A submersible robot for operating a tool relative to a surface of an underwater structure has a tool holder movably mounted on a support assembly provided with a driving arrangement for movably holding the tool in operative position relative to the surface. position and orientation of the support assembly relative to the surface is locked and adjusted by locking and leveling arrangements. A programmable control unit operates the driving, locking and leveling arrangements and the tool and receives measurements from a sensor unit. The control unit has an operation mode wherein a positioning of the robot is determined and controlled as function of an initial position for defining a first work area, and shifted positions of the robot for defining additional work areas, the work areas having overlapping portions with one another for tracking displacements of the robot relative to the surface of the structure using the sensor unit.
|
1. A submersible robot for operating a tool relative to a surface of an underwater structure, comprising:
a support assembly;
a tool holder for holding the tool in operative position relative to the surface of the underwater structure, the tool holder being movably mounted on the support assembly so that the tool is movable in a work area relative to the surface of the underwater structure when the tool is mounted on the tool holder;
a driving arrangement mounted on the support assembly for moving the tool holder so that the tool is movable within the work area when the tool is mounted on the tool holder;
a locking arrangement mounted on the support assembly for locking a position of the support assembly relative to the surface of the underwater structure;
a levelling arrangement mounted on the support assembly for adjusting an orientation of the support assembly relative to the surface of the underwater structure when the support assembly is locked by the locking arrangement;
a sensor unit directable toward the surface of the underwater structure, for measuring a distance between the robot and the surface of the underwater structure; and
a programmable control unit mounted on the support assembly for operating the driving arrangement, the locking arrangement, the levelling arrangement and the tool and receiving measurements from the sensor unit, the programmable control unit having an operation mode wherein a positioning of the robot relative to the surface of the underwater structure is determined and controlled as function of an initial position of the robot for defining a first work area, and shifted positions of the robot for defining additional work areas, the work areas having overlapping portions with one another for tracking displacements of the robot relative to the surface of the underwater structure using the sensor unit.
2. The submersible robot according to
3. The submersible robot according to
4. The submersible robot according to
5. The submersible robot according to
6. The submersible robot according to
7. The submersible robot according to
8. The submersible robot according to
9. The submersible robot according to
10. The submersible robot according to
11. The submersible robot according to
12. The submersible robot according to
13. The submersible robot according to
14. The submersible robot according to
15. The submersible robot according to
16. The submersible robot according to
18. The submersible robot according to
19. The submersible robot according to
|
The present invention generally relates to works relative to an underwater structure, and more particularly to a submersible robot for operating a tool relative to a surface of an underwater structure. The targeted structure may be one of the embedded parts present on hydroelectric works, in particular a runway, seal seat, sill or lintel of a sluice.
The runways, the seal seats, the sill or the lintel of a sluice, in a hydroelectric work, are used to receive a gate or stop logs in order to block and seal the opening in a dam. Its structures are prone to wear as time passes and thus requiring restoration works in order to preserve their functionalities. The traditional underwater structure restoration methods are based on minor repair tasks that may be completed under water by experimented divers and also on major works that require the preliminary installation of a cofferdam in order to dry the work area.
The automated underwater restoration exhibits economical advantages, but raises serious technical problems due to the design of the submersible systems comprising various electromechanical parts. Other problems arise to both ensure automated and remotely operated tasks in an underwater environment, where the human presence is considered dangerous, where the visibility is reduced and the availability of the required sensors is limited. The underwater enviromnent is also a source of important perturbations that may affect the operation of the sensors, the manipulators and other actuators. The control of the machining process is also affected by the underwater environment and poses precision and repetitiveness problems. Furthermore, it is necessary for certain works to perform the restoration in different time windows having variable durations. To optimize the restoration time and allow respecting these time windows, the installation and uninstallation time in the work area must be as short as possible, which implies that it is important to reduce the amount and volume of the equipment to be installed to its minimum, as well as to simplify the complexity of the installation and the number of steps to be followed.
Some apparatuses allowing performing works under water have already been proposed.
For example, U.S. Pat. No. 6,309,147 (Matsumoto et al.) shows a remotely operated tool for drilling a plate in a nuclear reactor vessel. The tool has a drill bit moving along its rotation axis inside a stationary sleeve. The tool is mounted over the plate to be drilled, and a system is provided for collecting the chips resulting from the drilling. The drilling requires that the tool be still and properly fixed with respect to the plate to be drilled, and thus has no lateral or transverse mobility for its displacement, nor vertical other than that relative to the drill bit as required for the drilling. Furthermore, the tool is only provided with a basic controller limited to the operation of the motors of the tool and not designed to have automation capabilities for the drilling task, and even less for other tasks.
U.S. Pat. No. 6,555,779 (Obana et al.) proposes an apparatus that prevents water from entering in a bell covering and sliding on a workpiece, for example for welding or cutting. The apparatus has a pressurized water or gas injection system intended to form a water or gas curtain around the periphery of the bell to prevent water from entering. The apparatus is especially designed for performing a welding task along a line and can be mounted on a track by means of an assembly subjected to no important stresses and having a consequent construction. The control of the welding task is achieved by remote control operations from a worker, or by an automated mechanism reacting to image data captured with a camera during the welding.
U.S. Pat. No. 5,377,238 (Gebelin et al.) proposes a device for cutting or grinding a support of a nuclear reactor fuel assembly. The configuration of the device is specifically adapted to the prismatic geometry of the fuel assembly, and thus has a platform horizontally fastening to a support of the fuel assembly, a mobile carriage mounted on the platform, a hoist for hoisting the assembly, clamping elements for immobilizing the assembly, a table mounted on the carriage with a return element, a tool support mounted on the table, and a tool secured to the tool support.
JP application 2005297090 (Sato et al.) proposes a device for underwater polishing of a workpiece and collecting chips without however requiring a suction pump. The device comprises impellers disposed on the rotation shaft of the tool located in a bell so as to produce a negative pressure in the bell for draining the chips and water towards a filter that collects the chips. The construction of the device only allows light polishing or grinding works
In general, the prior art apparatuses and devices have automation, mobility, portability, installation, robustness, stiffness, precision and/or adaptation capabilities limited to such an extent that they are not adapted to the automation and achievement of intensive machining or measurement works under water, as for the milling of embedded parts of hydro-electric structures. This case of milling involves important stresses and vibrations at the level of the manipulator of the milling tool and requires a good global stiffness.
An object of the invention is to provide a submersible robot for operating a tool relative to a surface of an underwater structure, like one of the embedded parts present on hydro-electric works, in particular runways, seal seats, the sill or the lintel of a sluice used to receive gates and stop logs.
Another object of the invention is to provide such a robot that is apt to achieve machining tasks and in particular surfacing, face milling, plunge milling, slotting, ramping, contour milling, 3D machining, drilling, boring, spot facing or tapping of parts of various sizes.
Another object of the invention is to provide such a robot that can operate by using a combination of relative reference in relation to the structure to be machined, without using an added referencing support structure.
Another object of the invention is to provide such a robot that may measure the surface with precision, before and after a machining task.
Another object of the invention is to provide such a robot that has short installation and uninstallation times compared to the prior art apparatuses.
Another object of the invention is to provide such a robot that can stand still in relation to the structure to be machined, without using an added support structure.
According to one aspect of the present invention, there is provided a submersible robot for operating a tool relative to a surface of an underwater structure, comprising:
Preferably, the robot is connected to a control station above water surface via an umbilical cable. The control station may comprise power supplies, monitors and a computer that produces and transmits control signals to the robot and provides a user interface.
An electromagnetic clutch may be used for coupling the tool holder to a motor mounted on the support assembly for driving the tool. The robot may be provided with a suction nozzle located close to the tool and coupled to a flexible pipe connected to a submersible pump, allowing the suction of dust and chips produced by the tool and possibly their recovery and filtration at the pump outlet.
The robot may be provided with a submersible camera possibly reduced in size, positioned to view the tool.
The support assembly may be made of frame members advantageously usable to perform large machining works.
The locking and levelling arrangements may have a configuration allowing the holding, the locking and the positioning of the robot in a slot facing the section of the surface to be worked or inspected.
A detailed description of preferred embodiments will be given herein below with reference to the following drawings:
As used in connection with this disclosure, the term “underwater structure” comprises a structure that may be fully or partially immerged or submerged.
Referring to
Installation of the robot 2 can be achieved by placing it above the slot 4 and subsequently lowering it inside the slot 4 by means of a cable 12 using a hoisting system like a winch, a bridge crane, etc. (not shown) in order to roughly position the robot 2 at the desired vertical distance from the upper surface 14 of the slot 4. The robot 2 is then lowerable along the runway 6 down to the lowermost point formed by the sill 10. The electrical supply and the control of the robot 2 may be achieved through an umbilical cable 16 from a control station 18 located above water level. The umbilical cable 16 may combine power and communication conductors (not shown) and a gas supply pipe (not shown). The conductors and the pipe may be separated from one another if desired.
Referring to
Referring to
The support assembly also has levelling legs 28, 30, 32 and 60 two thrust pistons 34, 36 (or jacks) for locking the support assembly 22 in operative position with respect to the surface to be machined. The pistons 34, 36 are preferably linked with each other by a transverse member 44 for rigidity purposes. The pistons 34, 36 can be operated using the gas supply in the umbilical cable 10 (shown in
The robot 2 has a watertight enclosure 52 containing electric and electronic components forming an onboard control unit 128 (shown in
The robot 2 may be provided with a pump 64 preferably extending outside the slot 4 (shown in
The robot 2 may be fastened to the cable 12 (shown in
The robot 2 preferably has a modular configuration so that it can be adapted to different sizes of slots by modifying the arrangement, positions and sizes of its mechanical parts, and the arrangement and positions of its sensors and actuators.
Referring to
Tracks 78 can be mounted on the member 24 for guiding the member 26 in the X axis in order to position the tool holder 42 with respect to the surface to be machined. A rack 80 in parallel with one of the tracks 78 can be used to move the member 26.
Referring to
Depending on the tool to be used by the robot 2, the tool holder 42 may be provided with a tool bearing mechanism 90 to which the tool 92 can be secured in a possibly rotatable manner. The tool holder 42 may also be used to support an optional camera 94, the suction nozzle 68 coupled to the flexible pipe 70 (shown in
The tool 92 may be driven in rotation by a sprocket wheel 98 driven by another sprocket wheel 100 through a sprocket belt 102 (better shown in
Referring to
Referring back to
The five degrees of freedom of the robot 2 allows, with respect to the tool 92 (shown in
For a precise positioning of the robot 2 for example for restoring an embedded part on its whole length, an overlap based positioning method may be used. Such a method allows global referencing of the robot 2 with respect to a reference point such as a point located in an upper portion of the slot 4 (shown in
Referring to
1. From the surface, using the cable 12, the robot 2 is vertically positioned in the slot 4 in front of the first section to be machined, engageable through the slot opening. A lower portion of the robot 2 may be submerged while an upper portion of the robot 2 remains out of the water.
2. Pneumatic pressure is turned on to actuate the pistons 34, 36 in order to lock the robot 2 in the slot 4.
3. Two mirror references located on the upper portion of the robot 2 are referenced outside the water using a precision laser tracker (not shown). For more precision, both references may be as far as possible from each other in the X and Y axes. With the displacements of each levelling legs 28, 30, 32 (shown in
4. The machining operation is performed on the current machining area using X, Y and Z translation movements as provided by the robot 2. A trajectory algorithm may be used to compensate small deviations in rotation in the Z axis that may occur (Arz). Optionally, the sensor 96 (shown in
5. The pneumatic pressure is turned off to release the pistons 34, 36 to allow vertical movements of the robot 2 in the slot 4.
6. The robot 2 is lowered in the slot 4 about 90% of its effective machining vertical range (for a 1 m range, the robot 2 would be lowered about 900 mm). In other words, the robot 2 is lowered so as to reach the next section to be machined while preserving about 10% of the section previously machined (e.g. initially in the upper portion of the slot 4). If the bottom of the slot 4 is reached, this will be the last machined section.
7. The pneumatic pressure is turned on to actuate the pistons 34, 36 to lock the robot 2 in the slot 4 for the new machining task.
8. The 10% overlapping surface restored during the last machining operation is measured with the sensor 96 (for a robot with a 1 m range, the overlapping surface has a 100 mm height). Using vision algorithms, the shifts Δtx, Δty, Δtz, Δrx, Δry, Δrz resulting from the last displacement of the robot 2 may be correctly obtained as a function of the precision of the measurements carried out. Optionally, other sensors like inclinometers (not shown) on the robot 2 may be coupled to the algorithms to reduce possible detection errors.
9. The orientation (rotation) of the X and Y axes of the robot 2 is adjusted until the X-Y plane required for the restoration is reached. This plane corresponds to the continuity of the plane obtained during the last machining operation.
10. Return to step 4.
Other positioning methods may be used when the machining is not to be achieved on all the length of the underwater structure in a constant manner. The basic principle remains the same but the steps, the algorithms and the computations to be carried out may be different.
Referring to
While embodiments of the invention have been illustrated in the accompanying drawings and described above, it will be evident to those skilled in the art that modifications may be made therein without departing from the invention. For example, the support assembly 22, the mobile members 24, 26, the tool bearing mechanism 90, the magnetic coupling mechanism 106 and the housing 110 may be constructed differently, as long as their constructions are submersible, have rigidities resisting to the direct and indirect efforts produced by the tool 92, and fulfill functions similar to those described above. The motors 120 of the legs 28, 30, 32, the motors 58, 60 for moving the mobile members 24, 26, and the thrust pistons 34, 36 contribute to the precision of the displacements of the tool 92 and provide an appropriate displacement and positioning range for the tool 92 with respect to the target surface for a machining task or another similar task. The motors 120, 58, 60 may be of different types and constructions if desired, as long as they allow the required positioning of the mobile elements 24, 26, 28, 30, 32. The motors 120, 58, 60 can be optionally provided with braking mechanisms (not shown) for increased safety. Additional stops and sensors (not shown) may be provided for redundancy and increased safety. The proximity sensors 76, 124 may be positioned otherwise and be of other types if desired.
It is possible to use the robot 2 in other configurations, for example for vertical or horizontal displacement on a structure of any kind without using the structure for referencing purposes, but only for replacing the cable 12 providing from the hoisting system at the surface. The locking arrangement of the robot 2 in the slot 4 with respect to the target surface may have another design depending on the configuration of the underwater structure. For example, the locking arrangement may be designed to squeeze a beam or a like member (not shown) extending near the target surface of the underwater structure.
The robot 2 may also be used to perform measurement, restoration or reconditioning works of an immerged structure in a dam, a ship harbor, a borehole, a bridge structure, or a ship hull.
Morin, Rene, Provencher, Luc, Gendron, Stephan, Blain, Michel
Patent | Priority | Assignee | Title |
8978477, | May 10 2011 | BP Corporation North America Inc. | Linearly-travelling ultrasonic probe mount and methods for use |
Patent | Priority | Assignee | Title |
4444146, | Jan 13 1982 | Rediffusion Simulation Incorporated; HUGHES TRAINING INC | Ultrasonic subsurface cleaning |
4462328, | Jan 02 1981 | Ship hull cleaning device | |
4502407, | Apr 12 1982 | Shell Oil Company | Method and apparatus for cleaning, viewing and documenting the condition of weldments on offshore platforms |
4821665, | Mar 13 1986 | SACHSE ENGINEERING ASSOCIATES, INC A CORPORATION OF CALIFORNIA | Submersible ROV for cleaning and inspecting metal |
5047990, | Jun 01 1990 | The United States of America as represented by the Secretary of the Navy | Underwater acoustic data acquisition system |
5377238, | Jul 27 1992 | Framatome; Cogema | Device for the underwater machining of a spacer-grid of a fuel assembly for a nuclear reactor |
5398632, | Mar 08 1993 | Metro Machine Corporation | Apparatus and method for performing external surface work on ship hulls |
5513930, | Apr 11 1991 | Underwater servicing device | |
5852984, | Dec 23 1996 | Ishikawajimi-Harima Heavy Industries Co., Ltd. | Underwater vehicle and method of positioning same |
6309147, | Sep 15 1995 | General Electric Company | Underwater remote drilling tool and methods |
6555779, | Feb 07 2000 | Hitachi, LTD | Underwater processing device and underwater processing method |
8459196, | Sep 30 2011 | Hydro-Quebec | Submersible robot for operating a tool relative to a surface of an underwater structure |
20020121291, | |||
20100062697, | |||
JP2005297090, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 23 2013 | Hydro-Quebec | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Nov 29 2016 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Feb 01 2021 | REM: Maintenance Fee Reminder Mailed. |
Jul 19 2021 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jun 10 2017 | 4 years fee payment window open |
Dec 10 2017 | 6 months grace period start (w surcharge) |
Jun 10 2018 | patent expiry (for year 4) |
Jun 10 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 10 2021 | 8 years fee payment window open |
Dec 10 2021 | 6 months grace period start (w surcharge) |
Jun 10 2022 | patent expiry (for year 8) |
Jun 10 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 10 2025 | 12 years fee payment window open |
Dec 10 2025 | 6 months grace period start (w surcharge) |
Jun 10 2026 | patent expiry (for year 12) |
Jun 10 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |