An improved seller automated engine architecture methodology particularly (though not exclusively) for use in automated real-time iterative reverse auctions over the Internet and the like for the purchase and sale of goods and services, providing a choice of architectural implementations while enabling price optimization on market share-directed considerations, specific sales target-directed implementations, seller utility derivative-following implementations, model optimizer implementations and explorations, mathematical optimization-oriented and rules-based implementations.
|
1. An automatic seller and price quotation system having, in combination, a seller automatic engine storing seller-specific seller, specific predetermined market strategy, business objectives, and market condition information and responsive to buyer requests in order to automatically to create a response to the price quotation based upon the buyer request and within the respective guidelines of seller-specific predetermined information stored in that seller automatic seller engine;
a processor for at least one of initiating an iterative real-time automatic seller engine competition for bettering price quotations within said respective guidelines until a best price quotation is received, transmitting a request for quote to the seller engine, and transmitting a request for price watch to the seller engine;
the seller automatic engine being adapted to process multiple price optimizers through one or more architectural implementations within the seller automatic engine, at least two of the price optimizers configured for different goals, the architectural implementations selected from the group consisting of a parallel processing architecture, a pipeline architecture, a hub and spoke architecture, and a hybrid architecture.
2. The system of
3. A system as claimed in
4. The system of
5. The system of
6. The system of
7. The system of
8. The system of
9. The system of
10. The system of
11. The system of
12. The system of
or by maximum likelihood estimation through equations
wherein for the auction i, ρ( ) is the historic bid-response function, Wi is assigned the value 1 if the auction is won and 0 if the auction is lost, wi is a weight which expresses the confidence in the accuracy or relevance, a, b, c, and d are scaling factors where a is a parameter for non-price factors, b is a parameter for price factors, c is a parameter for order size, d is a parameter for the recent historic average market, Qi is the order size, pi is the unit price quoted by the seller, and pci is the recent historic average unit price in the market.
0. 13. The system of claim 3, wherein optimization for one or more of several goals or business objectives of the seller includes an objective selected from the group consisting of global price, events, and supplier's breakpoint.
0. 14. The system of claim 7, wherein the several goals or business objectives of the seller include at least one of global price, events, and suppliers breakpoint.
|
where
These weights are typically configured by the seller. Some sellers may want to assign equal weights to targets such as revenue, profit, sales volume etc. Others may value one more than others; yet others may change the weights over time and as market conditions evolve. For example, for a retailer with seasonal apparel, sales volume target may be much more important than revenue or profit at the end of the season. If a product is selling below expectations, the seller can increase the sales volume weight substantially over the weights of other targets. If not configured by the seller, equal values for the weights may be used. The configurable weights provide the ability for sellers to assign emphasis (or de-emphasis) to each of their targets.
In the later-described target-directed implementation of
Different forms of utility functions may be used by each seller subject to its own unique objectives. The utility function provides the ability for the seller to specify the pace/aggressiveness with which to approach the target. Some examples will now be presented, through the system of the invention allows the use of any utility function desired.
Linear Utility Function
The linear utility function is computed as the achieved revenue, profit and sales volume etc so far, normalized by respective targets in the specified time interval. For example, the revenue utility is (at time “t”),
where RT is the pre-specified target revenue over time interval T, and Rt is the current revenue achieved at time “t≦T”.
This utility can be further weighted with respect to other utilities by using seller configuration as shown in the previous section.
The linear utility can also be represented as a function of the “distance” to the respective targets. For example, the distance of revenue from the revenue target and a simple corresponding linear utility can be defined as
The weighted distance is then
d=wRdR+wMdM+wSdS. (3)
The distance “d” is a quantitative, yet intuitive measure of how far the seller is from his targets. For example when the current revenue (Rt) is 0, the revenue distance dR=−1; and so long as the revenue is less than the revenue target, the revenue distance is negative indicating that the target is not yet achieved. When Rt=RT (i.e., the seller has achieved the target), the revenue distance=0. As the seller exceeds the target, the corresponding “d” becomes positive. The total linear utility is thus,
u=1+d. (4)
This is a simple form of the linear utility function, with a more general form being
u=1+ad. (5)
This simple form of the linear utility function is illustrated in
When a new auction request is received, the expected utility from winning the auction is
where
The linear utility function can be considered as a risk-neutral way to reach the target. This means that no matter how far away the seller is from the targets, the additional gain in winning the next auction request does not change. This form of utility function is typically a reference function and is easy to use and provides diversification to changing market conditions.
Piecewise Linear Utility Function
The piecewise linear utility function allows the seller to change his or its utility gain at arbitrarily chosen discrete distances to the target. This enables further optimization for the more sophisticated seller. A sample piecewise linear utility curve is shown in
In this example, using the previous definition of “distance”, the piecewise linear utility function can be defined as
u=1+d, (7)
if d≦0; and as
u=1+ad, (8)
if d>0.
“a” is a factor to measure aggressiveness after the target has been reached. If “a” is chosen to be <1, it is less aggressive; and if a>1, it is more aggressive. In general, the total utility is a weighted combination of several (two, in the above example) piecewise linear utilities. In
It may be noted that the figure is just an example where the slope changes at d=0. This, however, could be any value of d, and in general, the slope could change at multiple values of d.
Exponential Utility Function
An exponential utility function has the form
u=A−Be−ad (9)
where A and B are scaling parameters, a is a factor to measure risk aversion and d is the normalized distance to the target. When d<0, it is below the target; when d=0, it is at the target; when, d>0 it is above the target. A sample exponential utility curve corresponding to the above equation is shown in
This exponential utility has the several properties that may represent desired seller behavior. For example:
As an illustration, suppose the additional utility gain from doubling the target is α, (shown in FIG. 10(a)), parameters A, B and a are determined by solving the following equations:
A−B=1
A−Bea=0
A−Be−a=1+α. (10)
The equations reflect three situations: 1) when d=−1, u=0; 2) when d=0; u=1; 3) when d=1, u=1+α.
The above-defined exponential utility function has the unique property that the smaller a, the more aggressive it is when pursuing the target before reaching the same target. When a gets bigger and bigger, it gets closer and closer to the linear utility function, and it becomes less and less aggressive below the target. It is this ability to go from highly exponential to linear that makes this approach very attractive.
The expected utility with one additional bid request is
u=wR(AR−BRexp(−aRdR))+wM(AM−BMexp(−aMdM))+wS(AS−BSexp(−aSdS)). 11)
Here A, B and a are exponential utility function parameters, and dR, dM and dS are normalized distances to targets. They are defined as
We can also define a weighted exponential distance to targets as
d=WRexp(−aRdR)+WMexp(−aMdM)+WSexp(−aSdS). (13)
As before, the optimal price is computed by maximizing the weighted utility function. The maximization of the weighted exponential utility function is equivalent to the minimization of the weighted exponential distance to targets. When each request is received, the target-directed approach will try to minimize the distance to the target.
Another embodiment of the exponential utility type function is illustrated in
u=−A+Bead. (14)
This function has the unique property that it approaches the target less aggressively when the distance to the target is large, and gets more aggressive as the distance to the target decreases. Such properties may represent a desired seller behavior; for example:
In addition, a piecewise exponential utility function may also be used as shown in
Hybrid Utility Function
As is evident from this discussion, the novel implementation of the invention allows any utility function or a combination of heterogeneous utility functions to be used (such as a piecewise exponential, a combination of piecewise linear or polynomial, and exponential, etc.) to represent each seller's unique objectives as the distance from the target varies. The selection of the utility functions can also be changed by the seller via configuration.
The hybrid utility function provides a powerful ability to vary the aggressiveness of the optimizer based on the distance to the target. The hybrid function consists of multiple pieces of linear and exponential utility functions as desired by the seller. As the distance to the target varies, different function forms can be used based on the seller's objectives and risk averseness. A sample hybrid utility function is illustrated in
The wide range of utility functions as well as the ability to run multiple optimizers with different utility functions gives the seller full coverage of the massive parameter space of all combinations of his or its objectives.
The target-directed implementation of
The target-directed implementation finds the optimal price by maximizing the utility gain with respect to the distance to the target for the current sub-period. As time progresses from one sub-period to the next, the sales targets may be readjusted based on performance and seller configuration. If the seller does not achieve the weekly revenue targets for the first week of the month, for example, the remaining unmet target from the week may be rolled over in several ways, if so desired, such as to the next week, uniformly or non-uniformly distributed across the remaining week of the month, year etc. This is completely dependent on the seller configuration. If the seller chooses to distribute the unmet targets to the remaining sub-periods, the distance to the new (higher) target effectively increases thus making the optimizer more aggressive. As the end of the year approaches, all the unmet targets from before may be left to fulfill in the last month, if desired, resulting in potentially aggressively moving towards the target. The ability to use the demand curve to sub-divide targets provides intermediate check points, effectively minimizing of the seller's risk. If, however, the seller does not want to do this, all the unmet targets can be pushed to the end. The seller may also change the utility functions based on time to map against the demand curve. For example, they may choose to pursue the sub-targets less aggressively early in the quarter, while becoming more aggressive later in the quarter. Thus, by using the demand curve with target allocations, and weights, the target-directed approach can satisfy a wide variety of seller objectives.
One of the parameters in the utility functions is ρ(p), referred to herein as the historic bid-response function, characterizing the recent historic market behavior in terms of price and participants in the context of a real-time [ARTIST] environment. The historic bid-response function is used to select a nominal reference price while taking into account the price variations of recent vintage. Such reference price allows the optimizer to start closer to the current market conditions. The target-directed optimizer converges to the market price based on the goal of minimizing the distance to the targets, even if sufficient historical data is not available to compute a sufficient bid response function. While meaningful parameters for the historic bid-response function help faster convergence, they are not necessary for correctness.
The parameters of the historic bid-response function can be computed statistically by fitting a curve to the available auction historical data, based on minimizing the squared errors or using maximum-likelihood estimates as later described. Further enhancement can be made by more heavily weighing more recent historical data during the estimation.
The historic bid-response function parameters may be computed either at the SAEJ or at the RAC. RAC may provide a service to all the SAEJs by periodically transmitting the parameters of well-known and/or common historic bid-response functions. Individual SAEJs may use the given bid-response parameters or may use other bid-response curves by based on seller configuration and/or historical data gathered by the individual SAEJs.
As noted earlier, the historic bid-response function is used as a nominal proxy for the recent market behavior. It allows the implementation quickly to compute an optimal price close to the market price. In case the computed bid-response parameters are not available, or if the market price has deviated from the last computation of bid-response parameters, the distance to the target enables the implementation to converge to the true market price.
Two earlier mentioned common methods for computing bid-response parameters that are uniquely applied in this solution will now be described—minimizing squared errors, and maximum likelihood estimations.
Minimizing the Squared Errors
The historic bid-response parameters are estimated by minimizing the squares of the error terms from the bid-response curve to the actual wins and losses of each auction opportunity within the historic window configured. For auction “1” the indicator variable Wi is assigned the value of 1 if the auction is won, and Wi is assigned the value of 0 if the auction is lost. Each auction i also has a weight Wi which expresses the confidence in the accuracy or relevance of the point. Thus, to determine the best estimates of the parameter values, the bid-response should be as close to Wi as possible. This can be achieved by solving the unconstrained optimization problem
One statistic measuring the goodness-of-fit is the sum of squared errors (SSE) itself; that is,
Maximum-Likelihood Estimation
This implementation for computing the bid-response parameter values involves choosing parameter values that closely mimic the pattern of wins and losses resembling the actual historic outcomes.
Assuming all auctions are independent, the probability of realizing the actual outcome for the auction based on a particular bid i is
Li(a,b,c,d)=Wiρ(pi,Qi,pci|a,b,c,d)+(1−Wi)[1−ρ(pi,Qi, pci|a,b,c,d)]. (18)
The parameters, therefore, can be chosen in such a way that they maximize the probability of realizing the actual outcome over all observations. This can be achieved by solving the equation
Further enhancement is made to the above embodiment based on natural logarithms of the likelihood, by solving the equation
It is now in order to return to the previously discussed exemplary implementation of
The Logit Bid-Request Function
In the preferred embodiment of the invention, the ideal bid-response function, indeed, is the Logit function due to its unique characteristics. The general form of the Logit function is:
where
p Unit price quoted by the seller.
ρ(p) Historic bid-response function at price p
Q Order size (number of units)
pc Recent historic average unit price in the market,
and where a, b, c, d are scaling parameters for the Logit function. These parameters are used to measure the effects of various factors:
Variants of the above Logit function and other functions can also be used such as:
Power function:
A typical flowchart implementation for the illustrative sales target-directed implementation of
It may be noted that, as with the rules-engine implementation of exemplary
For RFB, the optimizer is invoked at the start of every new auction, and the price resulting from the optimizer computation, can be used as a temporary computed optimized floor (in case of the retail vertical) for the next bidding rounds in the same auction. This is an optimized sub-constraint clearly residing within the overall constraints configured by the seller. In this case, the integrator starts with a configured (or computed) ceiling price and iteratively drops the price to the temporary computed optimized floor or until the auction ends (whichever comes first). For RFQ, the options are simpler such as return the list price configured by the seller or return the optimal price at 45 as computed by the optimizer.
It should be understood that these are just exemplary embodiments of how the combination of optimizers and integrators can be used for quotes and auctions. There are, of course, numerous other embodiments based on the fundamental innovation of this invention in its seller automated engine computing prices/bids in real-time and based on a seller's widely varying set of objectives.
This sales target-directed implementation, however, makes two assumptions:
As described earlier, furthermore, the target directed implementation is well suited for the sales target optimizer where the seller is trying to achieve annual, quarterly, monthly etc, targets. The target intervals can also overlap with two optimizers operating over the desired time periods and with appropriate targets, respectively. The target-directed implementation can also be used for events price optimization. In this case, the seller may want to boost sales during a week/weekend or any arbitrary time interval. The seller configures the optimizer with the appropriate targets, duration, weights etc, and the optimizer computes an optimal price from the targets. The integrator then decides which price (or a new price resulting from integrating the several optimal prices) to use.
Another example of effective use of this implementation is for supply break optimizations. As described earlier, the seller can specify the supply break information, and these form the targets entered into the supplier break optimizer 11. When the number of items sold so far is sufficiently close to the supply break (as specified by the seller), the supply break optimizer is triggered and processes requests until the supply break is met or the supply break time expires (whichever comes first). The price integrator PI then uses the results of the individual optimizers, along with appropriate constraints on pricing, and other input from the seller, and then generates the bid price at 7 to be returned to the RAC.
As may be evident from the above discussion, the target-directed implementation has several key advantages that enables its use for a variety of optimization purposes, with the ability to adapt to a wide range of evolving market conditions and seller objectives. Some of these advantages are.
The market share-directed implementation of the invention previously described computes price by considering the percentage of the auctions won (market share) in the previous pre-defined number of requests. As an example, consider that 10 auctions were won out of 100 requests received. This could be computed as a unique number per so many requests received for example in a slot of 100 auctions, or could be a rolling number such as number of auctions won in last 100 auctions. If the market share is below the desired target, the price will be appropriately corrected automatically and in real-time until the desired objective is matched. If the number of auctions won is higher than the desired market share, the machine will automatically make appropriate corrections using this feedback loop to cut the winning percentage down, if so desired by the seller (or vice versa). The key idea is to make the winning independent of the time of the day, or day of the week, or if it was a snow day, etc, and ensure that the winning percentage number effectively adjusts itself as per the market demand without requiring any quantitative forecast.
A typical implementation is given below, and illustrated in
1. Initialization
As with the target-directed implementation, previously discussed, the result of this market-share-directed implementation may be used in a variety of ways.
This market-share-directed implementation makes no assumptions about the demand, buyer and competitor characteristics. The key input is the target market share. In addition, the product cost and the appropriate constraints on the unit price are also required inputs. One additional feature provided by the RAC is the ability to provide a constraint in terms of not to exceed a configured market share, thus enabling liquidity. The RAC market share will override the seller-configured market share in case the latter exceeds the former. As an example, the RAC could constrain any one entity to no more than 25% market share.
There are several advantages for this market-share implementation:
The utility derivative-following implementation, as the name suggests, is based on improving the seller's utility over time. In the utility derivative-following approach, in the preferred embodiment, the utility can be formulated as a function of distance to the target as previously described in the target-directed implementation. In alternative embodiments, any other utility function may be used as desired by the seller.
The utility derivative-following implementation, however, compares the utility gained (or lost) from change in price over two previous intervals. It then adjusts its price by looking at the amount of utility earned on the previous interval as a result of the previous interval price change. If the price change produced a higher utility, then the strategy makes a similar change in price for the next period. If the previous change produced lower utility, then the strategy makes an opposing price change for the next period. If the utility is target based, this approach will try to follow the market and pursue the targets simultaneously.
A typical implementation is shown below and illustrated in
Since the price changes in this implementation are based on utility, and the utility is related to the specified targets, the implementation can be also considered as target-directed, but with a few further unique advantages.
This implementation has some similar properties to the target-directed implementation before described. It uses the concept of maximizing utility to compute an optimal price for initial use. This is called the “baseline optimal price”. It further improves this baseline optimal price by using random (within constraints) deviations from the baseline optimal price to periodically explore the price space. Once a more optimal price is found, the implementation uses that as the baseline optimal price until an even more optimal price is found. This process continues as the system continues to hunt for the optimal price in an ever changing marketplace. The deviations from the baseline optimal could in fact be related to the distance to the target, or any other number as desired by the seller. The ability to explore the price space by using deviations from the baseline optimal price allows the seller to lead the market where a more optimal price is found.
A typical implementation is described in the flowchart below and is illustrated in
Further process requests from the RAC are processed at 59 and the optimal price is returned at 85.
This implementation for
This implementation being utility based and the utility being related to the targets, it is also thus target-directed, permitting the seller to have the ability to lead the market by setting the product price by using random deviations up or down from the baseline price. The implementation can be further enhanced, moreover, by using machine learning techniques that provide intelligent ways of picking when to experiment; how much to raise/lower the price, and for how long.
While it is clear from the above discussions that the SAEJ of the invention can satisfy the various and ever-changing objectives of sellers in a wide range of verticals, the SAEJ architecture provides the additional ability to the seller of enabling quantitative optimization of prices based on more complex dependent and independent objectives, in turn involving one or more verticals. With prior art or existing non-SAEJ based technology relying on manual or off-line processing, it is not possible to optimize in real-time and iteratively, thus limiting the scope of applications to silos of a small set of individual products, or verticals using manual or batch processing.
It is now in order to describe some of the most useful applications of the SAEJ of the invention that not only reinforce its applicability for a wide range of verticals, but also describe how this architecture provides the ability to optimize across multiple verticals, thereby allowing the seller to achieve overall objectives globally across all the desired verticals.
As earlier mentioned, moreover, the banking community as an example of an industry that can particularly benefit from the adoption of the techniques of the invention.
All the previously described pricing implementations of the invention for the retail industry, indeed, can also directly be applied to the bank deposit and loan vertical.
Banking Certificates of Deposits
Banks rely on consumer deposits (in the form of CDs, High Yield Savings, Checking etc) as a source of funds for their loan commitments. They offer CD products with various maturities—as 3 months, 6 months, 9 months, 1 year, etc. In the case of CDs, they generate profit from the difference (spread) between interest payments on CDs (calculated as the annual percentage yield or APY) and the interest earned on loans.
One of the key challenges for banks is to collect sufficient CD deposits of appropriate terms and within appropriate timeframes so that they can meet their corresponding loan commitments. Banks must also determine the APY offered for each CD product based on various factors, such as short term and long term interest rates, loan commitments, market rates for comparable CDs, required spread to support overhead and other financial market conditions. Currently, the deposit needs are calculated manually and in an ad-hoc manner based on current loan commitments. In addition, banks have no means to use higher APYs (equivalent to lowering the price in retail) to attract requisite consumer deposits within a short time-frame, without significant advertising spending. These solutions require significant advanced planning and preparation, and as a result are unable to respond to needs in real-time as they arise.
The SAEJ architecture and implementations described herein, however, can easily be applied to bank CDs where SAEJ calculates, in real-time, the optimal APY for each CD product based on bank objectives, and market conditions. In a preferred embodiment, the before-described target-directed implementation may be used; but in alternate embodiments, the market-share implementation, the rules-based implementation, the utility derivative-following implementation, the model optimizer with exploration implementation, or a combination of these implementations may also be used.
As before stated the objectives of the bank in meeting loan commitments and achieving profitability etc, can be mapped into quantitative targets for the price optimizers techniques of the invention.
For each RFB for a new auction, the following steps are involved:
It should be noted that multiple such targets can be configured. A bank, for example, could have a need to raise $10M in deposits in the next 24 hours, under terms of a one year duration, a lending rate of 8.5% with a minimum spread of 3%. Other such targets (also called “buckets”) might be a desire to raise $3M in the next 3 days, with a 6 month duration, for a lending rate of 8% and with a minimum spread of 2.75%. Both these and other such requests can be set-up simultaneously. Each of these targets furthermore, can also be prioritized or a relative weight assigned thereto, if so desired, enabling each new request to be responded to with corresponding aggressiveness subject to the current status of the target. This is in sharp contrast to the prevailing manual practice at banks to speculate and then set the interest rate (and invariably overshoot or undershoot), advertise for much longer duration, and wait for the response. The resulting uncertainty and advertising expenditure in such a process is undesirable. In the mean-time, a mutual commitment cannot be made to the customer, resulting in very little stickiness of associated business.
The Bank Credit Card Problem
Banks issuing credit cards prefer subscribers with specific types of credit scores. Some banks aim for those customers with stellar or fairly decent credit scores. Others prefer sub-prime credits scores; and still others opt for everyone in between. Each strategy has its advantages and disadvantages.
While a portfolio of best credit score subscribers is very safe, the return tends to be low as most such subscribers pay their bills on time, leaving little opportunity for the bank to earn interest and fees. On the other hand, sub-prime subscribers are high risk due to high default rates but they may provide a much higher rate of return. Ideally, banks like to have a portfolio which minimizes the credit risk yet provides a decent rate of return over economic cycles of different hues. Unfortunately, however, their manual process forces them typically to evaluate the portfolio at the end of each time interval (as an example, a quarter), and then estimate the blended credit score across the entire portfolio and the blended interest rate. Not only is this information too late and after the fact, their inability to correct the situation in the short run or to the requisite precision compounds the problem.
Such a problem admirably lends itself for solution, to the use of multiple engines of the invention, one for each desired category of credit score, and an optimizer dedicated to perform front end arbitration and optimization in order to select a specific engine to participate in the subsequent auction.
Consider, as an example, a bank wanting to offer credit cards to subscribers with 4 different categories of credit scores under circumstances of an illustrative total line of credit targets as shown below, with the intent to maintain a blended credit score across all the targets of between 600 and 700 at any point in time, as shown in
In this case, the PMU 4 consists of a front-end optimizer PO at 80, as well as several SAEJ credit-optimizers (SAEJ1 through SAEJ5), one for each target specified by the seller.
As each request for a new auction arrives, the front-end optimizer 80 examines its credit score in real-time to ensure that it is within the acceptable range (above 400 in this case). Assuming the request is within the range, the optimizer uses the following computation to determine the incremental blended average, if this auction is to be won.
The blended credit score is calculated as
where, in the above formula, C is the blended credit score and Ci is the average credit score for target i. Fi is the amount of credit issued so far for target i, and N is the total number of targets.
If the computed blended credit score is expected to remain within the constraints outlined by the bank, the front-end optimizer signals the corresponding credit-optimizer to participate in the bid process. Alternatively, if the blended average constraints are going to be violated, the front-end optimizer will not signal any credit-optimizer to participate in the bid process. Thus, this optimization across various targets, in real-time and on a dynamic basis, guarantees the bank all the time a consistent blended credit score (CS) quality of its entire credit card portfolio at any time. The bank, furthermore, also has provided for the blended interest rate per line of credit target and across the portfolio—all available at the same time. This is illustrated in
Beyond the blended credit score optimization across the portfolio outlined above, in an alternate embodiment, each SAEJ engine may also optimize its blended interest rate to the bank-specified level, using any of the techniques discussed herein. In this scenario, the bank will have the guarantee of a portfolio optimized for not only specific blended credit scores; but also further optimized to a desired interest rate level for each total credit-line target.
This same concept can also be applied to auto loans and other verticals in financial and similar situations.
Optimized Bank Deposits and Dependent Optimized Loans
Another feature in using the techniques of the present invention, again using the bank vertical as an example, and which was not previously feasible, is herein also enabled. Consider a case in which a bank has set-up and configured multiple optimizers to collect deposits, such that a first is dedicated for 3-month deposits as at 11 in
As another important application of the invention, consider that a bank has also adopted and set up the multiple optimizers of the invention for auto loans, categorized, for example, according to the applicants credit scores that it is to process, each, however, subject to its own unique constraints and targets, such as blended interest rate, and spread with respect to some standard benchmark such as Treasury or LIBOR or others. A blended credit-score target can be achieved across these auto loan optimizer-engines 111, 211 and 311, and the same for blended interest rates.
In this situation, a price integrator PI of the invention may readily be used, as in
The aggregate percentage contribution from each deposit engine towards loans, however, may be different—auto loans, for example, tend to be for longer terms. The bank could, as an example, specify that deposits are to be disbursed such that 94% of the deposits collected by the 2-year plus engine 41, are to be used towards such auto loans; 50% for the 1-year deposits 31; 10%, for the 6-months 21; and 5% for 3 months 11, and so on.
Deposits, furthermore, may be collected by bidding in real-time for prospective depositors according to configured constraints. These deposits may then be funneled, appropriately proportioned, via the integrator to the front-end optimizer of the loan engines. As a request for an auto loan arrives, the front-end optimizer examines its credit score in real-time to ensure that it is within the acceptable range. Assuming the request is within such range, the optimizer uses the following equation to determine the incremental blended credit score average across the portfolio, if this auction is won. The blended credit score is calculated as
where C is the blended credit score and Ci is the blended credit score for engine i; Fi is the amount of loan issued so far for engine i; and N is the total number of loan engines.
If the computed blended credit score is expected to remain within the constraints outlined by the bank, the front-end optimizer signals the matching loan engine to participate in the auction, assuming funds are available. Alternatively, if the blended credit score constraint is going to be violated, this optimizer will not signal any loan engine to participate in the bid process. The selected loan engine then participates in the auction with its unique constraints and targets as configured by the bank. Thus, not only are each engine targets optimized, but blended targets across various engines are also optimized and in real-time and on a dynamic basis. This guarantees the bank a consistent blended credit score quality across its entire auto loan portfolio at any time, all the time. Furthermore, the resulting blended interest rate across such loan engines can also be computed, providing additional insight into the loan quality. Additionally, the front end optimizer also optimizes for the blended portfolio interest rate by computing in real-time the allowable lower limit interest rate constraint as each loan auction request arrives. This dynamically computed allowable constraint is then automatically provided to the selected engine.
As is evident from
While the important application of the technique of the invention to banking services has been stressed, application to other services and goods bring similar advantages that will now be summarily tabulated.
Summary of the Unique Advantages of the SAEJ Solution of the Invention
While the automatic price optimizers, price integrators and SAEJ engines containing the same, as well as the underlying mathematical basis, have heretofore been described for use in automatic reverse auction applications, they are of broader utility wherever automatic price optimization calculations may be desired. Such other applications, indeed, may involve manual set-up as, for example, particularly in banking, financial, insurance and related applications.
Further modifications will occur to those skilled in this art and such are considered to fall within the spirit and scope of the invention as defined in the appended claims.
Chatter, Mukesh, Goyal, Rohit, Soong, Shiao-bin
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
7447649, | Jan 06 2006 | Mira EXIM Limited | System, method, and computer readable medium for implementing a media content store |
7610219, | Feb 17 2004 | KNAPP INVESTMENT COMPANY LIMITED | System and methods for assembly of a web site for an online store by a seller |
7668755, | Jan 06 2006 | Mira EXIM Limited | Dynamically fabricated store for distribution of media content |
20020198818, | |||
20030023514, | |||
20030040975, | |||
20030046130, | |||
20050273709, | |||
20070078758, | |||
20070208630, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
Aug 19 2014 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Aug 28 2018 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Aug 28 2018 | M2555: 7.5 yr surcharge - late pmt w/in 6 mo, Small Entity. |
Aug 22 2022 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Date | Maintenance Schedule |
Jan 28 2017 | 4 years fee payment window open |
Jul 28 2017 | 6 months grace period start (w surcharge) |
Jan 28 2018 | patent expiry (for year 4) |
Jan 28 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 28 2021 | 8 years fee payment window open |
Jul 28 2021 | 6 months grace period start (w surcharge) |
Jan 28 2022 | patent expiry (for year 8) |
Jan 28 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 28 2025 | 12 years fee payment window open |
Jul 28 2025 | 6 months grace period start (w surcharge) |
Jan 28 2026 | patent expiry (for year 12) |
Jan 28 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |