A hemodialysis and vascular access system comprises a subcutaneous composite PTFE silastic arteriovenous fistula having an indwelling silastic venous end which is inserted percutaneously into a vein and a PTFE arterial end which is anastomosed to an artery. Access to a blood stream within the system is gained by direct puncture of needle(s) into a needle receiving site having a tubular passage within a metal or plastic frame and a silicone upper surface through which needle(s) are inserted. In an alternate embodiment of the invention, percutaneous access to a blood stream may be gained by placing needles directly into the system (i.e. into the PTFE arterial end). The invention also proposes an additional embodiment having an arterialized indwelling venous catheter where blood flows from an artery through a tube and a port into an arterial reservoir and is returned to a vein via a port and a venous outlet tube distinct and distant from the area where the blood from the artery enters the arterial reservoir. The site where blood is returned to the vein is not directly fixed to the venous wall but is free floating within the vein. This system provides a hemodialysis and venous access graft which has superior longevity and performance, is easier to implant and is much more user friendly.
|
0. 59. A hemodialysis and vascular access system to shunt blood between a vein and an artery, the system including:
(a) a first tube having a first end adapted to be connected to the artery;
(b) a second tube having a first end adapted to be connected to the vein and including a plurality of apertures extending therethrough and having a second end; and
(c) a needle access port configured to be subcutaneously implantable, the needle access port having a frame including a conduit extending therethrough, said frame having an inlet connected to the second end of the first tube and an outlet connected to the second end of the second tube to provide a flow path for blood and a silicone member protruding from the frame to provide access for needles into the flow path, wherein the needle access port comprises:
a first member having a base, walls extending upwardly therefrom to form an enclosed area, and outwardly extending couplings on opposite walls thereof at the inlet and outlet of said port;
a second member having a top including an upper aperture, downwardly extending side walls engaging the walls of the first member and having a conduit extending from the inlet to the outlet and a silicone member projecting form the upper aperture to provide needle access; and
a tube mounted over each coupling and a coupler which fits over each tube to seal the tubes to the couplings.
0. 17. A method for providing hemodialysis and vascular access, comprising:
providing an indwelling venous catheter, having:
a graft section provided from a material which is biocompatible with an artery, has a nonthrombogenic characteristic, which is configured for long term attachment to an artery and which includes a first end of said graft section configured to be coupled to an artery and a region for repeated needle access; and
a catheter section, with a portion of the catheter section configured to be inserted within a vein at an insertion site, said catheter section portion having at least one opening in an end thereof with at least one of the at least one openings in the catheter section portion configured to be within the vein itself;
arterializing the indwelling venous catheter by attaching the graft section to an artery to form an arterialized indwelling venous catheter;
implanting the region for repeated needle access so that it is entirely subcutaneous;
inserting the catheter section into a vein through a side wall of the vein at the insertion site, such that the at least one opening is distant from the insertion site such that blood flows from the artery through the catheter section and is returned to the vein through the at least one opening while providing laminar blood flow between the artery and the vein; and
providing continuous fluid flow between the graft section and the catheter section at least when the region for repeated needle access is not being accessed.
0. 50. A hemodialysis and vascular access system to shunt blood between a vein and an artery, the system comprising:
(a) a first tube having a first end adapted to be connected to the artery and a second end;
(b) a second tube having a first end adapted to be connected to the vein and including a plurality of apertures extending therethrough and having a second end; and
(c) a needle access port configured to be subcutaneously implantable, the needle access port having a frame including a conduit extending therethrough, said frame having an inlet connected to the second end of the first tube and an outlet connected to the second end of the second tube to provide a flow path for blood and a silicone member protruding from the frame to provide access for needles into the flow path, wherein the needle access port includes:
an outer frame member having an upper surface including an aperture extending therethrough and downwardly extending walls about its periphery having inlet and outlet apertures, wherein the upper surface includes a lower portion having a plurality of teeth;
a silicone member mounted within the frame having a surface engaged by the frame teeth and an upwardly protruding portion extending through the frame aperture; and
a second frame member having a transverse conduit extending between the inlet and outlet apertures, an upper surface having a plurality of teeth engaging the silicone member to effect a seal and wherein the second frame member is positioned within the walls of the first frame member.
0. 58. A hemodialysis and vascular access system to shunt blood between a vein and an artery, the system including:
(a) a first tube having a first end adapted to be connected to the artery;
(b) a second tube having a first end adapted to be connected to the vein and including a plurality of apertures extending therethrough and having a second end;
(c) a needle access port configured to provide a subcutaneous connection between the first tube and the second tube, the needle access port having a frame including a conduit extending therethrough, said frame having an inlet connected to the second end of the first tube and an outlet connected to the second end of the second tube to provide a flow path for blood and a silicone member protruding from the frame to provide access for needles into the flow path; and
a quick coupler for joining the first tube to the needle access port comprising a port member projecting outwardly from the frame inlet and having a circumferential slot extending thereabout, a cooperating member having an outer portion extending concentrically with the first tube and a portion extending outwardly therefrom and an outwardly sloped portion extending over the projecting port member and having an inner circumferential projection which engages the circumferential slot, and wherein the first tube extends over the port member to be engaged by the projecting portion of the cooperating member within the slot and a removable coupling which snaps over the cooperating member forcing it into a sealed engagement with the port member.
0. 1. A Squitieri hemodialysis and vascular access system to shunt blood between a vein and an artery the system comprising:
(a) a first tube having a first end adapted to be connected to the artery and a second end;
(b) a second tube having a first end adapted to be connected to the vein and including a plurality of apertures extending therethrough and having a second end; and
(c) a needle access port having a frame including a conduit extending therethrough, said frame having an inlet connected to the second end of the first tube and an outlet connected to the second end of the second tube to provide a flow path for blood and a silicone member protruding from the frame to provide access for needles into the flow path, wherein the needle access port includes:
an outer frame member having an upper surface including an aperture extending therethrough and downwardly extending walls about its periphery having inlet and outlet apertures, wherein the upper surface includes a lower portion having a plurality of teeth;
a silicone member mounted within the frame having a surface engaged by the frame teeth and an upwardly protruding portion extending through the frame aperture; and
a second frame member having a transverse conduit extending between the inlet and outlet apertures, an upper surface having a plurality of teeth engaging the silicone member to effect a seal and wherein the second frame member is positioned within the walls of the first frame member.
0. 2. The Squitieri hemodialysis and vascular access system of
the first tube corresponds to PTFE tubing;
the second tube corresponds to silicone tubing; and
the protruding silicone member has an oval configuration.
0. 3. The Squitieri hemodialysis and vascular access system of
0. 4. The Squitieri hemodialysis and vascular access system of
a second needle access port having an inlet and an outlet and silastic tubing coupling the inlet of the second needle access port to the outlet of the other needle access port and wherein the outlet of the second access port is coupled to the second end of the second tube.
0. 5. The Squitieri hemodialysis and vascular access system of
the first tube is provided as PTFE tubing which is adapted for attachment to the artery at one end and coupled to the access port at the other end; and
the second tube is provided as silicone tubing which is coupled to the needle access port at one end and is capable of being floated within the vein at the other end.
0. 6. The Squitieri hemodialysis and vascular access system of
the first tube is inserted within an outer silicone tubing at the inlet to the needle access port.
0. 7. The Squitieri hemodialysis and vascular access system of
an adjustable band mounted about the first tube at the inlet to the needle access port to regulate blood flow.
0. 8. The Squitieri hemodialysis and vascular access system of
a second needle access port is mounted to the needle access port, said ports having a single frame and a conduit extending longitudinally therethrough to the outlet tubing.
0. 9. A Squitieri hemodialysis and vascular access system to shunt blood between a vein and an artery, the system including:
(a) a first tube having a first end adapted to be connected to the artery;
(b) a second tube having a first end adapted to be connected to the vein and including a plurality of apertures extending therethrough and having a second end;
(c) a needle access port having a frame including a conduit extending therethrough, said frame having an inlet connected to the second end of the first tube and an outlet connected to the second end of the second tube to provide a flow path for blood and a silicone member protruding from the frame to provide access for needles into the flow path; and
a quick coupler for joining the first tube to the needle access port comprising a port member projecting outwardly from the frame inlet and having a circumferential slot extending thereabout, a cooperating member having an outer portion extending concentrically with the first tube and a portion extending outwardly therefrom and an outwardly sloped portion extending over the projecting port member and having an inner circumferential projection which engages the circumferential slot, and wherein the first tube extends over the port member to be engaged by the projecting portion of the cooperating member within the slot and a removable coupling which snaps over the cooperating member forcing it into a sealed engagement with the port member.
0. 10. A Squitieri hemodialysis and vascular access system to shunt blood between a vein and an artery, the system including:
(a) a first tube having a first end adapted to be connected to the artery;
(b) a second tube having a first end adapted to be connected to the vein and including a plurality of apertures extending therethrough and having a second end; and
(c) a needle access port having a frame including a conduit extending therethrough, said frame having an inlet connected to the second end of the first tube and an outlet connected to the second end of the second tube to provide a flow path for blood and a silicone member protruding from the frame to provide access for needles into the flow path, wherein the needle access port comprises:
a first member having a base, walls extending upwardly therefrom to form an enclosed area, and outwardly extending couplings on opposite walls thereof at the inlet and outlet of said port;
a second member having a top including an upper aperture, downwardly extending side walls engaging the walls of the first member and having a conduit extending from the inlet to the outlet and a silicone member projecting form the upper aperture to provide needle access; and
a tube mounted over each coupling and a coupler which fits over each tube to seal the tubes to the couplings.
0. 11. The Squitieri hemodialysis and vascular access system of
the second tube is capable of being floated within a vein at the one end and the plurality of apertures in the second tube are distant from the site where the second tube is inserted into the vein, said second tube not being fixed to the vein wall.
0. 12. A hemodialysis and vascular access system comprising:
an arterialized indwelling venous catheter having a graft section provided from a material which is biocompatible with an artery, has a nonthrombogenic characteristic, which is adapted for long term attachment to an artery and which includes a region for repeated needle access and a catheter section, with a first end of said graft section adapted to be coupled to an artery and a portion of the catheter section adapted to be inserted within a vein at an insertion site, said catheter section portion having at least one opening in an end thereof with at least one of the at least one openings in the catheter section portion adapted to be within the vein itself and wherein the at least one opening is distant from the insertion site such that blood flows from the artery through the catheter and is returned to the vein through the at least one opening while providing laminar blood flow between the artery and the vein.
0. 13. The hemodialysis and vascular access system of
at least one needle having a first end coupled to a hemodialysis device and having a second end adapted for insertion directly into said graft section of the catheter to shunt the blood flow through the dialysis device.
0. 14. The hemodialysis and vascular access system of
0. 15. The hemodialysis and vascular access system of
0. 16. The hemodialysis and vascular access system of
0. 18. The method for providing vascular access as in claim 17, wherein the catheter and graft sections are separable components at least prior to the step of providing continuous fluid flow.
0. 19. The method for providing vascular access as in claim 18, further comprising connecting the catheter section and the graft section using a connector.
0. 20. The method for providing vascular access as in claim 19, wherein the connector is a quick-couple connector.
0. 21. The method for providing vascular access as in claim 17, wherein the at least one opening is free floating within the vein.
0. 22. The method for providing vascular access as in claim 17, further comprising percutaneously accessing the vein.
0. 23. The method for providing vascular access as in claim 22, wherein percutaneously accessing the vein comprises accessing the vein by Seldinger technique.
0. 24. The method for providing vascular access as in claim 17, further comprising accessing the vein using an open cut down procedure.
0. 25. The method for providing vascular access as in claim 24, further comprising placing a purse string suture about the insertion site of the vein.
0. 26. The method for providing vascular access as in claim 17, further comprising floating said catheter section portion downstream from the insertion site of the vein.
0. 27. The method for providing vascular access as in claim 17, wherein the vein is a neck vein.
0. 28. The method for providing vascular access as in claim 27, wherein inserting the catheter section into the vein comprises inserting the catheter section into the neck vein and advancing the catheter section toward the right atrium.
0. 29. The method for providing vascular access as in claim 17, further comprising subcutaneously tunneling an implantation site for at least a portion of the indwelling venous catheter.
0. 30. The method for providing vascular access as in claim 17, wherein the catheter section is inserted into the vein before the graft section is arterialized to the artery.
0. 31. The method for providing vascular access as in claim 30, further comprising attaching a free end of the graft section to a wall of the artery while the end of the catheter section having been inserted in the vein in such a way that the at least one opening in the end thereof is downstream of the site where the catheter section enters the vein.
0. 32. The method for providing vascular access as in claim 17, wherein the catheter section is not fixed to the vein wall.
0. 33. The method for providing vascular access as in claim 17, wherein the method avoids creating a venous anastomosis.
0. 34. The method for providing vascular access as in claim 17, wherein the catheter section comprises a long, flexible plastic tube.
0. 35. The method for providing vascular access as in claim 34, wherein the end is beveled.
0. 36. The method for providing vascular access as in claim 17, comprising implanting a vascular access system comprising the catheter section and the graft section and implanting the system so that is entirely subcutaneous.
0. 37. The method for providing vascular access as in claim 17, wherein the region for repeated needle access comprises needles receiving site(s) and comprises an internal chamber that is tubular in shape.
0. 38. The method for providing vascular access as in claim 17, wherein the region for repeated needle access comprises self sealing material.
0. 39. The method for providing vascular access as in claim 17, wherein the graft section comprises a PTFE section.
0. 40. The method for providing vascular access as in claim 17, wherein the catheter section comprises a silicone section.
0. 41. The method for providing vascular access as in claim 40, wherein the silicone section is lined with PTFE.
0. 42. The method for providing vascular access as in claim 17, wherein the region for repeated needle access comprises multiple layers.
0. 43. The method for providing vascular access as in claim 42, wherein the multiple layers comprise PTFE on the inside and silicone on the outside.
0. 44. The method for providing vascular access as in claim 42, wherein the multiple layers comprise PTFE on the inside and silicone disposed outside of the PTFE.
0. 45. The method for providing vascular access as in claim 17, wherein the material providing the graft section comprises a thrombus resistant coating.
0. 46. The method for providing vascular access as in claim 45, wherein the thrombus resistant coating comprises heparin.
0. 47. The method for providing vascular access as in claim 17, wherein a nonthrombenic characteristic is provided by continuous flow of blood through at least the graft section.
0. 48. The method for providing vascular access as in claim 17, wherein the vein is a jugular vein.
0. 49. The method for providing vascular access as in claim 17, wherein arterializing further comprises attaching the graft section to a side wall of an artery such that blood can flow from the artery into the graft and can flow in the artery downstream of the point of connection to the artery.
0. 51. The hemodialysis and vascular access system of claim 50, wherein:
the first tube corresponds to PTFE tubing;
the second tube corresponds to silicone tubing; and
the protruding silicone member has an oval configuration.
0. 52. The hemodialysis and vascular access system of claim 50, wherein the first tube includes rings mounted thereabout to provide additional strength.
0. 53. The hemodialysis and vascular access system of claim 50, further comprising:
a second needle access port having an inlet and an outlet and silastic tubing coupling the inlet of the second needle access port to the outlet of the other needle access port and wherein the outlet of the second access port is coupled to the second end of the second tube.
0. 54. The hemodialysis and vascular access system of claim 50, wherein:
the first tube is provided as PTFE tubing which is adapted for attachment to the artery at one end and coupled to the access port at the other end; and
the second tube is provided as silicone tubing which is coupled to the needle access port at one end and is capable of being floated within the vein at the other end.
0. 55. The hemodialysis and vascular access system of claim 50, wherein:
the first tube is inserted within an outer silicone tubing at the inlet to the needle access port.
0. 56. The hemodialysis and vascular access system of claim 50, further including:
an adjustable band mounted about the first tube at the inlet to the needle access port to regulate blood flow.
0. 57. The hemodialysis and vascular access system of claim 53, wherein:
a second needle access port is mounted to the needle access port, said ports having a single frame and a conduit extending longitudinally therethrough to the outlet tubing.
0. 60. The hemodialysis and vascular access system of claim 59, wherein:
the second tube is capable of being floated within a vein at the one end and the plurality of apertures in the second tube are distant from the site where the second tube is inserted into the vein, said second tube not being fixed to the vein wall.
|
via a neck vein, i.e., a jugular vein, in an anatomical drawing, a ringed gortex tubing an outlet tube 53 of PTFE (ringed gortex) sewn to an artery 30 at 62 and coupled at its other end 63 62a to the needle access site 20. The site 20, see
The upper member 86 includes an oval silicone access site 90 with an outer housing 91 which includes an aperture 92 surrounds the silicone oval 90. This embodiment provides a quick assembly for a needle access site 71.
The Squitieri Hemodialysis/Vascular Access System avoids creation of a venous anastomosis, a revolutionary advancement, i.e. there is no site for neointimal hyperplasia at a venous anastomosis which accounts for the vast majority of PTFE arteriovenous graft failures (60-80%). This is accomplished by returning the blood into a larger vein via an indwelling venous catheter 42. The site of blood return to the venous system is not fixed to the vein wall where neointimal hyperplasia occurs with the standard PTFE bridge graft. This feature represents a tremendous advantage over the present grafts.
As a further advantage, the system is not stagnant and prone to thrombosis, i.e. constant flow through the new system avoids the problem of clotting inherent in indwelling dual lumen venous catheters which remain stagnant when not in use. It also avoids need to flush catheters with heplock thereby reducing nursing costs to maintain the catheter.
The Squitieri system avoids externalization of components which are prone to infection. Since dual lumen catheters exit the skin 14, they frequently lead to sepsis requiring catheter removal despite subcutaneous tunneling. This new access is entirely subcutaneous.
Very importantly the system proposed herein, avoids problems with the aspiration of blood from the venous system and “positional” placement through continuous flow. A frequent problem with dual lumen catheters is their inability to draw blood from the venous system due to clot and fibrinous debris ball-valving at the tip of a catheter. This new system receives blood directly from arterial inflow which ensures high flow rates needed for shorter, more efficient dialysis runs. It also avoids the frequent problem of the catheter tip “sucking” on the vein wall inhibiting flow to the dialysis machine and rendering the access ineffective.
The system avoids recirculation seen with dual lumen catheters resulting in more efficient and more cost effective dialysis.
The system avoids the need for temporary access with incorporation of “Needle Access Sites” 20. A-V fistulas and gortex grafts must “mature” for several weeks before use. This creates a huge strain on the patient as well as the doctor to achieve temporary access while waiting to use the permanent access. Temporary access is very prone to infection, malfunction and vein destruction. By placing sites 20 designed to receive needles 15 along the new access, the system may be used the day it is inserted.
The system avoids PTFE needle site damage with the incorporation of “Needle Access Sites” 20. Needle access directly into PTFE is presently uncontrolled and user dependent. Often, PTFE is lacerated by access needles. While this system may be accessed via the PTFE segment, the needle receiving sites are the preferred method. This leads to excessive bleeding which requires excessive pressure to halt the bleeding causing thrombosis of the graft. “Needle Access Sites” 20 on the Squitieri access system allow safe, quick, and easy entry into the system and avoid the complications inherent in placing needles directly into PTFE. It also avoids perigraft bleeding which will compress and thrombose the graft. By eliminating the long time needed to compress bleeding at the needle site, the system shortens dialysis runs.
The Squitieri system permits an easier, faster insertion technique. Only one anastomosis at the arterial end and a percutaneous placement of the venous end is required. A modification allows the system to be sutured to the vein wall while the system tubing is floated down stream from this site where the system enters the vein 40. This saves operating room time at thousands of dollars per hour. The technique is easier with faster replacement. It avoids difficult and time consuming revision of venous anastomosis required to repair venous outflow occluded by neointimal hyperplasia. If the system malfunctions, the silastic catheter end 65 slips out easily and the arterial PTFE end 53 is thrombectomized. New access sewn to the thrombectomized PTFE at the arterial end and the silastic venous end is replaced percutaneously via Seldinger technique or “open technique”.
The end result of the above advantages translates into superior patency rates and a decreased complication rate with this new system. Patients are spared the repeated painful hospitalizations for failed access as well as the emotional trauma associated with this difficult condition. The physicians are spared the dilemma of how to best treat these patients. This system will have a large impact on the current practice of vascular access in areas such as hemodialysis; plasmapheresis; chemotherapy; hyperalimentation; and chronic blood draws.
While the invention has been explained by a detailed description of certain specific embodiments, it is understood that various modifications and substitutions can be made in any of them within the scope of the appended claims which are intended also to include equivalents of such embodiments.
Patent | Priority | Assignee | Title |
10004842, | Aug 11 2011 | MEDICAL COMPONENTS, INC | Method and apparatus for the dialysis of blood |
10136987, | Mar 08 2013 | INARI MEDICAL, INC | Devices for fluid flow through body passages |
10285800, | Mar 08 2013 | INARI MEDICAL, INC | Systems for providing or maintaining fluid flow through body passages |
10390933, | Apr 20 2006 | INARI MEDICAL, INC | Devices for fluid flow through body vessels |
10398580, | Sep 08 2004 | INARI MEDICAL, INC | Minimally invasive surgical apparatus and methods |
10405967, | Mar 08 2013 | INARI MEDICAL, INC | Methods for puncturing an expandable member to confirm advancement into a body passage |
10406274, | Jun 02 2017 | Accessing assembly for hemodialysis administration | |
10420884, | Mar 07 2014 | C R BARD, INC | Stabilization and guide apparatus for access to an implanted access port and related methods |
10463845, | Jan 23 2013 | C R BARD, INC | Low-profile access port |
10524894, | Mar 08 2013 | INARI MEDICAL, INC | Methods for effecting retroperfusion in a body passage |
10543308, | Apr 10 2017 | INARI MEDICAL, INC | Methods for routing a guidewire from a first vessel and through a second vessel in lower extremity vasculature |
10596356, | Jun 19 2014 | INARI MEDICAL, INC | Methods for placing a stent-graft to cover collateral vessels in lower extremity vasculature |
10765794, | Aug 11 2011 | Medical Components, Inc. | Method and apparatus for the dialysis of blood |
10765795, | Aug 11 2011 | Medical Components, Inc. | Method and apparatus for the dialysis of blood |
10835367, | Mar 08 2013 | INARI MEDICAL, INC | Devices for fluid flow through body passages |
11116943, | Oct 09 2018 | INARI MEDICAL, INC | Methods for accessing pedal veins |
11123481, | Mar 07 2014 | C. R. Bard, Inc. | Stabilization and guide apparatus for access to an implanted access port and related methods |
11129965, | Oct 09 2018 | INARI MEDICAL, INC | Devices and methods for catheter alignment |
11241304, | Apr 20 2006 | INARI MEDICAL, INC | Method for fluid flow through body passages |
11311700, | Oct 09 2018 | INARI MEDICAL, INC | Methods for accessing pedal veins |
11420033, | Jan 23 2013 | C R BARD, INC | Low-profile single and dual vascular access device |
11446170, | Sep 08 2004 | INARI MEDICAL, INC | Minimally invasive surgical apparatus and methods |
11464960, | Jan 23 2013 | C. R. Bard, Inc.; C R BARD, INC | Low-profile single and dual vascular access device |
11471262, | Mar 08 2013 | INARI MEDICAL, INC | Methods for targeting a body passage to effect fluid flow |
11478614, | Oct 09 2018 | INARI MEDICAL, INC | Method for accessing pedal veins for deep vein arterialization |
11612397, | Nov 01 2019 | INARI MEDICAL, INC | Devices and methods for increasing blood perfusion to a distal extremity |
11696981, | Aug 11 2011 | Medical Components, Inc. | Method and apparatus for the dialysis of blood |
11826504, | Apr 10 2017 | INARI MEDICAL, INC | Methods for routing a guidewire from a first vessel and through a second vessel in lower extremity vasculature |
11850379, | Oct 09 2018 | INARI MEDICAL, INC | Devices and methods for catheter alignment |
11890442, | Jan 26 2018 | Bard Peripheral Vascular, Inc. | Systems and methods for locating and identifying an implanted medical device |
9108018, | Apr 20 2006 | INARI MEDICAL, INC | Methods for fluid flow through body passages |
9314329, | Mar 08 2013 | INARI MEDICAL, INC | Methods and systems for providing or maintaining fluid flow through body passages |
9326792, | Apr 20 2006 | INARI MEDICAL, INC | Methods for fluid flow through body passages |
9532803, | Mar 08 2013 | INARI MEDICAL, INC | Devices for fluid flow through body passages |
9545263, | Jun 19 2014 | INARI MEDICAL, INC | Devices and methods for treating lower extremity vasculature |
9706998, | Mar 08 2013 | INARI MEDICAL, INC | Methods for targeting body passages |
9782201, | Apr 20 2006 | INARI MEDICAL, INC | Methods for fluid flow through body passages |
D870264, | Sep 06 2017 | C R BARD, INC | Implantable apheresis port |
D885557, | Sep 06 2017 | C. R. Bard, Inc. | Implantable apheresis port |
D905853, | Feb 27 2018 | MEDICAL COMPONENTS, INC | Catheter tip |
D984880, | Nov 06 2020 | MEDICAL COMPONENTS, INC | Clamp with indicator |
Patent | Priority | Assignee | Title |
3363926, | |||
3490438, | |||
3683926, | |||
3814137, | |||
3818511, | |||
3826257, | |||
3882862, | |||
3998222, | Apr 15 1974 | Subcutaneous arterio-venous shunt with valve | |
4076023, | Aug 01 1975 | Erika, Inc. | Resealable device for repeated access to conduit lumens |
4133312, | Oct 13 1976 | Cordis Dow Corp. | Connector for attachment of blood tubing to external arteriovenous shunts and fistulas |
4184489, | Oct 06 1976 | Cordis Dow Corp. | Infusion tube access site |
4214586, | Nov 30 1978 | Ethicon, Inc. | Anastomotic coupling device |
4318401, | Apr 24 1980 | President and Fellows of Harvard College | Percutaneous vascular access portal and catheter |
4427219, | Jan 26 1981 | Robroy Industries | Compression coupling |
4447237, | May 07 1982 | RESEARCH AGAINST CANCER, INC | Valving slit construction and cooperating assembly for penetrating the same |
4496349, | Apr 08 1980 | Minntech Corporation | Percutaneous implant |
4496350, | Apr 08 1980 | Minntech Corporation | Blood access device |
4503568, | Nov 25 1981 | New England Deaconess Hospital | Small diameter vascular bypass and method |
4550447, | Aug 03 1983 | SORIN BIOMEDICAL INC | Vascular graft prosthesis |
4619641, | Nov 13 1984 | MT SINAI SCHOOL OF MEDICINE OF THE CITY OF NEW YORK | Coaxial double lumen anteriovenous grafts |
4655771, | Apr 30 1982 | AMS MEDINVENT S A | Prosthesis comprising an expansible or contractile tubular body |
4734094, | Jun 09 1986 | Catheter and method for cholangiography | |
4753236, | Apr 08 1986 | Temporary anastomotic device | |
4771777, | Jan 06 1987 | Advanced Cardiovascular Systems, Inc. | Perfusion type balloon dilatation catheter, apparatus and method |
4772268, | May 25 1984 | Cook Incorporated | Two lumen hemodialysis catheter |
4786345, | Mar 24 1984 | INSITUFORM NETHERLANDS B V | Method of lining a passageway |
4790826, | Mar 28 1986 | COSMOS COMMODITY, INC , AN OK CORP | Percutaneous access port |
4822341, | Nov 20 1987 | Bard Peripheral Vascular, Inc | Vascular access fistula |
4848343, | Oct 31 1986 | AMS MEDINVENT S A | Device for transluminal implantation |
4850999, | May 26 1981 | SCHNEIDER USA INC | Flexible hollow organ |
4856938, | Jul 28 1987 | MENCK GmbH | Method of and arrangement for separating tubular foundation piles under water |
4877661, | Oct 19 1987 | W L GORE & ASSOCIATES, INC | Rapidly recoverable PTFE and process therefore |
4898669, | Jun 16 1987 | Claber S.p.A. | Vascular access device, in particular for purification treatments of the blood |
4917067, | Nov 05 1987 | NGK Spark Plug Co., Ltd. | System for controlling air-fuel ratio of combustible mixture fed to internal combustion engine |
4917087, | Apr 10 1984 | WALSH MANUFACTURING MISSISSUAGA LIMITED | Anastomosis devices, kits and method |
4919127, | May 03 1988 | Endotracheal tube connector | |
4929236, | May 26 1988 | RITA MEDICAL SYSTEMS, INC ; AngioDynamics, Inc | Snap-lock fitting catheter for an implantable device |
4955899, | May 26 1989 | IMPRA, INC , AN AZ CORP ; IMPRA, INC , AN AZ CORP | Longitudinally compliant vascular graft |
5026513, | Oct 19 1987 | W L GORE & ASSOCIATES, INC | Process for making rapidly recoverable PTFE |
5041098, | May 19 1989 | GRANTADLER CORPORATION | Vascular access system for extracorporeal treatment of blood |
5053023, | Oct 25 1988 | Vas-Cath Incorporated | Catheter for prolonged access |
5061275, | Apr 21 1986 | AMS MEDINVENT S A | Self-expanding prosthesis |
5061276, | Apr 28 1987 | Edwards Lifesciences Corporation | Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation |
5064435, | Jun 28 1990 | SciMed Life Systems, INC; Boston Scientific Scimed, Inc | Self-expanding prosthesis having stable axial length |
5104402, | May 25 1988 | Trustees of the University of Pennsylvania | Prosthetic vessels for stress at vascular graft anastomoses |
5171227, | Apr 16 1991 | The Curators of the University of Missouri | Separable peritoneal dialysis catheter |
5171305, | Oct 17 1991 | CREDIT SUISSE FIRST BOSTON MANAGEMENT CORPORATION | Linear eversion catheter with reinforced inner body extension |
5192289, | Mar 09 1989 | AVATAR DESIGN & DEVELOPMENT INC | Anastomosis stent and stent selection system |
5192310, | Sep 16 1991 | ATRIUM MEDICAL CORPORATION | Self-sealing implantable vascular graft |
5197976, | Sep 16 1991 | ATRIUM MEDICAL CORPORATION | Manually separable multi-lumen vascular graft |
5330500, | Oct 17 1991 | Self-expanding endovascular stent with silicone coating | |
5399168, | Aug 29 1991 | C R BARD, INC | Implantable plural fluid cavity port |
5405320, | Jan 08 1990 | The Curators of the University of Missouri | Multiple lumen catheter for hemodialysis |
5405339, | Sep 03 1993 | Medtronic, Inc.; WILES, TERRY L | Medical connector and method for connecting medical tubing |
5454790, | May 09 1994 | Tyco Healthcare Group LP | Method and apparatus for catheterization access |
5476451, | Mar 01 1990 | Michigan TransTech Corporation | Implantable access devices |
5496294, | Jul 08 1994 | Target Therapeutics, Inc | Catheter with kink-resistant distal tip |
5509897, | Jan 08 1990 | The Curators of the University of Missouri | Multiple lumen catheter for hemodialysis |
5558641, | Jan 24 1994 | SMITHS MEDICAL ASD, INC | Hybrid portal and method |
5562617, | Jan 18 1994 | VASCA, INC | Implantable vascular device |
5562618, | Jan 21 1994 | SMITHS MEDICAL ASD, INC | Portal assembly and catheter connector |
5591226, | Jan 23 1995 | SciMed Life Systems, INC; Boston Scientific Scimed, Inc | Percutaneous stent-graft and method for delivery thereof |
5607463, | Mar 30 1993 | Medtronic, Inc | Intravascular medical device |
5624413, | Feb 23 1996 | Medical Components, Inc. | Method for inserting a multiple catheter assembly |
5631748, | Nov 16 1995 | Xerox Corporation | Color images having multiple separations with minimally overlapping halftone dots and reduced interpixel contrast |
5637088, | Sep 14 1995 | System for preventing needle displacement in subcutaneous venous access ports | |
5637102, | May 24 1995 | C R BARD, INC | Dual-type catheter connection system |
5647855, | May 06 1992 | Self-healing diaphragm in a subcutaneous infusion port | |
5669637, | May 29 1996 | Optimize Technologies, Inc. | Miniature fitting assembly for micro-tubing |
5669881, | Jan 10 1995 | Edwards Lifesciences Corporation | Vascular introducer system incorporating inflatable occlusion balloon |
5674272, | Jun 05 1995 | Pacesetter, Inc | Crush resistant implantable lead |
5676346, | May 16 1995 | CAREFUSION 303, INC | Needleless connector valve |
5743894, | Jun 07 1995 | Sherwood Services AG; TYCO GROUP S A R L | Spike port with integrated two way valve access |
5755773, | Jun 04 1996 | Medtronic Ave, Inc | Endoluminal prosthetic bifurcation shunt |
5755775, | Jan 23 1995 | SciMed Life Systems, INC; Boston Scientific Scimed, Inc | Percutaneous stent-graft and method for delivery thereof |
5792104, | Dec 10 1996 | Medtronic, Inc | Dual-reservoir vascular access port |
5797879, | Aug 26 1996 | Apparatus and methods for providing selectively adjustable blood flow through a vascular graft | |
5800512, | Jan 22 1996 | LIFEPORT SCIENCES LLC | PTFE vascular graft |
5800514, | May 24 1996 | LifeShield Sciences LLC | Shaped woven tubular soft-tissue prostheses and methods of manufacturing |
5800522, | Jul 07 1995 | W L GORE & ASSOCIATES, INC | Interior liner for tubes, pipes and blood conduits |
5810870, | Aug 18 1993 | W L GORE & ASSOCIATES, INC | Intraluminal stent graft |
5829487, | Jul 12 1994 | EAT GMBH THE DESIGNSCOPE COMPANY | Method for representing a fabric consisting of warp and weft threads |
5830224, | Mar 15 1996 | Medtronic Vascular, Inc | Catheter apparatus and methodology for generating a fistula on-demand between closely associated blood vessels at a pre-chosen anatomic site in-vivo |
5840240, | Nov 04 1991 | MEDRAD, INC | Method of making a silicone composite vascular graft |
5866217, | Nov 04 1991 | MEDRAD, INC | Silicone composite vascular graft |
5904967, | Apr 27 1995 | Terumo Kabushiki Kaisha | Puncture resistant medical material |
5931829, | Jan 21 1997 | VASCA, INC | Methods and systems for establishing vascular access |
5931865, | Nov 24 1997 | W L GORE & ASSOCIATES, INC | Multiple-layered leak resistant tube |
5957974, | Jan 23 1997 | SciMed Life Systems, INC; Boston Scientific Scimed, Inc | Stent graft with braided polymeric sleeve |
5997562, | Jun 13 1997 | Medtronic Ave, Inc | Medical wire introducer and balloon protective sheath |
6001125, | Jan 22 1996 | LIFEPORT SCIENCES LLC | PTFE vascular prosthesis and method of manufacture |
6019788, | Nov 08 1996 | W L GORE & ASSOCIATES, INC | Vascular shunt graft and junction for same |
6036724, | Jan 22 1996 | LIFEPORT SCIENCES LLC | PTFE vascular graft and method of manufacture |
6102884, | Apr 07 1997 | HEMOSPHERE, INC | Squitieri hemodialysis and vascular access systems |
6156016, | Jan 06 1998 | MAGINOT CATHETER TECHNOLOGIES, INC | Catheter systems and associated methods utilizing removable inner catheter or catheters |
6167765, | Sep 25 1998 | The Regents of the University of Michigan | System and method for determining the flow rate of blood in a vessel using doppler frequency signals |
6261255, | Nov 06 1998 | Apparatus for vascular access for chronic hemodialysis | |
6338724, | Mar 29 1999 | Arterio-venous interconnection | |
6398764, | Jan 18 1994 | VASCA. Inc. | Subcutaneously implanted cannula and method for arterial access |
6402767, | May 22 1997 | Kensey Nash Corporation | Anastomosis connection system and method of use |
6428571, | Jan 22 1996 | LIFEPORT SCIENCES LLC | Self-sealing PTFE vascular graft and manufacturing methods |
6582409, | Feb 03 1997 | Merit Medical Systems, Inc | Hemodialysis and vascular access systems |
6702781, | Apr 05 1991 | Boston Scientific Scimed, Inc | Adjustably stiffenable convertible catheter assembly |
6719781, | Jun 14 1996 | Aptus Medical Inc. | Catheter apparatus having an improved shape-memory alloy cuff and inflatable on-demand balloon for creating a bypass graft in-vivo |
6719783, | Jan 22 1996 | LIFEPORT SCIENCES LLC | PTFE vascular graft and method of manufacture |
6730096, | Mar 06 1996 | Medical Components, Inc. | Composite catheter stabilizing devices, methods of making the same and catheter extracting device |
7025741, | Jun 06 2003 | DiaxaMed, LLC | Arteriovenous access valve system and process |
20020049403, | |||
20030004559, | |||
20040193242, | |||
20040215337, | |||
20050137614, | |||
20050203457, | |||
20050215938, | |||
20060064159, | |||
20070123811, | |||
20070167901, | |||
DE29515546, | |||
DE4418910, | |||
JP4507050, | |||
JP5212107, | |||
JP5714358, | |||
JP58168333, | |||
JP6105798, | |||
JP62112567, | |||
JP984871, | |||
RE41448, | Feb 03 1997 | Merit Medical Systems, Inc | Squitieri hemodialysis and vascular access systems |
WO8403036, | |||
WO9519200, | |||
WO9624399, |
Date | Maintenance Fee Events |
Jul 20 2016 | ASPN: Payor Number Assigned. |
Date | Maintenance Schedule |
Dec 10 2016 | 4 years fee payment window open |
Jun 10 2017 | 6 months grace period start (w surcharge) |
Dec 10 2017 | patent expiry (for year 4) |
Dec 10 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 10 2020 | 8 years fee payment window open |
Jun 10 2021 | 6 months grace period start (w surcharge) |
Dec 10 2021 | patent expiry (for year 8) |
Dec 10 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 10 2024 | 12 years fee payment window open |
Jun 10 2025 | 6 months grace period start (w surcharge) |
Dec 10 2025 | patent expiry (for year 12) |
Dec 10 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |