis
5472444, May 13 1994 Acumed LLC Humeral nail for fixation of proximal humeral fractures
5484438, Feb 13 1992 Intramedullary nail with screw-receiving solid insert
5501695, May 27 1992 ANSPACH EFFORT, INC , THE Fastener for attaching objects to bones
5514137, Dec 06 1993 Fixation of orthopedic devices
5520690, Apr 13 1995 Warsaw Orthopedic, Inc Anterior spinal polyaxial locking screw plate assembly
5549610, Oct 31 1994 SMITH & NEPHEW RICHARDS INC Femoral intramedullary nail
5569250, Mar 01 1994 Biomet Manufacturing, LLC Method and apparatus for securing adjacent bone portions
5584836, Apr 07 1994 HOWMEDICA OSTEONICS CORP Cannulated medical suture anchor
5603715, Sep 16 1994 Medullary pin
5618286, Aug 20 1992 Antibiotic eluding intramedullary nail apparatus
5653709, Dec 04 1992 Synthes USA, LLC Modular marrow nail
5658287, Jun 05 1995 Gruppo Industriale Bioimpianti S.R.L. Locked intramedullary nail, suitable in particular for fractures of the femur
5662472, Aug 18 1995 DENTSPLY G M B H Hue and lightness identification system for dental products
5720766, Feb 23 1995 Orthopaedic Biosystems Limited, Inc. Apparatus for attaching soft tissue to bone
5725541, Jan 22 1996 The Anspach Effort, Inc. Soft tissue fastener device
5730744, Sep 27 1994 INNOVASIVE ACQUISITION CORP Soft tissue screw, delivery device, and method
5741266, Sep 19 1996 Biomet Manufacturing Corp Pin placement guide and method of making a bone entry hole for implantation of an intramedullary nail
5741282, Jan 22 1996 ANSPACH EFFORT, INC THE Soft tissue fastener device
5743914, Jun 06 1996 ORTHOPAEDIC BIOSYSTEMS LTD , INC Bone screw
5766174, Sep 26 1995 DJO, LLC Intramedullary bone fixation device
5776194, Apr 25 1996 Nuvana Medical Innovations, LLC Intermedullary rod apparatus and methods of repairing proximal humerus fractures
5792400, Nov 10 1988 Biocon Oy Method of manufacturing biodegradable surgical implants and devices
5810821, Mar 28 1997 Biomet Manufacturing, LLC Bone fixation screw system
5836949, May 05 1997 Board of Regents, The University of Texas System Bioabsorbable intermedullary implant system and methods of use
5855579, Jul 15 1994 Smith & Nephew, Inc Cannulated modular intramedullary nail
5868746, Mar 01 1994 Biomet Manufacturing, LLC Method and apparatus for securing adjacent bone portions
5871484, Nov 09 1995 Genesis Orthopedics Apparatus and method for administering a biologically active substance to a bone
5876402, Apr 13 1995 Warsaw Orthopedic, Inc Anterior spinal polyaxial locking screw plate assembly having recessed retaining rings
5879389, Apr 07 1995 Medical substituting element for hard tissues and artificial joint
5895390, Sep 19 1996 Biomet Manufacturing Corp Pin placement guide used in making a bone entry hole for implantation of an intramedullary nail
5927978, Sep 06 1996 Ivoclar AG System for placing a tooth replacement part into a patient's mouth and packaging system therefore
5928267, Jun 28 1990 P TECH LLC; ADVANCED SKELETAL INNOVATIONS LLC; Bonutti Skeletal Innovations LLC Interconnecting bone across a fracture
5935127, Dec 17 1997 Biomet Manufacturing, LLC Apparatus and method for treatment of a fracture in a long bone
6004323, Feb 04 1997 UNIVERSITY OF IOWA RESEARCH FOUNDATION, THE Surgically implantable fastening system
6015937, Apr 27 1993 Medevelop AB Implantable anchoring element and anchoring assembly for prostheses
6019761, Dec 23 1998 Intramedullary nail and method of use
6053918, Oct 25 1994 Genesis Orthopedics Apparatus and method for fastening an intramedullary nail to a bone
6106528, Feb 11 1997 ORTHOMATRIX, INC Modular intramedullary fixation system and insertion instrumentation
6120504, Dec 10 1998 Biomet Manufacturing, LLC Intramedullary nail having dual distal bore formation
6123708, Feb 03 1999 PIONEER SURGICAL TECHNOLOGY, INC Intramedullary bone fixation rod
6168595, Feb 11 1997 OrthoMatrix, Inc. Modular intramedullary fixation system and insertion instrumentation
6197029, Apr 05 1996 Intramedullary nail
6228086, Mar 19 1997 STRYKER EUROPEAN HOLDINGS III, LLC Modular intramedullary nail
6248108, Sep 30 1998 Bionx Implants Oy Bioabsorbable surgical screw and washer system
6261291, Jul 08 1999 ACANTHA LLC Orthopedic implant assembly
6270304, Mar 23 1993 Tension adjusting device
6270499, Oct 20 1997 Synthes USA, LLC Bone fixation device
6296645, Apr 09 1999 BIOMET C V Intramedullary nail with non-metal spacers
6309392, Dec 30 1998 System for intramedullary fixation of long bone fractures
6319253, Sep 01 2000 Synthes USA, LLC Intramedullary nail with locking hole
6368319, May 06 1999 DePuy Spine SARL; MICOMED ORTHO AG Pedicle screw
6383187, Sep 30 1998 Bionx Implants Oy Bioabsorbable surgical screw and washer system
6443954, Apr 24 2001 ORTHOPEDIC DESIGNS NORTH AMERICA, INC Femoral nail intramedullary system
6488684, Apr 25 2001 ORTHOPEDIC DESIGNS NORTH AMERICA, INC Intramedullary nail
6514253, Nov 22 2000 Apparatus for locating interlocking intramedullary nails
6524314, Aug 24 2001 Interlocking intramedullary nail
6527775, Sep 22 2000 WRIGHT MEDICAL TECHNOLOGY, INC Intramedullary interlocking fixation device for the distal radius
6572620, Nov 16 2001 CONCEPTS IN MEDICINE, L L C Modular, blade-rod, intramedullary fixation device
6572655, Aug 26 1998 Method for securing a prosthesis component to bone
6579293, Aug 02 2000 ARTHRODESIS TECHNOLOGY LLC Intramedullary rod with interlocking oblique screw for tibio-calcaneal arthrodesis
6602255, Jun 26 2000 STRYKER EUROPEAN HOLDINGS III, LLC Bone screw retaining system
6605090, Oct 25 2000 Warsaw Orthopedic, Inc Non-metallic implant devices and intra-operative methods for assembly and fixation
6626906, Oct 23 2000 Warsaw Orthopedic, Inc Multi-planar adjustable connector
6673116, Oct 22 1999 INBONE TECHNOLOGIES, INC Intramedullary guidance systems and methods for installing ankle replacement prostheses
6706046, Feb 01 2000 BIOMET C V Intramedullary fixation device for metaphyseal long bone fractures and methods of using the same
6709436, Apr 09 1999 BIOMET C V Non-metal spacers for intramedullary nail
6730093, Mar 15 2001 STRYKER EUROPEAN HOLDINGS III, LLC Anchoring member with packer
6755834, Sep 15 2000 Medtronic, Inc Cranial flap fixation device
6783529, Apr 09 1999 BIOMET C V Non-metal inserts for bone support assembly
6786908, Apr 09 1999 BIOMET C V Bone fracture support implant with non-metal spacers
6926720, Oct 15 2003 BIOMET C V Jig assembly for implantation of a fracture fixation device
6951561, May 06 2003 DEPUY SYNTHES PRODUCTS, INC Spinal stabilization device
7655009, Dec 01 2003 Smith & Nephew, Inc. Humeral nail
20010021851,
20010031966,
20010037112,
20020029041,
20020062128,
20020072748,
20020133156,
20020133158,
20020151898,
20030009219,
20030018336,
20030055428,
20030069581,
20030078583,
20030097131,
20030195515,
20030199876,
20040030342,
20040092942,
20040097935,
20040127899,
20040127900,
20040127904,
20040158252,
20040260290,
20050101958,
20050187550,
20050261555,
20060100623,
20060173457,
20070123878,
20080015587,
20080287949,
CH669898,
DE1949923,
DE19629011,
DE19945611,
DE20300987,
DE20309399,
EP299004,
EP355411,
EP491983,
EP583442,
EP710091,
EP1415604,
FR2710835,
SU1692566,
WO61018,
WO3017822,
WO9635387,
WO9841161,
WO9846169,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Aug 12 2010Smith & Nephew, Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
Feb 03 2016M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Jan 30 2020M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Sep 17 20164 years fee payment window open
Mar 17 20176 months grace period start (w surcharge)
Sep 17 2017patent expiry (for year 4)
Sep 17 20192 years to revive unintentionally abandoned end. (for year 4)
Sep 17 20208 years fee payment window open
Mar 17 20216 months grace period start (w surcharge)
Sep 17 2021patent expiry (for year 8)
Sep 17 20232 years to revive unintentionally abandoned end. (for year 8)
Sep 17 202412 years fee payment window open
Mar 17 20256 months grace period start (w surcharge)
Sep 17 2025patent expiry (for year 12)
Sep 17 20272 years to revive unintentionally abandoned end. (for year 12)