A data inversion register technique for integrated circuit memory testing in which data input signals are selectively inverted in a predetermined pattern to maximize the probability of identifying failures during testing. In accordance with the technique of the present invention, on predetermined input/outputs (I/Os,) data inputs may be inverted to create a desired test pattern (such as data stripes) which are “worst case” for I/O circuitry or column stripes which are “worst case” for memory arrays. A circuit in accordance with the technique of the present invention then matches the pattern for the data out path, inverting the appropriate data outputs to obtain the expected tester data. In this way, the test mode is transparent to any memory tester.
|
1. A testing technique for an integrated circuit device including a memory array, said technique comprising:
determining a first pattern of data inputs to be applied to said memory array;
inverting selected one or ones of data inputs of said first pattern of data inputs to create a second pattern of data inputs;
applying said second pattern of data inputs including said inverted selected ones to said memory array;
reading out a contents of said memory array;
further inverting said previously inverted selected ones of said applied pattern from said read out contents
inverting one or ones of said read out contents which correspond, respectively, to said inverted selected one or ones of data inputs of said first pattern of data inputs to create a read out pattern; and
comparing said applied first pattern of data inputs with said read out contents pattern.
8. A testing technique for an integrated circuit device including a memory array, said technique comprising:
dynamically providing a first pattern of data inputs to be applied to said memory array;
inverting selected one or ones of data inputs of said first pattern of data inputs to create a second pattern of data inputs;
applying said second pattern of data inputs including said inverted selected ones to said memory array;
reading out a contents of said memory array;
further inverting said previously inverted selected ones of said applied pattern from said read out contents
inverting one or ones of said read out contents which correspond, respectively, to said inverted selected one or ones of data inputs of said first pattern of data inputs to create a read out pattern; and
comparing said applied pattern of data inputs with said read out contents pattern.
0. 16. An apparatus comprising a circuit configured for testing of an integrated circuit device including a memory array,
wherein the circuit is configured for:
determining a first pattern of data inputs;
inverting selected one or ones of data inputs of said first pattern of data inputs to create a second pattern of data inputs;
applying said second pattern of data inputs to said memory array;
reading out contents of said memory array;
inverting one or ones of said read out contents which correspond, respectively, to said inverted selected one or ones of data inputs of said first pattern of data inputs to create a read out pattern; and
comparing said first pattern of data inputs with said read out pattern.
0. 22. An apparatus comprising a circuit configured for testing of an integrated circuit device including a memory array,
wherein the circuit is configured for:
dynamically providing a first pattern of data inputs;
inverting selected one or ones of data inputs of said first pattern of data inputs to create a second pattern of data inputs;
applying said second pattern of data inputs to said memory array;
reading out contents of said memory array;
inverting one or ones of said read out contents which correspond, respectively, to said inverted selected one or ones of data inputs of said first pattern of data inputs to create a read out pattern; and
comparing said first pattern of data inputs with said read out pattern.
2. The technique of
selecting is a pattern of said data input inputs intended to test an input/output portion of said integrated circuit device.
3. The technique of
utilizing of data inputs includes data stripes in said selected pattern.
4. The technique of
selecting is a pattern of said data input inputs intended to test said memory array of said integrated circuit device.
5. The technique of claim 2 4 wherein said selecting of said first pattern comprises:
utilizing of data inputs includes column stripes in said selected pattern.
6. The technique of
0. 7. The technique of
9. The technique of
selecting is a pattern of said data input inputs intended to test an input/output portion of said integrated circuit device.
10. The technique of
utilizing of data inputs includes data stripes in said selected pattern.
11. The technique of
selecting is a pattern of said data input inputs intended to test said memory array of said integrated circuit device.
12. The technique of claim 9 11 wherein said selecting of said first pattern comprises:
utilizing of data inputs includes column stripes in said selected pattern.
13. The technique of
14. The technique of
0. 15. The technique of
0. 17. The apparatus of claim 16, wherein said first pattern of data inputs is a pattern of data inputs intended to test an input/output portion of said integrated circuit device.
0. 18. The apparatus of claim 17, wherein said first pattern of data inputs includes data stripes.
0. 19. The apparatus of claim 16, wherein said first pattern of data inputs is a pattern of data inputs intended to test said memory array of said integrated circuit device.
0. 20. The apparatus of claim 19, wherein said first pattern of data inputs includes column stripes.
0. 21. The apparatus of claim 16, wherein a number of said data inputs of said first pattern is less than a width of a data bus of said memory array.
0. 23. The apparatus of claim 22, wherein said first pattern of data inputs is a pattern of data inputs intended to test an input/output portion of said integrated circuit device.
0. 24. The apparatus of claim 23, wherein said first pattern includes data stripes.
0. 25. The apparatus of claim 22, wherein said first pattern of data inputs is a pattern of data inputs intended to test said memory array of said integrated circuit device.
0. 26. The apparatus of claim 25, wherein said first pattern of data inputs includes column stripes.
0. 27. The apparatus of claim 22, wherein said dynamically providing said first pattern of data inputs is carried out by means of a programmable register.
0. 28. The apparatus of claim 22, wherein a number of said data inputs of said first pattern is less than a width of a data bus of said memory array.
|
The present invention relates, in general, to the field of integrated circuit memory devices and those devices incorporating embedded memory. More particularly, the present invention relates to a data inversion register technique for integrated circuit memory testing which results in a maximization of the probability of identifying device failures during testing.
With today's standard dynamic random access memory (DRAM) devices, input/output (I/O) widths are becoming ever larger with 32 bit widths and wider being relatively common. In comparison, embedded DRAM circuits may contain even wider I/O widths including those having 256 data in (Din) and 256 data out (Dout) widths and wider.
Manufacturing testing of these wide I/O DRAM circuits is particularly challenging. Data compression test modes have been used to meet this challenge but these techniques lack the pattern capability needed to exercise the full memory array and data path. Further, conventional data path circuits do not have the capability for writing data stripes from a single data input signal.
The data inversion register technique of the present invention is, therefore, operative to invert data input signals in a predetermined pattern to maximize the probability of identifying failures and defects during testing of memory arrays.
On predetermined I/Os, the technique of the present invention is operative to invert data inputs to create a desired test pattern which is, for example, the “worst case” for I/O circuitry such as data stripes. In addition, the technique of the present invention may also invert data inputs to produce a test pattern which is the “worst case” for memory arrays, such as column stripes. A circuit in accordance with the technique of the present invention then matches the pattern for the data out path, inverting the appropriate data outputs to obtain expected tester data. In this way, the test mode is transparent to any memory tester.
While in the test mode, the invert data (ID) control input can be “high” or “low”, allowing the inversion to take place on these selected data lines or not. The selected data lines for inversion can be hard wired so that “even” or “odd” data gets inverted or in accordance with another pattern such as 1-of-8 data bits being inverted or controlled by a register. With register control, the bits that are inverted can change as desired by the user.
The technique of the present invention therefore allows for a reduced number of data inputs (all the way down to and including one) to be supplied to the DRAM. For example, for ease of testing, one data bit can be supplied to all of the DRAM chip or macro block data inputs. In accordance with the present invention, a more interesting data pattern can be applied to the actual memory array than simply all “ones” or “zeroes”.
The data outputs may also be multiplexed, or compressed down, to a reduced number, all the way down to and including a single output if desired. In accordance with one embodiment of the present invention disclosed herein, the output data path is simply matched to the data in path with an ID controlled inverter. Another embodiment of the present invention contemplates multiplexing the data down to a more narrow output width for testing ease and control which data bits get inverted with the actual multiplexed addresses. This serves to reduce the number of data inverters needed on the output path.
Particularly disclosed herein is a testing technique for an integrated circuit device including a memory array. The technique comprises determining a pattern of data inputs to be applied to the memory array, inverting selected ones of the pattern of data inputs, applying the pattern of data inputs including the inverted selected ones to the memory array, reading out the contents of the memory array, further inverting the previously inverted selected ones of the applied pattern from the read out contents and comparing the applied pattern of data inputs with the read out contents.
The aforementioned and other features and objects of the present invention and the manner of attaining them will become more apparent and the invention itself will be best understood by reference to the following description of a preferred embodiment taken in conjunction with the accompanying drawings, wherein:
With reference now to
With reference additionally now to
With reference additionally now to
As shown, a number of test mode input drivers 400 (e.g. drivers 0 through 3) are illustrated, each coupled to received data input on a common connected DATA IN line as shown. Even numbered ones of the test mode input drivers 400 have an input coupled to a supply voltage source while odd numbered ones receive an IDDB signal from a decoder 304 which will be illustrated in more detail hereinafter. The test mode input drivers 400 supply the data input (D) to the DRAM (not shown).
Data output (Q) from the DRAM is supplied as one input to a number of Exclusive OR (EXOR) circuits 500 (e.g. circuits 0 through 3) which also receive an IDQ signal output from the decoder 304. Decoder 304 receives a number of SEL bit inputs in order to select which EXOR 500, and which input drivers 400, will be operated on during the invention test mode. These select bits, four required in this representative example, are the same select bits that are used for the final data multiplexer. As shown, the outputs of the EXOR circuits 500 are provided as inputs to a 4:1 multiplexer 308 for selectively supplying the test data output (Q). The 4:1 multiplexer 308 will be illustrated and described in more detail hereinafter.
These select bits can be chosen for the given application. For example, bits 0 and 2 could be used to invert on even data lines instead of odd data lines or all four select bits could be used together to invert on all four data lines. These select bits can come from a test mode register so that the select data inversion bits can change.
With reference additionally now to
With reference additionally now to
Similarly, the data input on node DATA IN is coupled through another string of series connected inverters 410, 412 and 414 to the input of a second CMOS transmission gate 418. The IDDB signal from the decoder 304 (
In operation, the test data input driver 400A performs a data inversion function in the data path when the IDDB input is at a logic “low” level. When the IDDB input is at a logic “high” level, the test data input driver 400A outputs non-inverted data (D).
With reference additionally now to
Similarly, the data input on node TD is coupled through another string of series connected inverters 410, 412 and 414 to the input of a second CMOS transmission gate 418. An IDDB signal is supplied directly to the gate of the P-channel transistor of the transmission gate 416 as well as the gate of the N-channel transistor of the transmission gate 418. The IDDB signal is also inverted through an inverter 420 for application to the gate terminals of the N-channel transistor of transmission gate 416 and the P-channel transistor of transmission gate 418. The outputs of both transmission gates 416 and 418 are provided as input to a CMOS inverter 422 which has its output coupled to the input of an additional CMOS transmission gate 424. A TEST ENABLE signal is supplied to the gate of the N-channel transistor of the transmission gate 424 while an inverted signal through inverter 426 is supplied to the gate terminal of the P-channel transistor of the transmission gate 424. The data input (D) is taken at the output of the additional transmission gate 424.
In operation, the test data input driver 400B also performs a data inversion function in the data path when the IDDB input is at a logic “low” level. When the IDDB input is at a logic “high” level, the test data input driver 400B outputs Non Inverting Data when TEST ENABLE is “high” and when TEST ENABLE is “low” it places a high impedance (hi-Z) on the data output line (D) and allows the associated CPU or other circuitry (not shown) to drive the data.
With reference additionally now to
The EXOR circuit 500 also comprises a second string of series connected P-channel transistors 530, 532 and N-channel transistors 534, 536 also coupled between VCC and VSS as shown. The IDQ signal is supplied to the gate of transistor 536, an INB<0> signal is supplied to the gates of transistors 532 and 534 while the IDQB signal is supplied to the gate of transistor 530. The outputs of the first and second strings taken at the drain terminals of transistors 524 and 532 (node “SUM”) are coupled to the input of an inverter 538 comprising series connected P-channel and N-channel transistors coupled between VCC and VSS. Output of the inverter 538 supplies the EXOR output shown. Also as shown, an inverter 540 couples the gate of transistor 522 to the gate of transistor 530 while another inverter 542 couples the INP<0> signal to the gate of transistor 534.
With reference additionally now to
With reference additionally now to
While there have been described above the principles of the present invention in conjunction with specific circuit implementations, it is to be clearly understood that the foregoing description is made only by way of example and not as a limitation to the scope of the invention. Particularly, it is recognized that the teachings of the foregoing disclosure will suggest other modifications to those persons skilled in the relevant art. Such modifications may involve other features which are already known per se and which may be used instead of or in addition to features already described herein. Although claims have been formulated in this application to particular combinations of features, it should be understood that the scope of the disclosure herein also includes any novel feature or any novel combination of features disclosed either explicitly or implicitly or any generalization or modification thereof which would be apparent to persons skilled in the relevant art, whether or not such relates to the same invention as presently claimed in any claim and whether or not it mitigates any or all of the same technical problems as confronted by the present invention. The applicants hereby reserve the right to formulate new claims to such features and/or combinations of such features during the prosecution of the present application or of any further application derived therefrom.
As used herein, the terms “comprises”, “comprising”, or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a recitation of certain elements does not necessarily include only those elements but may include other elements not expressly recited or inherent to such process, method, article or apparatus. None of the description in the present application should be read as implying that any particular element, step, or function is an essential element which must be included in the claim scope and THE SCOPE OF THE PATENTED SUBJECT MATTER IS DEFINED ONLY BY THE CLAIMS AS ALLOWED. Moreover, none of the appended claims are intended to invoke paragraph six of 35 U.S.C. Sect. 112 unless the exact phrase “means for” is employed and is followed by a participle.
Parris, Michael C., Jones, Jr., Oscar Frederick
Patent | Priority | Assignee | Title |
10092367, | Mar 18 2014 | MONTERIS MEDICAL CORPORATION | Image-guided therapy of a tissue |
10188462, | Jun 27 2012 | MONTERIS MEDICAL CORPORATION | Image-guided therapy of a tissue |
10327830, | Apr 01 2015 | MONTERIS MEDICAL CORPORATION | Cryotherapy, thermal therapy, temperature modulation therapy, and probe apparatus therefor |
10342632, | Mar 18 2014 | MONTERIS MEDICAL CORPORATION | Image-guided therapy of a tissue |
10548678, | Jun 27 2012 | MONTERIS MEDICAL CORPORATION | Method and device for effecting thermal therapy of a tissue |
10610317, | Jun 27 2012 | MONTERIS MEDICAL CORPORATION | Image-guided therapy of a tissue |
10675113, | Mar 18 2014 | MONTERIS MEDICAL CORPORATION | Automated therapy of a three-dimensional tissue region |
11672583, | Apr 01 2015 | MONTERIS MEDICAL CORPORATION | Cryotherapy, thermal therapy, temperature modulation therapy, and probe apparatus therefor |
8979871, | Jun 27 2012 | MONTERIS MEDICAL US, INC ; MONTERIS MEDICAL CORPORATION | Image-guided therapy of a tissue |
9211157, | Jun 27 2012 | MONTERIS MEDICAL CORPORATION | Probe driver |
9271794, | Jun 27 2012 | MONTERIS MEDICAL CORPORATION | Monitoring and noise masking of thermal therapy |
9333038, | Jun 15 2000 | MONTERIS MEDICAL CORPORATION | Hyperthermia treatment and probe therefore |
9387042, | Jun 15 2000 | MONTERIS MEDICAL CORPORATION | Hyperthermia treatment and probe therefor |
9433383, | Mar 18 2014 | MONTERIS MEDICAL CORPORATION | Image-guided therapy of a tissue |
9486170, | Mar 18 2014 | MONTERIS MEDICAL CORPORATION | Image-guided therapy of a tissue |
9492121, | Mar 18 2014 | MONTERIS MEDICAL CORPORATION | Image-guided therapy of a tissue |
9504484, | Mar 18 2014 | MONTERIS MEDICAL CORPORATION | Image-guided therapy of a tissue |
9510909, | Jun 27 2012 | MONTERIS MEDICAL CORPORATION | Image-guide therapy of a tissue |
9700342, | Mar 18 2014 | MONTERIS MEDICAL CORPORATION | Image-guided therapy of a tissue |
Patent | Priority | Assignee | Title |
5940874, | Aug 16 1996 | Hughes Electronics Corporation | Memory device speed tester |
6479363, | Apr 11 2000 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor integrated circuit and method for testing the same |
6563751, | Dec 29 2000 | RPX CLEARINGHOUSE LLC | System and method for testing TDM sRAMs |
6769081, | Aug 30 2000 | Oracle America, Inc | Reconfigurable built-in self-test engine for testing a reconfigurable memory |
6918075, | May 19 2000 | Advantest Corporation | Pattern generator for semiconductor test system |
7291896, | Jun 24 2004 | Voltage droop suppressing active interposer | |
7302622, | Aug 18 2003 | Polaris Innovations Limited | Integrated memory having a test circuit for functional testing of the memory |
7378898, | Jun 24 2004 | Voltage droop suppressing circuit | |
7640466, | Jun 15 2004 | Kabushiki Kaisha Toshiba | Semiconductor integrated circuit device incorporating a data memory testing circuit |
20060187726, | |||
JP2001297600, | |||
JP2006073153, | |||
JP4011400, | |||
JP5258598, | |||
JP5342900, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 02 2007 | JONES, JR , OSCAR FREDERICK | UNITED MEMORIES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031422 | /0336 | |
Oct 02 2007 | JONES, JR , OSCAR FREDERICK | Sony Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031422 | /0336 | |
Oct 02 2007 | PARRIS, MICHAEL C | Sony Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031422 | /0336 | |
Oct 02 2007 | PARRIS, MICHAEL C | UNITED MEMORIES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031422 | /0336 | |
Feb 26 2010 | Sony Corporation | UNITED MEMORIES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031447 | /0746 | |
Nov 19 2010 | UNITED MEMORIES, INC | TESSERA INTELLECTUAL PROPERTIES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031464 | /0744 | |
Apr 25 2011 | TESSERA INTELLECTUAL PROPERTIES, INC | Invensas Corporation | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 031474 | /0817 | |
Jun 29 2011 | DONALDSON, SEAN | PROFOUND MEDICAL INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027154 | /0823 | |
Jun 29 2011 | MAHON, CAMERON | PROFOUND MEDICAL INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027154 | /0823 | |
Dec 07 2011 | Invensas Corporation | (assignment on the face of the patent) | / | |||
Dec 01 2016 | iBiquity Digital Corporation | ROYAL BANK OF CANADA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040797 | /0001 | |
Dec 01 2016 | PHORUS, INC | ROYAL BANK OF CANADA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040797 | /0001 | |
Dec 01 2016 | DTS, LLC | ROYAL BANK OF CANADA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040797 | /0001 | |
Dec 01 2016 | DigitalOptics Corporation MEMS | ROYAL BANK OF CANADA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040797 | /0001 | |
Dec 01 2016 | DigitalOptics Corporation | ROYAL BANK OF CANADA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040797 | /0001 | |
Dec 01 2016 | ZIPTRONIX, INC | ROYAL BANK OF CANADA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040797 | /0001 | |
Dec 01 2016 | TESSERA ADVANCED TECHNOLOGIES, INC | ROYAL BANK OF CANADA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040797 | /0001 | |
Dec 01 2016 | Tessera, Inc | ROYAL BANK OF CANADA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040797 | /0001 | |
Dec 01 2016 | Invensas Corporation | ROYAL BANK OF CANADA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040797 | /0001 | |
Jun 01 2020 | Rovi Solutions Corporation | BANK OF AMERICA, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053468 | /0001 | |
Jun 01 2020 | ROYAL BANK OF CANADA | Tessera, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052920 | /0001 | |
Jun 01 2020 | ROYAL BANK OF CANADA | INVENSAS BONDING TECHNOLOGIES, INC F K A ZIPTRONIX, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052920 | /0001 | |
Jun 01 2020 | ROYAL BANK OF CANADA | FOTONATION CORPORATION F K A DIGITALOPTICS CORPORATION AND F K A DIGITALOPTICS CORPORATION MEMS | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052920 | /0001 | |
Jun 01 2020 | ROYAL BANK OF CANADA | Invensas Corporation | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052920 | /0001 | |
Jun 01 2020 | ROYAL BANK OF CANADA | TESSERA ADVANCED TECHNOLOGIES, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052920 | /0001 | |
Jun 01 2020 | ROYAL BANK OF CANADA | DTS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052920 | /0001 | |
Jun 01 2020 | ROYAL BANK OF CANADA | PHORUS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052920 | /0001 | |
Jun 01 2020 | Rovi Technologies Corporation | BANK OF AMERICA, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053468 | /0001 | |
Jun 01 2020 | Rovi Guides, Inc | BANK OF AMERICA, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053468 | /0001 | |
Jun 01 2020 | TIVO SOLUTIONS INC | BANK OF AMERICA, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053468 | /0001 | |
Jun 01 2020 | iBiquity Digital Corporation | BANK OF AMERICA, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053468 | /0001 | |
Jun 01 2020 | PHORUS, INC | BANK OF AMERICA, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053468 | /0001 | |
Jun 01 2020 | DTS, INC | BANK OF AMERICA, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053468 | /0001 | |
Jun 01 2020 | TESSERA ADVANCED TECHNOLOGIES, INC | BANK OF AMERICA, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053468 | /0001 | |
Jun 01 2020 | Tessera, Inc | BANK OF AMERICA, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053468 | /0001 | |
Jun 01 2020 | INVENSAS BONDING TECHNOLOGIES, INC | BANK OF AMERICA, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053468 | /0001 | |
Jun 01 2020 | Invensas Corporation | BANK OF AMERICA, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053468 | /0001 | |
Jun 01 2020 | Veveo, Inc | BANK OF AMERICA, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053468 | /0001 | |
Jun 01 2020 | ROYAL BANK OF CANADA | iBiquity Digital Corporation | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052920 | /0001 |
Date | Maintenance Fee Events |
Jun 08 2017 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Dec 17 2020 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jan 21 2017 | 4 years fee payment window open |
Jul 21 2017 | 6 months grace period start (w surcharge) |
Jan 21 2018 | patent expiry (for year 4) |
Jan 21 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 21 2021 | 8 years fee payment window open |
Jul 21 2021 | 6 months grace period start (w surcharge) |
Jan 21 2022 | patent expiry (for year 8) |
Jan 21 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 21 2025 | 12 years fee payment window open |
Jul 21 2025 | 6 months grace period start (w surcharge) |
Jan 21 2026 | patent expiry (for year 12) |
Jan 21 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |