Novel compositions comprised of at least one bead conjugated to a solid support and further conjugated to at least one nucleic acid and preferred methods for making the novel compositions are described. As compared to “flat” surfaces, beads linked to a solid support provide an increased surface area for immobilization of nucleic acids. Furthermore, by selecting a bead with the desired functionality, a practitioner can select a functionalization chemistry for immobilizing nucleic acids, which is different from the chemistry of the solid support.

Patent
   RE44693
Priority
Nov 06 1996
Filed
Jul 22 2009
Issued
Jan 07 2014
Expiry
Nov 06 2016
Assg.orig
Entity
unknown
4
170
EXPIRED
1. A composition, comprising a bead conjugated to a solid copper support by covalent attachment and further conjugated to a nucleic acid, wherein the solid support is selected from the group consisting of multiwell plates, arrays of pits and multiwell supports comprising nanoliter wells wherein the bead is bound to the solid support and the nucleic acid is bound to the bead using orthogonally cleavable linkers.
2. A composition of claim 1, wherein the bead is made from a material selected from the group consisting of: silica gel, glass, magnet, 4-(hydroxymethyl)phenoxymethylcopoly(styrene—1% divinylbenzene) resin, chloromethylated copolystyrene—divinylbenzene resin, metal, plastic, cellulose, dextran cross-linked with epichlorohydrin, and agarose.
3. A composition of claim 1, wherein the bead is swellable.
4. A composition of claim 1, wherein the bead is nonswellable.
5. A composition of claim 1, wherein the bead is in the range of 1 to 100 μm in diameter.
6. A composition of claim 1, wherein the nucleic acid is DNA.
7. A composition of claim 1, wherein the nucleic acid is RNA.
0. 8. A process of making a bead conjugated to a solid support and further conjugated to a nucleic acid, comprising the steps of conjugating a bead to a nucleic acid; and conjugating a bead to a solid support, wherein the solid support is selected from the group consisting of multiwell plates, arrays of pits, and multiwell supports comprising nanoliter wells.
0. 9. A process of claim 8, wherein the bead is functionalized.
0. 10. A process of claim 9, wherein the bead is functionalized with carboxy functional groups.
0. 11. A process of claim 9, wherein the bead is functionalized with amino functional groups.
0. 12. A process of claim 9, wherein the bead is conjugated to the nucleic acid prior to conjugation of the bead to the solid support.
0. 13. A process of claim 9, wherein the bead is conjugated to the nucleic acid after the bead is conjugated to the solid support.
0. 14. A kit, comprising:
i) beads,
ii) an insoluble support, and
iii) conjugation means for linking nucleic acids to the beads and the beads to the support.
0. 15. The kit of claim 14, wherein the solid support is selected from the group consisting of: beads, capillaries, plates, membranes, wafers, combs, pins, wafers with arrays of pits, and supports with nanoliter wells.
0. 16. The kit of claim 14, wherein the bead is made from material selected from the group consisting of silica gel, glass, magnet, p-benzyloxybenzyl alcohol copolystyrene-divinyl benzene (DVB) resin, chlorotritylchloride copolystyrene-DVB resin, chloromethylated copolystyrene-DVB resin, metal, plastic, cellulose, cross-linked dextran, and agarose gel.
0. 17. A composition, comprising a bead conjugated to a solid support and further conjugated to a nucleic acid, wherein conjugation is effected with a crosslinking agent.
0. 18. The method of claim 8, wherein conjugation is effected with a crosslinking agent.
0. 19. A composition, comprising a bead conjugated to a solid support and further conjugated to a nucleic acid molecule comprising protein nucleic acid.
0. 20. A composition, comprising a bead conjugated to a solid support and further conjugated to a nucleic acid, wherein conjugation is effected through a photocleavable linkage.
0. 21. The composition of claim 20, wherein the linkage is cleaved by exposure to a laser.
0. 22. The composition of claim 20, wherein the linkage is cleaved by exposure to electromagnetic radiation selected from ultravioltet, visible, infrared radiation or electromagnetic radiation generated by fluorescence or chemiluminescence, or combinations thereof.
0. 23. A composition, comprising a bead conjugated to a solid support and further conjugated to a nucleic acid, wherein conjugation is effected through ionic linkages.
0. 24. The composition of claim 1, wherein the conjugation of the bead to the nucleic acid comprises a spacer.
0. 25. The composition of claim 1, wherein the conjugation of the bead to the nucleic acid comprises streptavidin-biotin DNA.
0. 26. The composition of claim 1, wherein the bead can be selectively cleaved from the solid surface without cleaving the nucleic acid from the bead.
0. 27. The composition of claim 1, wherein the conjugation of the bead to the solid surface comprises a disulfide linker.

) beads to a solid support as described in Example 1.

FIG. 3 is a schematic representation of nucleic acid immobilization via covalent bifunctional trityl linkers as described in Example 2.

FIG. 4 is a schematic representation of nucleic acid immobilization via hydrophobic trityl linkers as described in Example 3.

FIG. 5 shows a MALDI-TOF mass spectrum of a supernatant of the matrix treated Dynabeads containing bound oligo (5′ iminobiotin-TGCACCTGACTC, SEQ. ID. No. 1). An internal standard (CTGTGGTCGTGC, SEQ. ID. No. 2) was included in the matrix.

FIG. 6 shows a MALDI-TOF mass spectrum of a supernatant of biotin treated Dynabeads containing bound oligo (5′ iminobiotin-TGCACCTGACTC, SEQ. ID. No. 1). An internal standard (CTGTGGTCGTGC, SEQ. ID. No. 2) was included in the matrix.

FIG. 7 schematically depicts conjugation of an unextended primer to a bead via reaction of a 2′, 3′-diol on the primer with boronic acid functionalized beads.

FIG. 8 schematically depicts a pin tool apparatus.

FIG. 9 depicts various pin conformations. FIG. 9A shows a solid pin with a straight head. FIG. 9B shows a solid pin with a concave head. FIG. 9C shows a solid pin with a truncated pyramidal head. FIG. 9D shows a pin with a concave head and a hollowed center (through which can be inserted an optical fibre). FIG. 9E shows a pin with a truncated pyramidal head and a hollowed center.

FIG. 10 is a schematic representation of the conjugation of beads (activated carboxyl) to pins (amino-functionalized) via amide bonds, and attachment of DNA (via an acid-cleavable linker) to beads. A disulfide linker conjugating the beads to the pins and a thioether conjugation between the bead and the trityl group permits selective cleavage of the beads (with DNA still attached) from the pin surface.

FIG. 11 is a schematic representation of paramagnetic beads functionalized with streptavidin to pins via a magnetic interaction and attachment of DNA (via a linker (e.g. modified biotin or photocleavable biotin) to allow selective cleavage of the DNA from the beads.

FIGS. 12 A-C schematically represent a pintool apparatus and mount, each separately and a cross section of the mount and tool installed.

FIG. 13 is a schematic representation of mass spectrometry geometries for the pin conformations shown in FIGS. 9A-E.

FIG. 14 schematically depicts a pintool onto which a voltage is applied. When an electrical field is applied, nucleic acids are attracted to the anode. This system purifies nucleic acids, since uncharged molecules would remain in solution, while positively charged molecules are attracted towards the cathode.

FIG. 15 shows a flow chart of the steps involved in sequencing by mass spectrometry using post-biology capture.

In general, the invention relates to use of functionalized beads for the immobilization of nucleic acids, wherein the beads are stably associated with a solid support.

FIG. 1 depicts a bead conjugated to a solid support through one or more covalent or non-covalent bonds. Nucleic acids can be immobilized on the functionalized bead before, during or after the bead is conjugated to the solid support. As used herein, the term “nucleic acid” refers to single stranded and/or double stranded polynucleotides such as deoxyribonucleic acid (DNA), and ribonucleic acid (RNA) as well as analogs or derivatives of either RNA or DNA. Also included in the term “nucleic acid” are analogs of nucleic acids such as peptide nucleic acid (PNA), phosphorothioate DNA, and the like.

Preferred nucleic acids for use in the subject invention are derivatized to contain at least one reactive moiety. Preferably the reactive moiety is at the 3′ or 5′ end. Alternatively, a nucleic acid can be synthesized with a modified base. In addition, modification of the sugar moiety of a nucleotide at positions other than the 3′ and 5′ position is possible through conventional methods. Also, nucleic acid bases can be modified, e.g., by using N7- or N9-deazapurine nucleosides or by modification of C-5 of dT with a linker arm, e.g., as described in F. Eckstein, ed., “Oligonucleotides and Analogues: A Practical Approach,” IRL Press (1991). Alternatively, backbone-modified nucleic acids (e.g., phosphoroamidate DNA) can be used so that a reactive group can be attached to the nitrogen center provided by the modified phosphate backbone.

In preferred embodiments, modification of a nucleic acid, e.g., as described above, does not substantially impair the ability of the nucleic acid or nucleic acid sequence to hybridize to its complement. Thus, any modification should preferably avoid substantially modifying the functionalities of the nucleic acid which are responsible for Watson-Crick base pairing. The nucleic acid can be modified such that a non-terminal reactive group is present, and the nucleic acid, when immobilized to the support, is capable of self-complementary base pairing to form a “hairpin” structure having a duplex region.

Examples of insoluble supports for use in the instant invention include beads (silica gel, controlled pore glass, magnetic beads, biomagnetic separation beads such as DynabeadsR, Wang resin; Merrifield resin, which is chloromethylated copolystyrene—divinylbenzene(DVB) resin, SephadexR/SepharoseR beads, cellulose beads, etc.), capillaries, flat supports such as glass fiber filters, glass surfaces, metal surfaces (steel, gold, silver, aluminum, silicon and copper), plastic materials including multiwell plates or membranes (e.g., of polyethylene, polypropylene, polyamide, polyvinylidenedifluoride), wafers, combs, pins or needles (e.g., arrays of pins suitable for combinatorial synthesis or analysis) or beads in an array of pits or nanoliter wells of flat surfaces such as wafers (e.g. silicon wafers), wafers with pits with or without filter bottoms.

An appropriate “bead” for use in the instant invention includes any three dimensional structure that can be conjugated to a solid support and provides an increased surface area for binding of DNA. Preferably the bead is of a size in the range of about 1 to about 100 μm in diameter. For use in the invention, a bead can be made of virtually any insoluble or solid material. For example, the bead can be comprised of silica gel, glass (e.g. controlled-pore glass (CPG)), nylon, Wang resin, Merrifield resin, SephadexR/SepharoseR, cellulose, magnetic beads, DynabeadsR, a metal surface (e.g. steel, gold, silver, aluminum, silicon and copper), a plastic material (e.g., polyethylene, polypropylene, polyamide, polyester, polyvinylidenedifluoride (PVDF)) and the like. Beads can be swellable, e.g., polymeric beads such as Wang resin, or non-swellable (e.g., CPG).

As used herein, the term “conjugated” refers to ionic or covalent attachment. Preferred conjugation means include: streptavidin- or avidin- to biotin interaction; hydrophobic interaction; magnetic interaction (e.g. using functionalized Dynabeads); polar interactions, such as “wetting” associations between two polar surfaces or between oligo/polyethylene glycol; formation of a covalent bond, such as an amide bond, disulfide bond, thioether bond, or via crosslinking agents; and via an acid-labile linker. In a preferred embodiment for conjugating nucleic acids to beads, the conjugating means introduces a variable spacer between the beads and the nucleic acids. In another preferred embodiment, the conjugation is photocleavable (e.g. streptavidin- or avidin- to biotin interaction can be cleaved by a laser, for example for mass spectrometry).

Appropriate cross-linking agents for use in the invention include a variety of agents that are capable of reacting with a functional group present on a surface of the bead, insoluble support and or nucleic acid and with a functional group present in the nucleic acid and/or bead, respectively. Reagents capable of such reactivity include homo- and hetero-bifunctional reagents, many of which are known in the art. Heterobifunctional reagents are preferred. A preferred bifunctional cross-linking agent is N-succinimidyl(4-iodoacetyl) aminobenzoate (SIAB). However, other crosslinking agents, including, without limitation, dimaleimide, dithio-bis-nitrobenzoic acid (DTNB), N-succinimidyl-S-acetyl-thioacetate (SATA), N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP), succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC) and 6-hydrazinonicotimide (HYNIC) may also be used in the novel process. In certain embodiments, the cross-linking agent can be selected to provide a selectively cleavable bond when the nucleic acid molecule is immobilized on the insoluble support. For example, a photolabile cross-linker such as 3-amino-(2-nitrophenyl)propionic acid (Brown et al. (1995) Molecular Diversity 4-12 and Rothschild et al (1996) Nucleic Acids Res. 24:351-66) can be employed to provide a means for cleaving the nucleic acid from the beads or insoluble (e.g., solid) support, if desired. For further examples of cross-linking reagents, see, e.g., S. S. Wong, “Chemistry of Protein Conjugation and Cross-Linking,” CRC Press (1991), and G. T. Hermanson, “Bioconjugate Techniques,” Academic Press (1995).

In one preferred embodiment, a covalent amide bond is formed between a bead and a insoluble support by reacting a carboxyl-functionalized bead with an amino-functionalized solid support (e.g., as described in Example 1, below, by reacting a carboxyl-functionalized Wang resin with an amino-functionalized silicon surface). Alternatively, a carboxyl-functionalized support can be reacted with an amino-functionalized bead, which take advantage of an acid-cleavable bifunctional trityl protection scheme employed for nucleic acid attachment. The bifunctional trityl linker can also be attached to the 4-nitrophenyl active ester on a resin (e.g. Wang resin) via an amino group as well as from a carboxy group via an amino resin.

In the bifunctional trityl approach, the beads may require treatment with a volatile acid (e.g. formic acid, trifluoracetic acid, etc.) to ensure that the nucleic acid is cleaved and can be removed. In which case, the nucleic acid may be deposited as a beadless patch at the bottom of a well in the solid support or on the flat surface of the solid support. After addition of matrix solution, the nucleic acid can then be desorbed into the mass spectrometer, for example.

The hydrophobic trityl linkers can also be exploited as acid-labile linkers by using a volatile acid or an appropriate matrix solution (e.g. a matrix solution containing, for example, 3-hydroxypicolinic acid (3-HPA) to cleave the aminolink trityl group from the nucleic acid molecule). Also, the acid lability can be changed. For example, trityl, monomethoxy, dimethoxy- or trimethoxytrityl can be changed to the appropriate p-substituted and even more acid labile tritylamine derivatives of the nucleic acids (i.e. trityl ether and tritylamine bonds to the nucleic acid can be made). Therefore, the nucleic acid may be removed from the hydrophobic linker, for example, by disrupting the hydrophobic attraction or by cleaving tritylether or tritylamine bonds under acidic or the usual mass spectrometry conditions (e.g. wherein the matrix, such as 3-HPA acts as an acid)

As pointed out above, the bead can also be associated with the solid support by non-covalent interactions. For example, a magnetic bead (e.g., a bead capable of being magnetized, e.g., a ferromagnetic bead) can be attracted to a magnetic solid support, and can be released from the support by removal of the magnetic field. Alternatively, the bead can be provided with an ionic or hydrophobic moiety, which can associate with, respectively, an ionic or hydrophobic moiety of the solid support. Also, a bead can be provided with a member of a specific binding pair, and become immobilized to a solid support provided with a complementary binding moiety. For example, a bead coated with avidin or streptavidin can be bound to a surface coated with biotin or derivatives of biotin such as imino-biotin. It will be appreciated that the binding members can be reversed, e.g., a biotin-coated bead can bind to a streptavidin-coated solid support. Other specific binding pairs contemplated for use in the invention include hormone-receptor, enzyme-substrate, nucleic acid-complementary nucleic acid, antibody-antigen and the like.

Examples of preferred binding pairs or linker/interactions are shown in the following Table 1

TABLE 1
LINKER/INTERACTION EXAMPLES
streptavidin-biotina,c/photolabile biotinb biotinylated pin, avidin beads,
photolabile biotin DNA
hydrophobica C18-coated pin, tritylated DNA
magnetica electromagnetic pin, steptavidin
Dynabeads, biotin DNA
acid-labile linkerb glass pin, bifunctional trityl-
linked DNA
amide bond(s)c silicon wafer, Wang resin,
amino-linked DNA
disulfide bonda silicon wafer, beads are bound
on the flat surface forming
arrays or in arrays of nanoliter
wells, thiol beads, thiolated DNA
photocleavable bond/linker
thioether bondc silicon wafer, beads are bound
on the flat surface forming
arrays or in arrays of nanoliter
wells, thiolated DNA
aThese interactions are reversible.
bThese non-reversible interactions are rapidly cleaved.
cUnless cleavable-linkers are incorporated at some point in the scheme, only the complement of the solid-bound DNA can be analysed in these schemes.

In a particularly preferred embodiment the bead is conjugated to the solid support and/or the nucleic acid is conjugated to the bead using an acid-labile bond. For example, use of a trityl linker, as further described in the following Examples 2 and 3, can provide a covalent or hydrophobic conjugation. Regardless of the nature of the conjugation, the trityl group is readily cleaved in acidic conditions.

A nucleic acid can be bound to a bead which is itself bound to a solid support, e.g., by any of the chemistries discussed above for the attachment of nucleic acids to solid supports, or attachment of beads to solid supports.

In certain embodiments, the invention contemplates the use of orthogonally-cleavable linkers for binding the bead to the solid support, and for binding the nucleic acid to the bead. Thus, a bead can be selectively cleaved from the surface without cleaving the nucleic acid from the bead, while the nucleic acid is cleaved from the bead at a later stage. For example, a disulfide linker (which can be cleaved, using, e.g., DTT) could be employed to bind the bead to the solid surface, and a bead-nucleic acid linker involving an acid-cleavable bifunctional trityl group could be used to immobilize a nucleic acid to the bead. Alternatively the linkage of the nucleic acid could be cleaved while the linkage of the bead to the support remains intact.

A bead can be bound to a solid support through a linking group which can be selected to have a length and a chemical nature such that high-density binding of beads to the solid support, and/or high-density binding of nucleic acid to the beads, is promoted. Such a linking group would have a “tree-like” structure in providing a multiplicity of functional groups per attachment site on the solid support such as polylysine, polyglutamic acid, pentaerythrole and tris-hydroxy-aminomethane.

In certain embodiments, beads can be cross-linked to other beads, e.g., by use of homobifunctional crosslinking reagents. Cross-linked beads can provide additional mechanical strength compared to non-crosslinked beads.

The methods and compositions described herein, can be used to isolate (purify) target nucleic acids from biological samples (reactions). For example, the compositions and methods can be used to isolate particular nucleic acids, which are generated by cloning (Sambrook et al., Molecular Cloning : A Laboratory Manual, Cold Spring Harbor Laboratory Press, 1989), polymerase chain reaction (PCR) (C. R. Newton and A. Graham, PCR, BIOS Publishers, 1994), ligase chain reaction (LCR) (Wiedmann, M., et. al., (1994) PCR Methods Appl. Vol. 3, Pp. 57-64; F. Barany Proc. Natl. Acad. Sci USA 88, 189-93 (1991), strand displacement amplification (SDA) (G. Terrance Walker et al., Nucleic Acids Res. 22, 2670-77 (1994)) European Patent Publication Number 0 684 315 entitled “Strand Displacement Amplification Using Thernophilic Enzymes”) and variations such as RT-PCR (Higuchi, et al., Bio/Technology 11:1026-1030 (1993)), allele-specific amplification (ASA), cycle sequencing and transcription based processes.

Further, the methods and compositions can be used to isolate or transfer particular nucleic acids during the performance of a particular reaction. For example, a PCR reaction can be performed to ‘master’ mix without addition of the dideoxynucleotides (d/ddNTPs) or sequencing primers. Aliquots can then be isolated via a conjugation means described herein and transferred, for example to a sequencing plate, where d/ddNTPs and primers can then be added to perform a sequencing reaction. Alternatively, the PCR can be split between A, C, G, and T master mixes. Aliquots can then be transferred to a sequencing plate and sequencing primers added.

For example, 0.4-0.5 pmol of PCR product can be used in a cycle-sequencing reaction using standard conditions, allowing each PCR to be used for 10 sequencing reactions (10×A, C, G, and T). The sequencing reactions can be carried out in a volume of 10 μl containing 5-6 pmol of 5′-labeled sequencing primer in a standard 384 microwell plate allowing up to 96 sequencing reactions (3360 bases at 35 bases per reaction). Alternatively, a 192 microwell plate approximately 5×5 cm in a 12×16 format can be used. This format allows up to 48 sequencing reactions to be carried out per well, resulting in 1680 bases per plate (at 35 bases per reaction). The format of the sequencing plate will determine the dimensions of the transfer agent (e.g. pin-tool).

A pin tool in a 4×4 array (FIG. 8) can be applied to the wells of the sequencing plate and the sequencing products captured on functionalized beads as described herein, which are attached to the tips of the pins (>=1 pmol capacity). During the capture/incubation step, the pins can be kept in motion (vertical, 1-2 mm travel) to mix the sequencing reaction and increase the efficiency of the capture.

Alternatively, the nucleic acid can be directly captured onto the pin-tool, for example, a linking functionality on the pin-tool can immobilize the nucleic acid upon contact. Further, immobilization can result from application to the pin-tool of an electrical field, as shown in FIG. 14. When a voltage is applied to the pin-tool, the nucleic acids are attracted to the anode. This system also purifies nucleic acids, since uncharged molecules remain in solution and positively charged molecules are attracted to the cathode. For more specificity, the pin-tool (with or without voltage), can be modified to contain a partially or fully single stranded oligonucleotide (e.g. about 5-12 base pairs). Only complementary nucleic acid sequences (e.g. in solution) are then specifically conjugated to the pins.

In yet a further embodiment, a PCR primer can be conjugated to the tip of a pin-tool. PCR can be performed with the solid phase (pin-tool)-bound primer and a primer in solution, so that the PCR product becomes attached to the pin-tool. The pin-tool with the amplification product can then be removed from the reaction and analyzed (e.g. by mass spectrometry).

Examples of different pin conformations are shown in FIG. 9. For example, FIGS. 9a, 9b. and 9c. show a solid pin configuration. FIGS. 9d. and 9e show pins with a channel or hole through the center, for example to accomodate an optic fibre for mass spectrometer detection. The pin can have a flat tip or any of a number of configurations, including nanowell, concave, convex, truncated conic or truncated pyramidal (e.g. size 4-800μ across ×100μ depth). In a preferred embodiment, the individual pins are about 5 mm in length and about 1 mm in diameter. The pins and mounting plate can be made of polystyrene (e.g. one-piece injection moulded). Polystyrene is an ideal material to be functionalised and can be moulded with very high tolerances. The pins in a pin-tool apparatus may be collapsible (eg, controlled by a scissor-like mechanism), so that pins may be brought into closer proximity, reducing the overall size.

Captured nucleic acids can be analyzed by any of a variety of means including, for example, spectrometric techniques such as UV/VIS, IR, fluorescence, chemiluminescence, or NMR spectroscopy, mass spectrometry, or other methods known in the art, or combinations thereof. Preferred mass spectrometer formats include ionization (I) techniques, such as matrix assisted laser desorption (MALDI), continuous or pulsed electrospray (ESI) and related methods (e.g. Ionspray or Thermospray), or massive cluster impact (MCI); these ion sources can be matched with detection formats including linear or non-linear reflectron time-of-flight (TOF), single or multiple quadrupole, single or multiple magnetic sector, Fourier Transform ion cyclotron resonance (FTICR), ion trap, and combinations thereof (e.g., ion-trap/time-of-flight). For ionization, numerous matrix/wavelength combinations (MALDI) or solvent combinations (ESI) can be employed.

If conditions preclude direct analysis of captured DNA, then the DNA can be released and/or transferred. However, it may be important that the advantages of sample concentration are not lost at this stage. Ideally, the sample should be removed from the surface in as little a volume of eluent as possible, and without any loss of sample. Another alternative is to remove the beads (+sample) from the surface, where relevant, and measure the sample directly from the beads.

For example, for detection by mass spectrometry, the pin-tool can be withdrawn and washed several times, for example in ammonium citrate to condition the sample before addition of matrix. For example, the pins can simply be dipped into matrix solution. The concentration of matrix can then be adjusted such that matrix solution only adheres to the very tip of the pin. Alternatively, the pintool can be inverted and the matrix solution sprayed onto the tip of each pin by a microdrop device. Further, the products can be cleaved from the pins, for example into a nanowell on a chip, prior to addition of matrix.

For analysis directly from the pins, a stainless steel ‘mask’ probe can be fitted over the pins in one scheme (FIG. 12) which can then be installed in the mass spectrometer.

Two mass spectrometer geometries for accomodating the pin-tool apparatus are proposed in FIG. 13. The first accomodates solid pins. In effect, the laser ablates a layer of material from the surface of the crystals, the resultant ions being accelerated and focused through the ion optics. The second geometry accomodates fibre optic pins in which the samples are lasered from behind. In effect, the laser is focused onto the pin-tool back plate and into a short optical fibre (about 100 μm in diameter and about 7 mm length to include thickness of the back plate). This geometry requires the volatilised sample to go through the depth of the matrix/bead mix, slowing and cooling down the ions resulting in a type of delayed extraction which should actually increase the resolution of the analysis.

The probe through which the pins are fitted can also be of various geometries. For example, a large probe with multiple holes, one for each pin, fitted over the pin-tool. The entire assembly is translated in the X-Y axes in the mass spectrometer. Alternatively, as a fixed probe with a single hole, which is large enough to give an adequate electric field, but small enough to fit between the pins. The pin-tool is then translated in all three axes with each pin being introduced through the hole for sequential analyses. This format is more suitable for the larger pin-tool (i.e. based on a standard 384 well microplate format). The two probes described above, are both suitable for the two mass spectrometer geometries described above.

FIG. 15 schematically depicts the steps involved in mass spectrometry sequencing by post biology capture as described above.

The methods of the invention are useful for providing spatially-addressable arrays of nucleic acids immobilized on beads, which are further attached to solid supports. Such spatially addressable or pre-addressable arrays are useful in a variety of processes (e.g., SBH, quality control, and DNA sequencing diagnostics). In another aspect, the invention provides combinatorial libraries of immobilized nucleic acids bound to beads, which are further bound to a solid support as described above.

In still another aspect, the invention provides a kit for immobilizing nucleic acids on beads, which are further bound to a solid support. In one embodiment, the kit comprises an appropriate amount of: i) beads, and/or ii) the insoluble support, and iii) conjugation means. The kits described herein can also optionally include appropriate buffers; containers for holding the reagents; and/or instructions for use.

The present invention is further illustrated by the following Examples, which are intended merely to further illustrate and should not be construed as limiting. The entire contents of all of the references (including literature references, issued patents, published patent applications, and co-pending patent applications) cited throughout this application are hereby expressly incorporated by reference.

A silicon surface (e.g. of a silicon wafer) is derivatized with amino groups by treatment with 3-aminopropyltriethoxysilane. Wang resin beads are treated with succinic anhydride to provide carboxyl-functionalized resin beads. The carboxyl-functionalized resin beads are then coupled to the amino-functionalized silicon surface with a coupling reagent (for example, dicyclohexylcarbodiimide (DCC)), in the presence of p-nitrophenol. The resin beads become covalently linked to the silicon surface, and the unreacted carboxyl groups of the resin are converted to the p-nitrophenyl ester (an activated ester suitable for coupling with a nucleic acid).

Alternatively, the carboxyl groups of the Wang resin are transformed to the p-nitrophenyl active esters prior to reacting with the amino-functionalized silicon surface.

Thus, resin beads can be rapidly and conveniently attached to a silicon surface, and can be simultaneously converted to a reactive form suitable for covalent attachment of nucleic acids.

Aminolink DNA was prepared and purified according to standard methods. A portion (10 eq) was evaporated to dryness on a speedvac and suspended in anhydrous DMF/pyridine (9:1; 0.1 ml). To this was added the chlorotrityl chloride resin (1 eq, 1.05 mol/mg loading) and the mixture was shaken for 24 hours. The loading was checked by taking a sample of the resin, detritylating this using 80% AcOH, and measuring the absorbance at 260nm. Loading was ca. 150 pmol/mg resin.

In 80% acetic acid, the half-life of cleavage was found to be substantially less than 5 minutes—this compares with trityl ether-based approaches of half-lives of 105 and 39 minutes for para and meta substituted bifunctional dimethoxytrityl linkers respectively. Preliminary results have also indicated that the 3-hydroxy picolinic acid matrix alone is sufficient to cleave the DNA from the chlorotrityl resin during MALDI mass spectrometry.

The primer contained a 5′-dimethoxytrityl group attached using routine trityl-on DNA synthesis.

C18 beads from an oligo purification cartridge (0.2 mg) placed in a filter tip was washed with acetonitrile, then the solution of DNA (50 ng in 25 l) was flushed through. This was then washed with 5% acetonitrile in ammonium citrate buffer (70 mM, 250 l). To remove the DNA from the C18, the beads were washed with 40% acetonitrile in water (10 l) and concentrated to ca 2 l on the Speedvac or directly subjected to MALDI mass spectrometry.

Alternatively C18 beads were first covalently attached to a silicon surface (e.g. a silicon wafer) or adsorbed to a flat surface by hydrophobic interaction.

The results showed that acetonitrile/water at levels of ca.>30% are enough to dissociate the hydrophobic interaction. Since the matrix used in MALDI contains 50% acetonitrile, the DNA can be released from the support and MALDIed successfully (with the trityl group removed during the MALDI process).

Amino derivatisation of silicon surface

The silicon wafers were washed with ethanol to remove surface debris and flamed over a bunsen burner until “red hot” to ensure oxidation of the surface. After cooling, the wafers were immersed in an anhydrous solution of 3-aminopropyltriethoxysilane in toluene (25%v/v) for 3 hours. The wafers were then washed with toluene (three times) then anhydrous dimethylacetamide (three times).

Activation of Wang resin beads

Vacuum-dried Wang resin beads (5g, 0.84mmol/g loading, 4.2 mmol, diameter 100-200 mesh), obtained from Novabiochem, were suspended in pyridine (40 ml) with DMAP (0.1 eq, 0.42 mmol, 51 mg). To this was added succinic anhydride (5 eq, 21 mmol, 2.10 g) and the reaction was shaken for 12 hours at room temperature. After this time, the beads were washed with dimethylformamide (three times), then pyridine (three times) and suspended in pyridine/dimethylformamide (1:1, 20 ml). 4-Nitrophenol (2 eq, 8.4 mmol, 1.40 g) was added and the condensation was activated by adding dicyclohexylcarbodiimide (DCC) (2 eq, 8.4 mmol, 1.73 g) and the reaction mixture was shaken for 12 hours. The beads were then washed with dimethylformamide, pyridine and hexane, and stored at 4 C.

Coupling of Beads to Silicon Wafers

The amino-derivatised silicon wafer is treated with a suspension of the 4-nitrophenol beads in dimethyl acetamide (DMA), and within five minutes, the beads are covalently linked to the surface. The coated surface can then be washed with DMA, ethanol and water, under which conditions the beads remain as a uniform monolayer. Care must be taken to avoid scratching the beaded surface. The beads can then be reacted with the amino-functionalised modified DNA.

2-iminobiotin N-hydroxy-succinimid ester (Sigma) was conjugated to the oligonucleotides with a 3′- or 5′-amino linker following the conditions suggested by the manufacture. The completion of the reaction was confirmed by MALDI-TOF MS analysis and the product was purified by reverse phase HPLC.

For each reaction, 0.1 mg of streptavidin-coated magnetic beads (Dynabeads M-280 Streptavidin from Dynal) were incubated with 80 pmol of the corresponding oligo in the presence of 1M NaCl and 50 mM ammonium carbonate (pH 9.5) at room temperature for one hour. The beads with bound oligonucleotides were washed twice with 50 mM ammonium carbonate (pH 9.5). Then the beads were incubated in 2 μl of 3-HPA matrix at room temperature for 2 min. An aliquot of 0.5 μl of supernatant was applied to MALDI-TOF. For biotin displacement experiment, 1.6 nmol of free biotin (80 fold excess to the bound oligo) in 1 μl of 50 mM ammonium citrate was added to the beads. After a 5 min. incubation at room temperature, 1 μl of 3-HPA matrix was added and 0.5 μl of supernatant was applied to MALDI-TOF MS. To maximize the recovery of the bound iminobiotin oligo, the beads from the above treatment were again incubated with 2 μl of 3-HPA matrix and 0.5 μl of the supernatant was applied to MALDI-TOF MS.

Both matrix alone and free biotin treatment quantitatively released iminobiotin oligo off the streptavidin beads as shown in FIGS. 5 and 6. Almost no bound oligo was observed after the second treatment which confirmed the complete recovery

Equivalents

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, numerous equivalents to the specific procedures described herein. Such equivalents are considered to be within the scope of this invention and are covered by the following claims.

Köster, Hubert, Lough, David M.

Patent Priority Assignee Title
10101336, Apr 25 2013 ADEPTRIX CORP Eluting analytes from bead arrays
10451631, Apr 25 2013 ADEPTRIX CORP Microarray compositions and methods of their use
11131674, Apr 25 2013 ADEPTRIX CORP Microarray compositions and methods of their use
9618520, Apr 25 2013 ADEPTRIX CORP Microarray compositions and methods of their use
Patent Priority Assignee Title
4139346, Nov 28 1977 Enzo Bio Chem Incorporated Nucleic acid and protein binding paper
4582789, Mar 21 1984 Roche Molecular Systems, Inc Process for labeling nucleic acids using psoralen derivatives
4683194, May 29 1984 HOFFMANN-LA ROCHE, INC Method for detection of polymorphic restriction sites and nucleic acid sequences
4683195, Oct 25 1985 Roche Molecular Systems, Inc Process for amplifying, detecting, and/or-cloning nucleic acid sequences
4725677, Aug 18 1983 Millipore Corporation Process for the preparation of oligonucleotides
4729947, Mar 29 1984 BOARD OF REGENTS OF THE UNIVERSITY OF NEBRASKA, THE,A PUBLIC BODY CORP OF NEBRASKA DNA sequencing
4749742, Jul 18 1986 The Queens's University of Belfast Solid phase peptide synthesis
4757141, Aug 26 1985 Applied Biosystems, LLC Amino-derivatized phosphite and phosphate linking agents, phosphoramidite precursors, and useful conjugates thereof
4794150, Mar 11 1987 EDWIN D SCHINDLER, 1523 EAST 4TH STREET, BROOKLYN, NEW YORK 11230 Synthesis of peptide analogs
4797355, Jun 13 1985 Amgen Inc Methods for attaching polynucleotides to supports
4806546, Sep 30 1985 MILES INC Immobilization of nucleic acids on derivatized nylon supports
4855225, Feb 07 1986 Applied Biosystems, LLC Method of detecting electrophoretically separated oligonucleotides
4882127, Aug 06 1984 Akademie der Wissenschaften der DDR Device for solid phase sequencing of nucleic acid fragments
4948882, Feb 22 1983 SYNGENE, INC Single-stranded labelled oligonucleotides, reactive monomers and methods of synthesis
4983521, Oct 26 1983 The Regents of the University of California Transmembrane integrator sequences
4994373, Jan 21 1983 Enzo Life Sciences, Inc Method and structures employing chemically-labelled polynucleotide probes
5003059, Jun 20 1988 Beckman Coulter, Inc Determining DNA sequences by mass spectrometry
5037882, Mar 11 1987 Synthesis of oligonucleotide analogs
5045694, Sep 27 1989 ROCKEFELLER UNIVERSITY, THE, 1230 YORK AVENUE, NEW YORK, NY 10021, A CORP OF NY Instrument and method for the laser desorption of ions in mass spectrometry
5064754, Dec 14 1984 Genomic sequencing method
5077210, Jan 13 1989 Science Applications International Corporation Immobilization of active agents on substrates with a silane and heterobifunctional crosslinking agent
5082935, Dec 15 1988 Amoco Corporation Diagnostic reagents made by attaching cytidine containing nucleic acid probes to amino functionalized solid supports by bisulfite mediated transamination
5118605, Oct 16 1984 Chiron Diagnostics Corporation Polynucleotide determination with selectable cleavage sites
5118937, Aug 22 1989 Sequenom, Inc Process and device for the laser desorption of an analyte molecular ions, especially of biomolecules
5135870, Jun 01 1990 Arizona Board of Regents; Arizona Board of Regents, a Body Corporate of the State of Arizona, Acting for and on Behalf of Arizona State University Laser ablation/ionizaton and mass spectrometric analysis of massive polymers
5149625, Aug 04 1988 President and Fellows of Harvard College Multiplex analysis of DNA
5198531, Jun 14 1991 Research Diagnostic Antibodies Polymeric resin for peptide synthesis
5210412, Jan 31 1991 Wayne State University; WAYNE STATE UNIVERSITY, A CORP OF MICHIGAN; WAYNE STATE UNIVERSITY, A CORP OF MICHIGAN Method for analyzing an organic sample
5221518, Dec 14 1984 DNA sequencing apparatus
5234824, Nov 13 1990 Specialty Laboratories, Inc. Rapid purification of DNA
5237016, Jan 05 1989 Akzo Nobel N V End-attachment of oligonucleotides to polyacrylamide solid supports for capture and detection of nucleic acids
5242974, Nov 22 1991 AFFYMETRIX INC , A CORP OF DE Polymer reversal on solid surfaces
5283342, Jun 09 1992 ALETHEON PHARMACEUTICALS, INC Biotinylated small molecules
5288644, Apr 04 1990 The Rockefeller University Instrument and method for the sequencing of genome
5380489, Feb 18 1992 Clinical Diagnostic Systems Element and method for nucleic acid amplification and detection using adhered probes
5380833, Oct 16 1984 Chiron Diagnostics Corporation Polynucleotide reagents containing selectable cleavage sites
5410068, Oct 23 1989 PerSeptive Biosystems, Inc Succinimidyl trityl compounds and a process for preparing same
5430136, Oct 14 1984 Chiron Diagnostics Corporation Oligonucleotides having selectably cleavable and/or abasic sites
5436327, Sep 21 1988 Oxford Gene Technology Limited Support-bound oligonucleotides
5474895, Nov 14 1990 Akzo Nobel N V Non-isotopic detection of nucleic acids using a polystyrene support-based sandwich hybridization assay and compositions useful therefor
5478893, Jan 05 1989 Akzo Nobel N V End-attachment of oligonucleotides to polyacrylamide solid supports for capture and detection of nucleic acids
5484701, Jan 26 1990 E. I. du Pont de Nemours and Company Method for sequencing DNA using biotin-strepavidin conjugates to facilitate the purification of primer extension products
5492821, Nov 14 1990 CARGILL, INCORPORATED A DE CORP Stabilized polyacrylic saccharide protein conjugates
5503980, Nov 06 1992 Trustees of Boston University Positional sequencing by hybridization
5506348, Feb 26 1993 Ciba-Geigy Corporation Matrix for matrix-assisted laser desorption mass spectroscopy
5512439, Nov 21 1988 Life Technologies AS Oligonucleotide-linked magnetic particles and uses thereof
5514548, Feb 17 1993 MORPHOSYS AG Method for in vivo selection of ligand-binding proteins
5516635, Oct 15 1991 Multilyte Limited Binding assay employing labelled reagent
5527675, Aug 20 1993 Applied Biosystems, LLC Method for degradation and sequencing of polymers which sequentially eliminate terminal residues
5541313, Feb 22 1983 Molecular Biosystems, Inc. Single-stranded labelled oligonucleotides of preselected sequence
5545539, Oct 18 1994 Esoterix Genetic Laboratories, LLC Method for nucleotide sequence amplification
5547835, Jan 07 1993 BIOSCIENCES ACQUISITION COMPANY; AGENA BIOSCIENCE, INC DNA sequencing by mass spectrometry
5552535, Apr 03 1992 Avecia Biotechnology Inc Multiple oligonucleotide containing oligomers and the cleanable linkers used in their preparation
5571902, Jul 29 1993 Isis Pharmaceuticals, Inc Synthesis of oligonucleotides
5580733, Jan 31 1991 Wayne State University Vaporization and sequencing of nucleic acids
5583042, Apr 16 1990 The Trustees of the University of Pennsylvania Apparatus for the synthesis of saccharide compositions
5601982, Feb 07 1995 Method and apparatus for determining the sequence of polynucleotides
5604097, Oct 13 1994 ILLUMINA, INC Methods for sorting polynucleotides using oligonucleotide tags
5605798, Jan 07 1993 BIOSCIENCES ACQUISITION COMPANY; AGENA BIOSCIENCE, INC DNA diagnostic based on mass spectrometry
5612474, Jun 30 1994 Eli Lilly and Company Acid labile immunoconjugate intermediates
5616698, Jan 10 1994 University of Toronto Innovations Foundation Polymer-supported solution synthesis of oligosaccharides
5616700, Apr 24 1992 BECKMAN INSTRUMENTS, INC Processes for synthesizing nucleotides and modified nucleotides using N.sub .
5622824, Mar 19 1993 BIOSCIENCES ACQUISITION COMPANY; AGENA BIOSCIENCE, INC DNA sequencing by mass spectrometry via exonuclease degradation
5624711, Apr 27 1995 AFFYMETRIX INC , A CORP OF DE Derivatization of solid supports and methods for oligomer synthesis
5631134, Nov 06 1992 The Trustees of Boston University Methods of preparing probe array by hybridation
5635598, Jun 21 1993 Aventisub II Inc Selectively cleavabe linners based on iminodiacetic acid esters for solid phase peptide synthesis
5639633, Nov 14 1990 Cargill, Incorporated Method for synthesizing peptides with saccharide linked enzyme polymer conjugates
5641862, May 02 1988 The Regents of the University of California General method for producing and selecting peptides with specific properties
5643722, May 11 1994 Trustees of Boston University Methods for the detection and isolation of proteins
5643798, Nov 23 1993 The Rockefeller University Instrument and method for the sequencing of genome
5648462, Oct 09 1990 UDAKA, SETSUKO Peptide purification method using novel linker and solid-phase ligand
5648480, Feb 01 1993 Northwestern University Process for making oligonucleotides having modified internucleoside linkages
5650277, Jul 02 1992 Diagenetics Ltd. Method of determining the presence and quantifying the number of di- and trinucleotide repeats
5652358, Dec 17 1993 Hoechst Aktiengesellschaft Solid-phase synthesis of oligoribonucleotides
5663242, Jan 05 1989 Akzo Nobel N V End-attachment of oligonucleotides to polyacrylamide solid supports for capture and detection of nucleic acids
5668266, Feb 22 1983 Syngene, Inc. Synthesis of single-stranded labelled oligonucleotides of preselected sequence
5670322, Nov 19 1991 Multi site molecule detection method
5677195, Nov 22 1991 AFFYMETRIX INC , A CORP OF DE Combinatorial strategies for polymer synthesis
5679773, Jan 17 1995 NEXUS BIOSYSTEMS, INC Reagants and methods for immobilized polymer synthesis and display
5691141, Jan 07 1993 BIOSCIENCES ACQUISITION COMPANY; AGENA BIOSCIENCE, INC DNA sequencing by mass spectrometry
5700642, May 22 1995 BIOSCIENCES ACQUISITION COMPANY; AGENA BIOSCIENCE, INC Oligonucleotide sizing using immobilized cleavable primers
5726243, Jun 30 1993 Regents of the University of Minnesota Mild solid-phase synthesis of aligned, branched triple-helical peptides
5736625, Nov 14 1990 Cargill, Incorporated Method for stabilizing proteins with saccharide linked protein polymer conjugates
5736626, Jan 29 1996 Applied Biosystems, LLC Solid support reagents for the direct synthesis of 3'-labeled polynucleotides
5742049, Dec 21 1995 Bruker-Franzen Analytik GmbH Method of improving mass resolution in time-of-flight mass spectrometry
5795714, Nov 06 1992 BOSTON UNIVERSITY, TRUSTEES OF Method for replicating an array of nucleic acid probes
5830655, May 22 1995 BIOSCIENCES ACQUISITION COMPANY; AGENA BIOSCIENCE, INC Oligonucleotide sizing using cleavable primers
5864137, Oct 01 1996 BIOSCIENCES ACQUISITION COMPANY; AGENA BIOSCIENCE, INC Mass spectrometer
5869242, Sep 18 1995 BIOSCIENCES ACQUISITION COMPANY; AGENA BIOSCIENCE, INC Mass spectrometry to assess DNA sequence polymorphisms
5900481, Nov 06 1996 BIOSCIENCES ACQUISITION COMPANY; AGENA BIOSCIENCE, INC Bead linkers for immobilizing nucleic acids to solid supports
6133436, Nov 06 1996 BIOSCIENCES ACQUISITION COMPANY; AGENA BIOSCIENCE, INC Beads bound to a solid support and to nucleic acids
6376044, Nov 12 1993 Waters Technologies Corporation Enhanced resolution matrix-laser desorption and ionization TOF-MS sample surface
DE3930312,
DE4011991,
EP215669,
EP217403,
EP219695,
EP253578,
EP264036,
EP360677,
EP392546,
EP396116,
EP412883,
EP420053,
EP440193,
EP455905,
EP456304,
EP544450,
EP684315,
EP701001,
EP937097,
EP544450,
GB2017105,
JP2215399,
JP6294796,
JP63230086,
RE41005, Nov 06 1996 BIOSCIENCES ACQUISITION COMPANY; AGENA BIOSCIENCE, INC Beads bound to a solid support and to nucleic acids
WO8402579,
WO8810313,
WO8909282,
WO8909406,
WO8912624,
WO9001564,
WO9003382,
WO9007582,
WO9015883,
WO9106678,
WO9108307,
WO9113075,
WO9117427,
WO9203575,
WO9204465,
WO9207096,
WO9207879,
WO9210092,
WO9210743,
WO9213629,
WO9215712,
WO9306925,
WO9308472,
WO9309668,
WO9320236,
WO9411421,
WO9411529,
WO9411530,
WO9411735,
WO9416101,
WO9419693,
WO9421822,
WO9504524,
WO9530773,
WO9531429,
WO9601836,
WO9619587,
WO9629431,
WO9632504,
WO9636731,
WO9636732,
WO9637630,
WO9708306,
WO9716699,
WO9733000,
WO9737041,
WO9742348,
WO9743617,
WO9812355,
WO9820019,
WO9820020,
WO9820166,
WO9854751,
/////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jan 12 1998KOSTER, HUBERTSequenom, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0238500210 pdf
May 14 1998LOUGH, DAVID MSequenom, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0238500210 pdf
Jul 22 2009SEQUENOM, INC.(assignment on the face of the patent)
May 30 2014Sequenom, IncBIOSCIENCES ACQUISITION COMPANYASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0331820062 pdf
May 30 2014BIOSCIENCES ACQUISITION COMPANYAGENA BIOSCIENCE, INC CHANGE OF NAME SEE DOCUMENT FOR DETAILS 0332480073 pdf
Jan 31 2017AGENA BIOSCIENCE, INC MIDCAP FINANCIAL TRUSTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0416210548 pdf
Mar 17 2017AGENA BIOSCIENCE, INC MIDCAP FINANCIAL TRUST, AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0420500888 pdf
Jul 12 2021MIDCAP FINANCIAL TRUSTAGENA BIOSCIENCE, INC RELEASE OF SECURITY INTEREST IN REEL 041621 FRAME 05480568600557 pdf
Oct 20 2021MIDCAP FUNDING IV TRUSTAGENA BIOSCIENCE, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0587410005 pdf
Date Maintenance Fee Events


Date Maintenance Schedule
Jan 07 20174 years fee payment window open
Jul 07 20176 months grace period start (w surcharge)
Jan 07 2018patent expiry (for year 4)
Jan 07 20202 years to revive unintentionally abandoned end. (for year 4)
Jan 07 20218 years fee payment window open
Jul 07 20216 months grace period start (w surcharge)
Jan 07 2022patent expiry (for year 8)
Jan 07 20242 years to revive unintentionally abandoned end. (for year 8)
Jan 07 202512 years fee payment window open
Jul 07 20256 months grace period start (w surcharge)
Jan 07 2026patent expiry (for year 12)
Jan 07 20282 years to revive unintentionally abandoned end. (for year 12)