Apparatus and methods for providing efficient space-time structures for preambles, pilots and data for multi-input, multi-output (MIMO) communications systems are provided. One such embodiment includes providing a computer program that includes logic configured to provide an initial structure. The computer program further includes logic configured to verify that the rows of the initial structure are linearly independent and logic configured to apply an orthonormalization procedure to the initial structure to obtain a space-time structure. Methods are also provided for providing efficient space-time structures for preambles, pilots and data for MIMO communications systems.
|
0. 9. A method comprising:
producing a plurality of pilot symbols derived from at least one sequence, wherein the at least one sequence is a Frank-Zadoff or Chu sequence;
producing a plurality of data symbols;
providing a space time structure for transmission, wherein the space time structure includes a time dimension including a plurality of symbol time intervals and a space dimension including a plurality of antenna outputs; and
inserting the plurality of pilot symbols and the plurality of data symbols into the space time structure for transmission in a multi-input, multi-output communications system, wherein the plurality of pilot symbols are inserted in the time and frequency domain for each antenna of the plurality of antenna outputs.
0. 13. A multi-input, multi-output communications system comprising:
a plurality of antennas;
a plurality of demodulators configured to receive outputs from the plurality of antennas; and
a decoder configured to receive the output of the plurality of demodulators and further configured to:
recover data from a received space time structure, wherein the space time structure includes a time dimension including a plurality of symbol time intervals and a space dimension associated with the plurality of antennas; wherein a plurality of pilot symbols and a plurality of data symbols are inserted into the space time structure; wherein the pilot symbols are inserted in the time and frequency domain for each antenna of the plurality of antennas; wherein the pilot symbols are derived from at least one sequence; and wherein the at least one sequence is a Frank-Zadoff or Chu sequence.
0. 7. A non-transitory computer readable medium having instructions stored thereon, the instructions comprising:
instructions to produce a plurality of pilot symbols derived from at least one sequence, wherein the at least one sequence is a Frank-Zadoff or Chu sequence;
instructions to produce a plurality of data symbols;
instructions to provide a space time structure for transmission, wherein the space time structure includes a time dimension including a plurality of symbol time intervals and a space dimension including a plurality of antenna outputs; and
instructions to insert the plurality of pilot symbols and the plurality of data symbols into the space time structure for transmission in a multi-input, multi-output communications system, wherein the plurality of pilot symbols are inserted in the time and frequency domain for each antenna of the plurality of antenna outputs.
0. 11. A multi-input, multi-output communications system comprising:
an encoder configured to:
produce a plurality of pilot symbols derived from at least one sequence, wherein the at least one sequence is a Frank-Zadoff or Chu sequence;
receive a plurality of data symbols;
provide a space time structure for transmission, wherein the space time structure includes a time dimension including a plurality of symbol time intervals and a space dimension including a plurality of antenna outputs; and
insert the plurality of pilot symbols and the plurality of data symbols into the space time structure, wherein the plurality of pilot symbols are inserted in the time and frequency domain for each antenna of the plurality of antennas; and
a plurality of modulators configured to receive an output of the encoder; and
a plurality of antennas configured to receive outputs of the plurality of modulators.
0. 1. A computer program embodied in a computer readable medium for providing efficient space-time structures for preambles, pilots and data for multi-input, multi-output communications systems, the computer program comprising:
logic configured to provide an initial structure;
logic configured to verify that rows of said initial structure are linearly independent;
logic configured to apply an orthonormalization procedure to said initial structure to obtain a space-time structure for a preamble or pilot in a time or frequency domain; and
logic configured to insert the space-time structure as a preamble or pilot in the time or frequency domain with one or more data symbols for transmission in the multi-input, multi-output communications system.
0. 2. The computer program of
logic configured to choose a symbol alphabet to provide symbols for said initial structure; and
logic configured to choose an initial configuration of said initial structure.
0. 3. The computer program of
logic configured to confirm that symbols of said space-time structure are within a predetermined distance of symbols of said initial structure;
logic configured to construct a space-time sequence structure from a plurality of said space-time structures; and
logic configured to verify that a peak-to-average power ratio of said space-time structure is less than a predetermined value.
0. 4. The computer program of
0. 5. The computer program of
0. 6. The computer program of
0. 8. The computer readable medium of claim 7, wherein the multi-input, multi-output communications system is an orthogonal frequency division multiple access or single carrier frequency domain equalization communication system.
0. 10. The method of claim 9, wherein the multi-input, multi-output communications system is an orthogonal frequency division multiple access or single carrier frequency domain equalization communication system.
0. 12. The system of claim 11, wherein the system is an orthogonal frequency division multiple access or single carrier frequency domain equalization communication system.
0. 14. The system of claim 13, wherein the system is an orthogonal frequency division multiple access or single carrier frequency domain equalization communication system.
|
With respect to EQ. 1, k represents the sub-carrier or sub-channel of received demodulated signals and T represents a dimension variable that is typically equivalent to Q, although it may have other values. As discussed above, Q and L represent, respectively, the number of modulators 16 and respective transmit antennas 18 and the number of demodulators 22 and respective receive antennas 20 with respect to a typical MIMO communications system 6.
As also depicted in
The length NI of a training block 58 may be shorter than the length N of a data block 59 in a signal structure 52. Typically, the length NI of a training block 58 in the preamble 54 is established as a fraction of the length N of a data block 59 in the data section 56 to provide the relationship of NI being equivalent to N/I, where I is some positive integer. For example, NI may be equivalent to N/4 (i.e., I=4). If the length NI of a training block 58 is not established, the length NI may be assumed to be equivalent to N (i.e., I=1). Typically, the length of a training symbol 53 (i.e., G+NI) is equivalent to the length of a data symbol 55 (i.e., G+N). However, it is feasible for the training symbol 53 to be shorter than the data symbol 55 in the context of the signal structure 52.
A primary purpose of the preamble 54 is to enable the receiver 10 (
A space-time preamble structure, which may also be referred to as a space-time training structure, may be represented by a signal transmission matrix Sk. In accordance with an embodiment of the present invention, the signal transmission matrix Sk of an efficient space-time preamble structure should be a unitary transmission matrix in the frequency domain and have a low PAPR in the time domain. In this regard, efficient space-time preamble structures provide enhanced performance in MIMO communications systems.
A unitary transmission matrix contains rows and columns that are orthogonal to each other, and the energy of the signals represented by each row or column is unity. In mathematical terms, a unitary transmission matrix has the properties represented by the following equations:
where Si,j represents the constituent symbols of the unitary transmission matrix.
Providing a space-time preamble structure that is a unitary signal transmission matrix Sk reduces or eliminates noise enhancement during channel estimation of the received signals. Moreover, providing a space-time preamble structure that possesses a low PAPR reduces or eliminates signal non-linearities and spurious, out-of-band signal transmissions. As will be discussed below, data structures formed by space-time processing (i.e., space-time data structures) to be a unitary transmission matrix also provide enhanced performance in MIMO communications systems.
The following descriptions present several examples of data structures that, in accordance with the present invention, can be applied and/or modified to provide space-time preamble structures that are unitary transmission matrices. As a first example, a diagonal data structure can be applied and/or modified to provide a space-time preamble structure in accordance with the present invention. In this regard, the resulting diagonal space-time preamble structure is a unitary transmission matrix. The following diagonal structure SD1 is an example of this unitary transmission matrix that can be applied as a space-time preamble in a MIMO communications system with Q antennas:
The foregoing diagonal space-time preamble structure SD1 can be simplified so that the same training symbol (e.g., S1) can be transmitted from each antenna, instead of Q different training symbols (i.e., S1, S2, etc.), as shown by the following simplified diagonal structure SDS that can be applied, in accordance with the present invention, as a space-time preamble structure in a MIMO communications system with Q antennas:
When the foregoing diagonal structures SD, SDS are applied as space-time preamble structures in a MIMO communications system, the training symbols are transmitted sequentially in time from each corresponding transmit antenna, and the parameters of the received symbols are estimated by the receivers connected to each receive antenna. Due to their unitary characteristic, the diagonal structures SD, SDS, provide simplified signal acquisition (i.e., synchronization) and parameter estimation when applied as a space-time preamble structure in a MIMO communications system. These diagonal structures SD, SDS, are preferably applied as space-time preamble structures, in MIMO communications systems that use two transmit antennas. As the number (Q) of transmit antennas in the MIMO system is increased, the power output from each transmit antenna typically has to be reduced by a factor of Q due to the nature of MIMO systems. As a result, the efficiency of the diagonal space-time preamble structures SD, SDS may decrease in MIMO systems with more than two transmit antennas, since the diagonal structures SD, SDS only include symbols on the main diagonal (i.e., spanning from the top-left to the bottom).
A data structure that was introduced by S. Alamouti is another example of a data structure that can be applied and/or modified, in accordance with the present invention, to provide a space-time preamble structure SA. This data structure is a unitary transmission matrix, and it can be applied as a space-time preamble structure SA, in MIMO communications systems that employ two transmit antennas. The space-time preamble structure SA has the following form:
In the above space-time preamble structure SA, the “*” symbol indicates a complex conjugate operation. The foregoing space-time preamble structure SA can also be simplified, in accordance with the present invention, so that the same training symbol is transmitted from each of the two antennas of the MIMO system, as shown by the following simplified space-time preamble structure SAS:
Several orthogonal structures that were introduced by V. Tarokh, et al. are examples of data structures that can be applied and/or modified, in accordance with the present invention, to provide space-time preamble structures that are unitary transmission matrices. These data structures can be applied as space-time preamble structures, in accordance with the present invention, in MIMO communications systems that employ four or eight transmit antennas. For a four-antenna MIMO system, the following space-time preamble structure ST4 can be applied, in accordance with present invention, when the constituent symbols have real number values:
The foregoing space-time preamble structure ST4 can be simplified, in accordance with the present invention, so that the same training symbol is transmitted from each of the four antennas of the MIMO system, as shown by the following simplified space-time preamble structure ST4S. The symbols of this structure ST4S may have complex values (e.g., W+jX):
The foregoing simplified structures SAS, ST4S (i.e., EQ. 6 and EQ. 8) typically form unitary transmission matrices when applied as space-time preamble structures, without further modification. Furthermore, the PAPR of the simplified space-time preamble structures SAS, ST4S are typically unity when the symbols consist of chirp-type sequences, such as:
Therefore, these simplified structures SAS, ST4S are typically efficient (i.e., they provide time and frequency synchronization, estimation of noise variance and channel parameters, and low PAPR) when applied, in accordance with the present invention, as space-time preamble structures.
The foregoing structures SA, ST4 (i.e., EQ. 5 and EQ. 7) are also typically efficient when applied as space-time preamble structures, in accordance with the present invention. The structure ST4 is typically not efficient when applied as space-time data structures in a MIMO communications system. However, both structures SA, ST4 can be modified and then applied as efficient space-time data structures, in accordance with the present invention. Since the structures SA, ST4 will include symbols with complex values when they are applied as space-time data structures, the resultant data structures will typically not be unitary transmission matrices. Therefore, the structures SA, ST4 can be modified, in accordance with the present invention, to form unitary transmission matrices and, thus, provide efficient space-time data structures. Methods, in accordance with the present invention, to transform these structures SA, ST4 and other structures into efficient space-time data structures will be described below.
The following space-time preamble structure ST8 is based on another data structure by Tarokh, et al., and the structure ST8 can be applied in eight-antenna MIMO communications systems, in accordance with present invention, when the constituent symbols have real number values:
The foregoing space-time preamble structure ST8 can be simplified, in accordance with the present invention, so that the same training symbol is transmitted from each of the eight antennas of the MIMO system, as shown by the following simplified space-time preamble structure ST8S
The foregoing structures ST8, ST8S (i.e., EQ. 10 and EQ. 11) are typically efficient when applied as space-time preamble structures, in accordance with the present invention. However, these structures ST8, ST8S are typically not efficient when applied as space-time data structures in a MIMO communications system. The structure ST8 preferably can be modified and then applied as efficient space-time data structures, in accordance with he present invention. Since the structure ST8 will include symbols with complex values when it is applied as a space-time data structure, the resultant data structure will typically not be a unitary transmission matrix. Therefore, the structure ST8 can be modified, in accordance with the present invention, to form a unitary transmission matrix and, thus, provide an efficient space-time data structure. Methods, in accordance with the present invention, to transform this structure ST8 and other structures into efficient space-time data structures will be described below.
Orthogonal structures, such as those introduced by Tarokh, et al., typically only have applications to MIMO communications systems that employ two, four, or eight transmit antennas. As described above, some of the orthogonal structures can be applied, in accordance with the present invention, in two-antenna MIMO systems as space-time data structures, with complex symbols, that are unitary transmission matrices. However, the application of existing orthogonal structures using complex symbols (e.g., for space-time data structures) in MIMO systems having more than two transmit antennas typically results in a loss of the system diversity gain and/or system bandwidth. For example, the following orthogonal structure ST3 was introduced by Tarokh, et al. for use as a data structure with complex symbols in a three-antenna MIMO system:
When the foregoing structure ST3 is applied in a three-antenna MIMO system, it does not provide the full diversity performance of the system, which is the capability to transmit three symbols over three symbol periods. Instead, the structure ST3 only provides for the transmission of three symbols over four symbol periods, which is apparent since the structure has a four rows instead of three. This lack of full diversity may result in a loss of as much as 25% of system throughput. However, methods, in accordance with the present invention, will be discussed below to transform such inefficient structures into efficient space-time structures (for preambles or data) that provide full diversity performance in MIMO communications systems.
The foregoing space-time preamble structures, in accordance with the present invention, can be applied in a Q-antenna MIMO communications system, such as the system 6 depicted in
In general the transmission matrix for Q transmit antennas over Q symbol intervals can be represented by the following matrix SQ2:
This general transmission matrix SQ2 can be composed using Q2 different symbols (or sequences in the case of OFDM modulation). However, in general, only Q sequences are used to form a structure. As discussed above, the transmission performance of Q symbols over Q symbol periods indicates full diversity performance of the MIMO system and also indicates the utilization of the full bandwidth of the system. Thus, such performance indicates the optimal use of the system resources.
In order to utilize the structure of the foregoing general transmission matrix SQ2 to construct efficient space-time sequence structures for preambles, pilots and data to be applied in MIMO communications systems, the matrix SQ2 is pre-processed and/or pre-conditioned in accordance with the present invention.
Following step 122, the method 120 proceeds to step 124 in which the rows of the initial structure Sin are verified to be linearly independent. The check for linear independence of the rows of the initial structure Sin may be performed by various methods and techniques, which may be known in the art. For example, the rows of the initial structure Sin can be tested for linear independence by determining the rank of the initial structure Sin. If the rank of the initial structure Sin is determined to be Q, the rows of the initial structure Sin are linearly independent. If the rows of the initial structure Sin are determined to be linearly independent, the method 120 proceeds to the next step 126. However, if the rows of the initial structure Sin are determined not to be linearly independent, the method 120 returns to step 122, in which one or more different initial structures Sin are provided and the method 120 proceeds again to step 124.
In the step 126, an orthonormalization (i.e., orthogonalization and normalization) procedure is applied to the initial structure Sin. The orthonormalization procedure may be any procedure that transforms the initial structure Sin to a space-time structure Sout that has the properties of a unitary signal transmission matrix. As discussed above, a unitary transmission matrix has the following mathematical properties:
where Si,j represents the constituent symbols of the unitary transmission matrix. One example of an orthonormalization procedure that may be applied to the initial structure Sin to obtain a space-time structure Sout that is a unitary signal transmission matrix is known as a row-wise Gram-Schmidt procedure. An example application of a row-wise Gram-Schmidt procedure will be presented below.
The resultant space-time structure Sout that is obtained by the step 126 may be applied as an efficient space-time preamble structure or an efficient space-time data structure, depending on the characteristics of the constituent symbols of the structure. For example, as discussed above, an efficient space-time preamble structure includes symbols that provide time and frequency synchronization and estimation of noise variance and channel parameters. In contrast, an efficient space-time data structure typically includes symbols that have complex values, as also discussed above. Further, if OFDM modulation is employed in the communications system, the constituent symbols will be symbol sequences, as also discussed above.
The resultant space-time structure Sout may be applied accordingly as a space-time preamble or data structure in a Q-antenna MIMO communications system, such as the system 6 depicted in
The symbols or symbols sequences may also be derived from polyphase sequences, such as Chirp sequences; Milewski sequences; Frank-Zadoff sequences; Chu sequences; Suehiro polyphase sequences; and Ng et al. sequences, among others known in the art.
Following the step 142, the method 140 concludes with a step 144 in which the initial configuration of the initial structure Sin is chosen. The determination of the initial configuration may add certain specific characteristics to the structure. For example, the initial configuration typically reduces the number of possible symbol combinations from Q2 to Q. The initial configuration may be chosen from any structure configuration. The following are several examples of a possible initial configuration of the initial structure Sin:
Based on the determination of the symbol alphabet and the initial structure configuration in the step 142 and the step 144, respectively, an initial structure Sin can be determined. This initial structure Sin can be used in the method 120, depicted in
If the rows of the initial structure Sin are determined to be linearly independent, the method 160 proceeds from the step 164 to a step 166 in which an orthonormalization procedure is applied to the initial structure Sin to transform the initial structure Sin to a space-time structure Sout that has the properties of a unitary signal transmission matrix. This step 166 is at least substantially similar to the step 126 discussed above with respect to
Following the step 166, the method 160 proceeds to a step 168 in which the alphabet points of the constituent symbols of the resultant space-time structure Sout are checked to be within a tolerable distance of the alphabet points of the constituent symbols of the initial structure Sin. The amplitude of the alphabet points may be modified during the orthonormalization procedure in the step 166. The tolerable distance is typically dependent on the operating capability of components of the MIMO communications system 6, such as digital-to-analog (D/A) converters. The constituent symbols of the space-time structure Sout may be checked to be within a tolerable distance of the original alphabet points by various methods and techniques, which are known in the art. For example, the constituent symbols of the space-time structure Sout may be checked to be within a tolerable distance by application of a Euclidean distance metric represented, for example, by the following equation:
dt,l=∥St−Sl∥2 EQ. 16
If the constituent symbols of the space-time structure Sout are found to be within a tolerable distance from the original alphabet points of the initial structure Sin, the space-time structure Sout is stored in a memory or other device for application in a MIMO communications system. However, if the constituent symbols of the space-time structure Sout are not determined to be within a tolerable distance from the original alphabet points, the method 160 returns to step 162, in which one or more different initial structures Sin are provided and the method 160 proceeds again as described above.
In the case of a MIMO communications system that employs OFDM modulation, the steps 162 through 168 may be repeated until a sufficient number of space-time structures Sout that are unitary signal transmission matrices are obtained and stored, as discussed above.
If the symbols are within a tolerable distance, in step 170, the stored space-time structure Sout used to construct space-time sequence structures Sout,k, where k represents a sub-carrier or sub-channel index of the OFDM setup. The space-time sequence structures Sout,k may be constructed by an encoder, as described above with respect to
In the final step 172 of the method 160, the peak-to-average power ratio (PAPR) of the space-time sequence structures Sout,k are tested to determine if the PAPR of the structures is low enough to provide efficient signal transmission and reception in a MIMO OFDM communications system. The PAPR of the training sequences may be tested by various methods and techniques, which may be known in the art. For example, the PAPR of the space-time sequence structures Sout,k may be tested by converting the structures to the time domain (e.g., by inverse Fourier transform or “IFT”) and calculating the PAPR of the resultant signal samples. If the PAPR of the space-time sequence structures Sout,k is found to be acceptable (e.g., at or approaching unity), the structures have been determined to be efficient, in accordance with the present invention, and may be used for preambles or data in a MIMO communications system 6 employing OFDM modulation. However, if the PAPR of the space-time sequence structures Sout,k are found to be unacceptably high, the method 160 returns to step 162, in which one or more different initial structures Sin are provided and the method 160 proceeds again as described above.
In the case of some orthogonal polyphase sequences, complex coefficients bi that are used to modulate the sequences may be useful to form efficient space-time sequence structures Sout,k. In this regard, modulation of the orthogonal polyphase sequences by the complex coefficients bi may make the rows of the corresponding space-time structures Sout linearly independent. Furthermore, the modulation by the complex coefficients bi may also reduce the PAPR of the resulting space-time sequence structures Sout,k that are formed from the space-time structures Sout.
In the step 126 of the method 120 and the step 166 of the method 160, described above with respect to
It is noted that embodiments of the present invention, such as those described above, may be implemented in hardware, software, firmware, or a combination thereof. For example, in some embodiments, the present invention may be implemented as a computer program or application in software or firmware that is stored in a memory and that is executed by a suitable instruction execution system. In other embodiments the present invention may be implemented, for example, with one or a combination of the following technologies, which may be known in the art: one or more discrete logic circuit(s) having logic gates for implementing logic functions upon data signals, an application specific integrated circuit (ASIC) having appropriate combinational logic gates, a programmable gate array(s) (PGA), a field programmable gate array (FPGA), etc.
It is further noted that any process descriptions or blocks in flow charts described above may represent modules, segments, and/or portions of a computer program or application code that includes one or more executable instructions for implementing specific logical functions or steps in the process. Alternate implementations are included within the scope of the present invention in which functions may be executed out of order from that shown in the figures and/or discussed above, including substantially concurrently or in reverse order, depending at least in part on the functionality involved, as will be understood by those skilled in the art.
With regard to any block diagrams described above, although the flow of data or other elements may be depicted as unidirectional or bi-directional, such depictions are merely exemplary and not limiting. Variations of the flows depicted in the block diagrams are included within the scope of the present invention. Furthermore, the functionality of some of the blocks may be implemented by a single combined block within the scope of the present invention.
Moreover, embodiments of the present invention, such as those described above, may comprise an ordered listing of executable instructions for implementing logical functions which can be embodied in any computer-readable medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. In the context of this disclosure, a “computer-readable medium” may be any means that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device. The computer readable medium may be, for example but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, device, or propagation medium. More specific examples (i.e., a non-exhaustive list) of the computer-readable medium include the following: an electrical connection (electronic) having one or more wires, a portable computer diskette (magnetic), a random access memory (RAM) (electronic), a read-only memory (ROM) (electronic), an erasable programmable read-only memory (EPROM or Flash memory) (electronic), an optical fiber (optical), and a portable compact disc read-only memory (CDROM) (optical). It is noted that the computer-readable medium may even be paper or another suitable medium upon which the program is printed, as the program can be electronically captured, via for instance optical scanning of the paper or other medium, then compiled, interpreted or otherwise processed in a suitable manner if necessary, and then stored in a computer memory.
Finally, it should be emphasized that the above-described embodiments of the present invention are merely possible examples of implementations set forth for a clear understanding of the principles of the invention. Many variations and modifications may be made to the above-described embodiment(s) of the invention without departing substantially from the spirit and principles of the invention. All such modifications and variations are intended to be included herein within the scope of this disclosure and the invention, and protected by the following claims.
Mody, Apurva N., Stuber, Gordon L.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5561468, | May 07 1993 | Sony Corporation | Multiplexed modulation system for robust audio digital television |
5732113, | Jun 20 1996 | Stanford University | Timing and frequency synchronization of OFDM signals |
6088408, | Nov 11 1997 | AT & T Corp. | Decoding for generalized orthogonal designs for space-time codes for wireless communication |
6115427, | Apr 26 1996 | AT&T Corp | Method and apparatus for data transmission using multiple transmit antennas |
6125149, | Nov 05 1997 | AT&T Corp. | Successively refinable trellis coded quantization |
6185258, | Sep 16 1997 | AT&T MOBILITY II LLC | Transmitter diversity technique for wireless communications |
6188736, | Dec 23 1997 | AT&T MOBILITY II LLC | Near-optimal low-complexity decoding of space-time codes for fixed wireless applications |
6317411, | Feb 22 1999 | Google Technology Holdings LLC | Method and system for transmitting and receiving signals transmitted from an antenna array with transmit diversity techniques |
6351499, | Dec 15 1999 | Intel Corporation | Method and wireless systems using multiple antennas and adaptive control for maximizing a communication parameter |
6542556, | Mar 31 2000 | Nokia Mobile Phones Ltd. | Space-time code for multiple antenna transmission |
6546055, | Jan 12 1998 | BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, THE | Carrier offset determination for RF signals having a cyclic prefix |
6549581, | Jun 15 1998 | Redwood Technologies, LLC | Transmitter and method to cancel interference in OFDM communication |
6654429, | Dec 31 1998 | AT&T Corp. | Pilot-aided channel estimation for OFDM in wireless systems |
6693982, | Oct 06 1997 | AT&T Corp | Minimum mean squared error approach to interference cancellation and maximum likelihood decoding of space-time block codes |
6757265, | Jul 30 1999 | Intel Corporation | Subscriber unit in a hybrid link incorporating spatial multiplexing |
6804307, | Jan 27 2000 | TELEFONAKTIEBOLAGET LM ERICSSON PUBL | Method and apparatus for efficient transmit diversity using complex space-time block codes |
6865237, | Feb 22 2000 | UNWIRED BROADBAND, INC | Method and system for digital signal transmission |
7068628, | May 22 2000 | AT&T Properties, LLC; AT&T INTELLECTUAL PROPERTY II, L P | MIMO OFDM system |
8116260, | Aug 22 2001 | AT&T Corp | Simulcasting MIMO communication system |
20010031019, | |||
20010050964, | |||
20010053143, | |||
20020003774, | |||
20020041635, | |||
20020044524, | |||
20020080887, | |||
20020122382, | |||
20020122383, | |||
20020122499, | |||
20020181390, | |||
20020181509, | |||
20030002450, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 26 2002 | MODY, APURVA N | Georgia Tech Research Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 029398 | /0478 | |
Nov 27 2002 | STUBER, GORDON L | Georgia Tech Research Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 029398 | /0478 | |
Apr 11 2007 | Georgia Tech Research Corporation | Bae Systems Information and Electronic Systems Integration INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 029401 | /0166 | |
Dec 19 2008 | Bae Systems Information and Electronic Systems Integration INC | TAFFCO THREE FUND, L L C | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 029401 | /0764 | |
Mar 13 2012 | Intellectual Ventures II LLC | (assignment on the face of the patent) | / | |||
Oct 04 2013 | TAFFCO THREE FUND, L L C | Intellectual Ventures II LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031464 | /0848 | |
Oct 10 2024 | Intellectual Ventures II LLC | INTELLECTUAL VENTURES ASSETS 194 LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 068868 | /0146 | |
Oct 15 2024 | INTELLECTUAL VENTURES ASSETS 194 LLC | INTEGRAL WIRELESS TECHNOLOGIES LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 068920 | /0104 |
Date | Maintenance Fee Events |
Sep 16 2014 | ASPN: Payor Number Assigned. |
Apr 24 2015 | REM: Maintenance Fee Reminder Mailed. |
Jun 08 2015 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jun 08 2015 | M1555: 7.5 yr surcharge - late pmt w/in 6 mo, Large Entity. |
Feb 14 2019 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Apr 29 2017 | 4 years fee payment window open |
Oct 29 2017 | 6 months grace period start (w surcharge) |
Apr 29 2018 | patent expiry (for year 4) |
Apr 29 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 29 2021 | 8 years fee payment window open |
Oct 29 2021 | 6 months grace period start (w surcharge) |
Apr 29 2022 | patent expiry (for year 8) |
Apr 29 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 29 2025 | 12 years fee payment window open |
Oct 29 2025 | 6 months grace period start (w surcharge) |
Apr 29 2026 | patent expiry (for year 12) |
Apr 29 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |